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ABSTRACT. In order to accurately simulate the transport of growth factor from tumor site into

a nearby capillary wall, a recently introduced model of tumor-induced capillary growth incorporates

a new form of transmission boundary flux. Growth factor emitted from the tumor may be viewed

as a diffusible chemical moving through intersticial space, which is represented as a porous medium.

Transmission between the capillary wall and intersticial space gives rise to a type of continuous

delay/memory condition at the boundary. Herein, we establish results on global solvability and

blow up in finite time for a general nonlinear diffusion model, including such transmission boundary

conditions. Although the model appears more closely aligned with models involving nonlinear flux

conditions at the boundary, these results bear notable similarities to those with Dirichlet boundary

conditions.
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1. PRELIMINARIES

We investigate the global solvability of a nonlinear diffusion model

(1.1)

ut = ∇ · (∇φ(u) + ǫf(u)) + h(u) on ΩT

(∇φ(u) + ǫf(u)) · n = g(x, u, v) on (∂Ω)T

u = u0 on Ω × {0}

with gv ≥ 0 on (∂Ω)T ; gv ≡ 0 on (∂Ω \ Σ)T . Here, T subscripts are used to denote

the respective product sets, such as ΩT ≡ Ω × (0, T ). Ω is a bounded domain in RN

having piecewise smooth boundary ∂Ω, and Σ ⊂ ∂Ω is a relatively open subset also

with piecewise smooth boundary, i.e., locally C2.

Where gv 6= 0 on Σ, v is determined according to the transmission boundary

condition

(1.2)
vt = F (u, v) +G(u)t on ΣT

v = v0 on Σ × {0}.

Physical motivation for this type of boundary condition arises in efforts to model

tumor-induced capillary growth. In such case, N = 2 or 3, the capillary wall is
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located on all or part of Σ, and an early stage (non-vascularized) tumor is positioned

on a portion of ∂Ω \ Σ at some positive distance from the capillary [6].

Towards understanding the role of the transmission condition in promoting or

inhibiting blow up in finite time, we analyze a familiar case of power laws in (1.1).

Although these results may be applied to more general nonlinearities, we focus mostly

upon the power laws φ(u) = um, h(u) = aup, p,m > 0, a ≥ 0. The convective model

will be addressed in a one-dimensional case (N = 1, Ω = (0, 1), Σ = {1}) with ǫ > 0,

f(u) = f(u) = un, n > 0.

Regarding the nonlinearities g, F , and G, we introduce general conditions below

with particular attention to choices both in connection with those in the capillary

growth model and in relation to known results for (1.1) when gv ≡ 0. Specifically,

those choices are

(1.3) g(x, u, v) =

{

l ≥ 0, x ∈ ∂Ω \ Σ

−ψuq + βv, x ∈ Σ,

with ψ, β ≥ 0, q > 0, G(u) = Auq, and

(1.4) F (u, v) = −
λv

1 + νv
+Buq,

with constants λ, ν > 0 and A,B ≥ 0. If q = 1, ψ = β > 0, and λ is replaced with

λη/η0, then these reduce to the case of the capillary growth model [6]. (Here, η, η0

refer to endothelial cell densities.) Furthermore, the nonlinear flux model with β = 0,

Σ = ∂Ω, ǫ = 0 has been addressed in the literature for the existence of a compact

attractor (ψ > 0, q ≥ m > p ≥ 1) [5] and for characterization of global solvability

(ψ < 0, a > 0, p ≤ 1, q ≤ min{1, (m+1)/2}) [8, 9]. More discussion is provided later

on the relationship between these results and those established in the present article.

For the forms of nonlinearities (1.3)–(1.4), one may formally integrate (1.2) and

obtain g ∼ (−ψ+Aβ)uq on Σ. Thus, we might anticipate −ψ+Aβ < 0 will give rise

to a compact attractor and −ψ +Aβ > 0 will result in a characterization of blow up

according to q > 1 or p > 1. Guided by these ideas, we first establish that solutions

of (1.1)–(1.2) blow up in finite time in the following situations when −ψ + Aβ > 0

and u0 is chosen appropriately “large”.

(1) N ≥ 1, ǫ = 0

• q, p ≥ m > 1

• N = 1, p > 1 or q > min{1, (m+ 1)/2}, and u0 ≥ δ > 0

(2) N = 1, ǫ > 0

• n, q ≥ m ≥ 1

• p ≥ max{m,n}

On the other hand, if ψ, β > 0, p ≤ m, then (1.1)–(1.2) possesses an equilibrium

solution. Thus, necessary and sufficient conditions p ≤ 1, q ≤ min{1, (m + 1)/2}
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for the global existence of all positive solutions to the boundary flux problem with

β = ǫ = 0, −ψ > 0 [8, 9] will not continue to allow a similar characterization for

(1.1)–(1.2) when −ψ + Aβ > 0. In fact, the condition p ≥ m for blow up is more

reminiscent of results for nonlinear reaction diffusion models with Dirichlet boundary

conditions. Currently, we do not have methods developed to conclude global existence

of solutions for (1.1)–(1.2) as might be expected in case −ψ + Aβ < 0, beyond what

may be concluded from the existence of nontrivial equilibria.

Throughout this work, the nonlinear terms in (1.1)–(1.2), φ, f , h, g, F , and G, are

assumed to be continuous, with the diffusion law assumed to satisfy φu > 0 for u > 0.

This is the standard parabolicity restriction sufficiently weakened to allow familiar

cases of degenerate diffusion (e.g., porous medium flow). We also assume that fu, hu,

and gu exist for u > 0, although such assumptions do not overly restrict the power

laws which may be included. As we seek nonnegative solutions, it is assumed that

φ(0) = 0, f(0) = 0, h(0) ≥ 0, and g(·, 0, v) ≥ 0 for v ≥ 0.

The initial conditions u0, v0 are nonnegative, L∞ functions on Ω and Σ, re-

spectively. As v − G(u) is naturally involved in the weak definition of (1.2), initial

conditions are additionally assumed to satisfy v0 −G(u0) ≥ 0 on Σ.

Regarding the nonlinearities in (1.2), we incorporate assumptions from our pre-

viously established local existence and comparison theory [1]. In such direction, F

and G are required to satisfy the following for u, v ≥ 0.

(i) G′, Fu, and Fv are continuous,

(ii) F (u,G(u)) ≥ 0,

(iii) G(0) = 0, G(u) ≥ 0, G′(u) ≥ 0, and

(iv) Fu + FvG
′ ≥ 0.

Rationale for these are provided, predominantly, by the need to build a model pos-

sessing nonnegative solutions. Such conditions are sufficient for the existence of a

maximal solution, herein referred to as the solution, of (1.1)–(1.2) for which a sub-

solution comparison is available. However, beyond comparison of solutions, a general

supersolution comparison theory is not known. As a result, global existence results

are currently limited to development of equilibrium states. A more extensive dis-

cussion is available in [1]. In the case of the nonlinearities (1.3)–(1.4), the above

assumptions require q ≥ 1 and λA ≤ B.

In order to recruit its own blood supply, an early stage tumor emits a growth

factor which flows through the intersticial space, or extra-cellular matrix as it is

sometimes called, to the capillary wall. The solution of (1.1)–(1.2), u, v, denotes

growth factor concentrations in Ω and Σ, respectively. In reality, however, a capillary

wall does not have zero thickness as represented by Σ. To reflect this dimensionality

difference in the transmission of growth factor taking place at the capillary wall, an
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important feature of the model is that u(x, t) 6= v(x, t) for x ∈ Σ. Instead, the

evolution of growth factor concentration in the capillary wall, v, is determined by

the concentration (u) and time rate of change in concentration (ut) of growth factor

arriving at the capillary wall. (1.1)–(1.2) comprises a part of the model for growth

of new capillary networks (“angiogenesis”), as initiated by a developing solid tumor,

describing the evolution of growth factor concentration. See Levine et al. [6] for

a discussion of the full system of nonlinear diffusion equations designed to model

tumor-induced angiogenesis.

The present work is a portion of an ongoing effort to establish results on global

solvability which are applicable to each of the various diffusion models contained

within the full angiogenesis system introduced by Levine et. al [6]. Such results are

of potential use in allowing future mathematical analyses of the qualitative behav-

ior of solutions for the complete system. Additionally, the transmission condition

(1.2) appears to be a new type of delay/memory boundary condition not currently

addressed in the literature.

2. SUBSOLUTIONS AND BLOW UP RESULTS

Toward establishing blow up results for (1.1)–(1.2), we consider v = G(u) on Σ.

Noting that F (u, v) = F (u,G(u)) ≥ 0 by the assumptions on F , G, the choice of

v = G(u) will therefore formally yield (v−G(u))t = 0 ≤ F (u, v), which, upon precise

weak formulation, corresponds with the requirements for a subsolution of (1.2). See

[1] for the details. Subsequently, if u is a solution of

(2.1)

ut = ∇ · (∇φ(u) + ǫf(u)) + h(u) on ΩT

(∇φ(u) + ǫf(u)) · n = g(x, u,G(u)) on (∂Ω)T

u = u0 on Ω × {0},

then u, v = G(u) is a subsolution of (1.1)–(1.2).

From a slightly different perspective, solutions of (1.1)–(1.2) are nonnegative.

Hence, if u is a solution of either

(2.2)

ut = ∇ · (∇φ(u) + ǫf(u)) + h(u) on ΩT

u = 0 on (∂Ω)T

u = u0 on Ω × {0},

or the mixed problem

(2.3)

ut = ∇ · (∇φ(u) + ǫf(u)) + h(u) on ΩT

(∇φ(u) + ǫf(u)) · n = g(x, u,G(u)) on ΣT

u = 0 on (∂Ω \ Σ)T

u = u0 on Ω × {0},

then u, v = G(u) is again a subsolution of (1.1)–(1.2).
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To establish blow up for solutions of (1.1)–(1.2), we thus need only determine

results on blow up applicable to one of the problems (2.1)–(2.3).

For the general N -dimensional model (2.1) when ǫ = 0, the method of concavity

is available. To formulate the terms needed in the method, define

Φ(u) ≡

∫ u

0

φ(v)dv,H(u) ≡

∫ u

0

h(v)dv, and P (u) ≡

∫ u

0

φ′(v)g(v,G(v))dv.

Blow up for solutions of (2.3), and, hence of (1.1)–(1.2) is now a direct application

of known concavity results [4, 7].

Theorem 2.1. Assume Φκ is convex for some 0 < κ < 1/2, and both h(u)/φ(u),

g(u,G(u))/φ(u) are nondecreasing for u > 0. If

1

2

∫

Ω

|∇φ(u0)|
2 dx <

∫

Ω

H(u0)dx+

∫

Σ

P (u0)dSx,

and v0 ≥ G(u0), then the solution of (1.1)–(1.2) blows up in finite time, i.e.,

lim sup
t→T−

‖u(·, t)‖L∞(Ω) = ∞

for some T <∞. Since v ≥ G(u) [1], v similarly blows up in finite time.

As the solution of (2.1) has ∇φ(u)·n = l ≥ 0 on ∂Ω\Σ, we obtain subsolutions of

this problem via the boundary condition ∇φ(u)·n = 0 on ∂Ω\Σ. We may thus utilize

blow up results for radial symmetric solutions for Ω = {x : |x| < R} [8, 9], which

satisfy |∇u| = 0 for |x| = 0, as subsolutions to establish the following result. Due to

the positivity requirement on initial conditions invoked in both of these references,

however, the argument currently applies in only the case of N = 1.

Theorem 2.2. Let N = 1, ǫ = 0, and φ(u) = um for m > 0. Assume there exists

C ≥ 0, δ > 0, q, p ≥ 0 such that g(·, u, G(u)) ≥ Cuq and h(u) ≥ Cup for u ≥ δ. If

u0 ≥ δ and either p > 1 or q > min{1, (m + 1)/2}, then the solution of (1.1)–(1.2)

becomes unbounded in finite time.

For the remaining cases which will address convective models in one-dimension,

N = 1, we apply the results from [3] to (2.3), which are established as a combination

of concavity and monotonicity methods. The assumptions thus bear similarity to

those introduced in Theorem 2.1.

Theorem 2.3. Assume Φκ is convex for some 0 < κ < 1/2, and g(u,G(u))/φ(u) is

nondecreasing for u > 0. Additionally, assume ǫ > 0, f ′ ≥ 0, and u0 is nondecreasing

on [0, 1]. If

1

2

∫ 1

0

|φ(u0)x|
2 dx < P (u0(1)),

and v0 ≥ G(u0(1)), then the solution of (1.1)–(1.2) blows up in finite time.
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Finally, upon consideration of (2.2), again with N = 1, we introduce the following

assumptions.

(2.4) h ∈ C1([0,∞)), h′′(u) ≥ 0 for u > 0,

∫ ∞

1/h(u)du <∞.

(2.5) φ(u) ≤ C(h(u))α, f(u) ≤ C(h(u))β, for u > 0,

with 0 < α ≤ 1; 0 < β < 1.

(2.6) φ(u) = k1h(u), f(u) = k2h(u), for u ≥ 0,

for constants k1, k2 > 0. In light of the results obtainable through so-called eigen-

function techniques [2], we now have the following result.

Theorem 2.4. (i) Assume (2.4)–(2.5), where either α < 1 or α = 1 and a is suffi-

ciently large. Let λ = 1/(1 − β). There exists c0 > 0 such that if
∫ 1

0

u0(x)[(π/2) sin(πx)]λdx > c0,

then the solution of (1.1)–(1.2) becomes unbounded in finite time. (ii) Assume (2.4)

and (2.6) hold. If a is sufficiently large, then the solution of (1.1)–(1.2) becomes

unbounded in finite time for any choice of nontrivial initial data u0.

We provide a summary of known results for models governed by power laws when

gv ≡ 0 (or, equivalently, if Σ = ∅). In such case (1.1)–(1.2) collapses to (1.1) alone,

which is a general diffusion model with (localized) nonlinear boundary flux throughout

the boundary ∂Ω. Considering the related nonlinear boundary flux model

(2.7)

ut = ∆um + aup on ΩT

∇um · n = uq on (∂Ω)T

u = u0 on Ω × {0},

where m, p, q > 0, it is known that, for strictly positive initial states u0, (2.7) is

globally solvable if and only if p ≤ 1, q ≤ min(1, (m + 1)/2) [8]. This result is in

striking contrast to the same model under Dirichlet boundary conditions,

(2.8)

ut = ∇ · (um + ǫf(u)) + aup on ΩT

u = 0 on (∂Ω)T

u = u0 on Ω × {0}

wherein p ≤ m is, roughly, the corresponding necessary and sufficient condition for

global solvability when ǫ = 0 [7]. Further, related results for (2.8) suggest that, for

N = 1 with f(u) = un (n > 0), the condition p ≤ max(m,n) comes close to an

extension which includes the effects of convection [2].

The analogy in results for (2.7) and (2.8) bear important differences in another

direction, which is relevant for the present study. Those results concerning (2.7)
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developed for positive initial conditions divide into one of two cases, either all solutions

are global or all solutions blow up in finite time. On the other hand, results regarding

(2.8) are applicable to general choices of nonnegative u0, and reveal blow up for

models which also possess nontrivial equilibria. Thus, sufficiently “large” initial states

give rise to solutions that blow up in finite time, while “small” initial states yield

global solutions. Our results for the transmission model, in light of the existence of

equilibrium states established in the next section, bear more similarities to those for

(2.8) than to known results in the case of (2.7).

3. EQUILIBRIUM SOLUTIONS

We analyze the global solvability of (1.1)–(1.2) by determining the existence of

nontrivial equilibrium states. In particular, we show that the one-dimensional model

(3.1)

ut = (um)xx + aup on (0, 1)T

−(um)x(0, t) = l ≥ 0 for 0 < t < T

(um)x(1, t) = −ψuq(1, t) + βv(t) for 0 < t < T

u = u0 on Ω × {0}

(3.2)
(v − Auq)t = −λv

1+νv
+Buq for x = 1, 0 < t < T

v = v0 for 0 ≤ t ≤ T

possesses at least one nontrivial equilibrium state for q > 0, m ≥ p. In fact, we

will also see that these equilibria are strictly positive. Thus, the blow up of all

positive solutions if p > 1 or q > min{1, (m + 1)/2}, which is known for the model

with localized flux (2.7), is no longer true for the related model with transmission

conditions (1.1)–(1.2).

If u, v is a nontrivial, classical equilibrium state for (3.1)–(3.2), then

(3.3) v(1) [λ− νBuq(1)] = Buq(1)

So, we may easily obtain that νBuq(1) < λ, B > 0, and u(1), v(1) > 0. Defining

y(x) ≡ um(x), (3.1) yields

y(1) ≡ k ≤ y(x) ≤ y(0) ≡M

and y′(x) < 0 for all 0 < x < 1. A simple integration also results in

1

2
(y′(x))2 +

am

m+ p
(y(x))(p+m)/m =(3.4)

1
2
l2 + am

m+p
M (p+m)/m = 1

2

[

b(kq/m)
]2

+ am
m+p

k(p+m)/m(3.5)

for all 0 ≤ x ≤ 1, where

(3.6) b(k) ≡ k

(

−ψ +
βB

λ− νBk

)

.
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Since

y′(x) = −

[

l2 +
2am

m+ p

(

M (p+m)/m − (y(x))(p+m)/m
)

]1/2

,

another integration yields

(3.7)

∫ M

y(x)

[

l2 +
2am

m+ p

(

M (p+m)/m − σ(p+m)/m
)

]−1/2

dσ = x

Therefore, if 0 < k < M satisfies (3.5) and, in addition,

(3.8)

∫ M

k

[

l2 +
2am

m+ p

(

M (p+m)/m − σ(p+m)/m
)

]−1/2

dσ = 1,

we may define y(x) according to (3.7), u(x) ≡ y1/m(x), and v ≡ v(1) according to

(3.3) to obtain a nontrivial equilibrium solution of (3.1)–(3.2).

Finally, upon performing the substitution τ ≡ σ(p+m)/m−k(p+m)/m and employing

c(k) ≡
m+ p

2am

{

k2q/m

(

−ψ +
βB

λ− νBkq/m

)2

− l2

}

=
m+ p

2am

{

[

g(kq/m)
]2

− l2
}

,

we have the following result.

Theorem 3.1. Let

I(k) ≡

∫ c(k)

0

m

m+ p

[

τ + k(p+m)/m
]−p/(p+m)

[

l2 +
2am

m+ p
(c(k) − τ)

]−1/2

dτ

For 0 ≤ k0 < k1 < (λ/νB)m/q such that c(k0) = 0 and c > 0 on (k0, k1), there exists

a classical nontrivial stationary solution, u, v of (3.1)–(3.2) iff I(k̂) = 1 for some

k̂ ∈ (k0, k1). In such case, u(0) = Mm and u(1) = k̂m, where M (p+m) ≡ c(k̂) + k̂.

In order to apply this result, we first note that c(k) = 0 iff (b(kq/m))2 = l2. It is

easy to see that b(z1) = 0 for

z1 ≡ max{0, (λ/νB) − (β/ψν)},

and b(k) → ∞ as k → (λ/νB)−. Hence, for some k0 ≥ (z1)
m/q, c(k0) = 0 and c(k) > 0

for k0 < k < (λ/νB)m/q. Since

(3.9)
I(k) ≥

∫ c(k)

0
m

m+p

[

c(k) + k
p+m

m

]−
p

p+m
[

l2 + 2am
m+p

(c(k) − τ)
]−1/2

dτ

≥ 1
a

[

c(k) + k
p+m

m

]−
p

p+m

{

[

l2 + 2am
m+p

c(k)
]1/2

− l

}

Provided p < m or p = m and a < 1, there follows I(k0) = 0 and

lim
kq/m→(λ/νB)−

I(k) > 1

Therefore, (3.1)–(3.2) possesses at least one nontrivial stationary solution.
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In fact, if z1 > 0, then it is not difficult to show c(k) = 0 actually has 3 solutions

if

ψ

ν

[

√

λ

B
−

√

β

ψ

]2

− l > 0

In such case, there exists 0 ≤ k0 < k1 < (z1)
m/q such that c(k0) = c(k1) = 0 and

max
k0≤k≤k1

c(k) =
m+ p

2am

[

b(ẑ)2 − l2
]

=
m+ p

2am







(

ψ

ν

)2
[

√

λ

B
−

√

β

ψ

]4

− l2







,

with

ẑ ≡
λ

νB
−

1

ν

√

λβ

ψB

Now, I(k0) = I(k1) = 0, and, recalling (3.9), we have I(k) > 1 iff
[

l2 +
2am

m+ p
c(k)

]1/2

− l > a
[

c(k) + k(p+m)/m
]p/(p+m)

Provided p < m or p = m and a < 1, this will be satisfied for c(k) ≥ C with some

sufficiently large C > 0. Noting that, by the above inequality,

c(ẑm/q) =
m+ p

2am







(

ψ

ν

)2
[

√

λ

B
−

√

β

ψ

]4

− l2







> C

thus gives conditions in which I(k) = 1 will have at least two more solutions in

addition to the one established in Theorem 3.1
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