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ABSTRACT. Recent electro-optical studies indicate that the spatial profile of a quenching, or

collapsing, optical wave evolves to a specific circularly symmetric shape, known as the Townes profile,

for elliptically shaped or randomly distorted input beams. Computations of such a Townes profile

have been playing an important role in understanding of the wave collapse phenomenon, but the

numerical procedures are sensitive due to features of the generalized nonlinear Schrödinger equation

boundary value problems involved. This paper studies an effective semi-implicit finite difference

method equipped with a dynamic shooting strategy for the numerical solution of the quenching

optical boundary value problems. The numerical method proposed is simple in structure, easy to

use, and weakly asymptotically stable. Simulated circularly symmetric quenching optical waves are

given.
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convergence, boundary and initial values
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1. INTRODUCTION

Quenching or collapse of a wave due to nonlinearity in the system is an ubiquitous

phenomenon spanning many fields of science and engineering. It has been important,

especially in the study of negative index materials [8, 12, 19]. Recently a self-similar

shape was identified as an intense optical pulse collapses in a nonlinear medium

due to [3–5, 7, 9, 15–18]. The form of an optical pulse propagating through glass

as it collapses fits the so-called Townes profile, which is numerically extracted as a

stationary solution of the radially symmetric, two-dimensional nonlinear Schrödinger

equation. Thus, even though the Townes profile is unstable, it still dictates the

beam shape during collapse [11]. The universality of the self-similar Townes profile

shapes has not been established under general conditions, since the profiles may be

difficult to generate in the unstable situations that are sometimes encountered in the

experiments. In this paper an efficient and effective numerical method is presented
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to accurately generate the stationary solutions, whether they are stable or unstable,

to the nonlinear Schrödinger equation suitable for general forms of the nonlinearity

[6, 15, 16].

We consider the two-dimensional generalized nonlinear Schrödinger equation

(1.1) 2ikUz + Uxx + Uyy +
2k2n2

n0
f(|U |)U = 0,

where U represents the amplitude of the electric field, k = 2n0π/λ is the propagation

wave vector, λ is the vacuum wavelength, n0, n2 are the linear and nonlinear indexes

of refractions, respectively, and z is the wave propagation direction. While Uxx + Uyy

represents the wave diffraction involved, the nonlinear term in (1.1) accounts for the

intensity-dependent refractive index n = n0 + n2φ, where φ = |U |2 is the intensity

and contributes to self-focusing [6, 7, 12]; the nonlinear term of the refractive index

is called as Kerr nonlinearity. The function f to be used is f(ξ) = ξ2/(1 + ξ2), which

describes a nonlinear median with a saturable nonlinearity [4, 5, 10]. Removing Uyy,

equation (1.1) is well-known for its integrability and analytical existence of the one-

dimensional soliton. While the solitary solutions still exist in higher dimensional cases,

they are often unstable to small perturbations. The pulses obtained corresponding

to the Kerr nonlinear function may either delocalize or undergo collapse depending

on the initial conditions (see [3, 4, 8, 10] for more details). In the saturable median,

the nonlinear focusing and diffraction precisely balance each other, and the beam

maintains a constant profile [12, 16]. We further consider the following boundary

conditions for (1.1),

(1.2) Ux(0, y, z) = 0, Uy(x, 0, z) = 0, lim
|x|+|y|→∞

U = 0.

Denote r =
√

x2 + y2. In a locally circularly symmetric environment, all waveg-

uide solutions of (1.1), (1.2) can be written as

U =

√

n0

2k2n1

eiα2z/2kuα(r),

where α > 0 is an arbitrary constant, uα = αu(αr), and u(r) satisfies the following

dimensionless boundary value problem [3, 10, 12]:

u′′ +
1

r
u′ − βu + f(u)u = 0, r > 0,(1.3)

u′(0) = 0, lim
r→∞

u(r) = 0,(1.4)

where β depends on α. Among the solutions of (1.3), (1.4), we are particularly inter-

ested in the sequence of so-called nth mode quenching profiles Rn(r) which has exactly

n positive roots for any nonnegative integer n. Solutions Rn(r), n = 0, 1, 2, . . ., play

a central role in nonlinear optical wave collapses and the intensity profile in circularly

symmetric environments [6, 12, 17].
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Due to the importance and difficulties in obtaining Rn(r) analytically, various

kinds of numerical methods have been developed for approximating the nth mode

quenching profiles. Most existing simulation results are for n up to 3, and only with

relatively small r intervals used, however.

On the other hand, in recent numerical explorations, we noticed that the con-

vergence of the numerical solutions Rn with large n values are extremely slow via

conventional shooting schemes, especially when large r intervals are used. These

motivate us for a practically simple, more efficient and effective method. We will con-

centrate on the circularly cases (1.3), (1.4), and the investigations can be extended

to general cases including (1.1), (1.2) based on wave similarities.

This paper is organized as follows. In the next section, our semi-implicit finite

difference method utilizing uniform and nonuniform meshes will be presented. A sim-

ple but effective grid adaptation for deriving a nonuniform mesh will be introduced

via an arc-length monitoring function. Then, in Section 3, we will show that the

schemes are consistent and weakly asymptotically stable [1, 9, 11, 13]. A dynamic

shooting strategy which offers a fast and robotic convergence procedure for the solu-

tion sequences will be generated. In Section 4, we will carry out a series of simulation

experiments. Computed intensity profiles will be presented in two and three dimen-

sional fashions, respectively. Sequences of initial value approximations will be given

to illustrate the fast convergence. Results obtained are consistent with known ex-

perimental predictions [4, 12, 16, 18]. Brief conclusion and remarks will be given in

Section 5.

2. SEMI-IMPLICIT FINITE DIFFERENCE SCHEME

Since the quenching profile locates extensively within the region near the origin, nat-

urally, we let [0, M ] be the interval interested, M ≫ 0, and let Ω = {r0, r1, . . . , rN+1;

r0 = 0, rN+1 = M} be a mesh superimposed upon the interval. Denote rk+1 − rk =

hk, k = 0, 1, . . . , N . We say that Ω is uniform if hk ≡ h > 0 for all k, otherwise Ω is

nonuniform [2]. Let uk be an approximation of u(rk), the solution of (1.3), (1.4) at

rk.

We introduce the following nonstandard semi-implicit scheme:

2

hk + hk−1

(

uk+1 − uk

hk
−

uk − uk−1

hk−1

)

+
1

rk+1 + rk−1

(

uk+1 − uk

hk
+

uk − uk−1

hk−1

)

−βuk + f(uk)uk = 0, k = 1, 2, . . . , N − 1.(2.1)

It is not difficult to verify that when Ω is uniform, the above scheme reduces to a

standard semi-implicit scheme:

(2.2)
uk+1 − 2uk + uk−1

h2
+

uk+1 − uk−1

h(rk+1 + rk−1)
−βuk + f(uk)uk = 0, k = 1, 2, . . . , N − 1.
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Schemes (2.1) and (2.2) are consistent with (1.3) [14, 15]. The scheme (2.1) is first

order accurate while (2.2) is second order accurate.

We divide the shooting procedure into several rounds, and each round consists of

a sequence of shootings. To compute Rn(r), in the j-th round, j ≥ 1, we start with

a pair of estimated initial values Rn,j,0(0) and Rn,j,L(0) with Rn,j,0(0) < Rn,j,L(0),

where L > 0 is sufficiently large. Rn,j,0(0) serves as the starting initial value while

Rn,j,L(0) is the terminating initial value in the round of shootings for Rn(r). The

initial pair of such Rn,1,0(0), Rn,1,L(0) may be selected via either a random search or

a testing experiment. For the sake of brevity, we start with j = 1. The proposed

computational procedure can be stated as:

Step 1: Let L ≫ 0. Choose the initial value pair Rn,1,0(0), Rn,1,L(0).

Step 2: Compute the shooting step size

(2.3) τn,1 = (Rn,1,L(0) − Rn,1,0(0))/L.

Step 3: Set a sequence of initial conditions for (2.2) or (2.1):

(2.4) Rn,1,k(0) = Rn,1,k(0), R′
n,1,k(0) = 0, k = 0, 1, 2, . . . , L,

where

(2.5) Rn,1,k(0) = Rn,1,k−1(0) + τn,1, k = 1, 2, . . . , L − 1.

Calculate the corresponding numerical solutions Rn,1,k(r), k = 0, 1, 2, . . . , L, via either

of the schemes established.

Step 4: The sequence of computations may terminate at its maturity, that is,

k = L, or once a stopping criterion is satisfied. We will determine if any of the

shootings offers a satisfactory solution, or we may select the last two values from

{Rn,1,k(0)}K
k=0, K ≤ L, to be the new pair of initial values, Rn,2,0(0) and Rn,2,L(0),

Rn,2,0(0) < Rn,2,L(0), for the next round of shooting operations. Steps 2-4 will be

repeated till a satisfactory approximation of Rn(r) is reached.

We suggest the following simple but effective stopping criteria:

SC1.: Let ‖ · ‖ be an Euclid norm. We compare the numerical solution at the

kth stage of jth round, that is, ‖Rn,j,k(r)‖, and a theoretically predicted value

‖Rn(r)‖. The shooting stops as soon as the relative error of ‖Rn,j,k(r)‖ is less

than a tolerance ǫ:

|‖Rn,j,k(r)‖ − ‖Rn(r)‖|

‖Rn(r)‖
< ǫ, 0 ≤ k ≤ L.

SC2.: Exam the function values of Rn,j,k(r) and see if they are sufficiently small

for a set of sufficiently large r ∈ Ω. That is, for sufficiently large ℓ1 and ℓ2, if we
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Figure 1. An illustration of the nonuniform mesh based on ellipses.

M = 3 and the number of grids N = 15 are used.

have
ℓ2

∑

ℓ=ℓ1

|Rn,j,k(rℓ)| ≤ ǫ, 0 ≤ k ≤ L,

for given ǫ > 0.

SC3.: Check whether the inequality, Rn,j,k(rp)Rn,j,k+1(rp) < 0, 0 ≤ k < L, is true

at a carefully selected testing point rp, 0 < p < N . The inequality indicates

a change of the solution pattern and a restart of the shooting algorithm may

have become necessary. The criterion works particularly well and reliably in our

simulation procedures.

SC4.: The computation terminates if

τn,j < ǫ, j ≥ 1,

is reached for given ǫ > 0.

In summary, to compute the numerical approximation of Rn(r), in each round

of shooting operations, we start with a pair of predetermined initial value pair. The

sequence of computations is then conducted under the initial conditions

Rn,j,k(0) = Rn,j,k(0), R′
n,j,k(0) = 0, j = 1, 2, . . . ; k = 0, 1, 2, . . . , L,

where

Rn,j,k(0) = Rn,j,k−1(0) + τn,j, j = 1, 2, . . . ; k = 1, 2, . . . , L − 1,

with τn,j = (Rn,j,L(0) − Rn,j,0(0))/L. Except the initial pair of values, Rn,1,0(0) and

Rn,1,L(0), the rest pairs of starting initial values are determined by the previous

round of shooting computations. This simple procedure remarkably improves the

convergence of the initial value value sequence for a successful shooting method.

Although a more rigorous numerical analysis is needed for the convergence, our

experiments have been overwhelmingly successful. Numerical results shown in the

next section have demonstrated both fast convergence and numerical stability of the

schemes.
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To achieve a higher order accuracy, finer steps h, hk are often required. Recall

the fact that our interval [0, M ] used is large. Therefore larger systems may result

as a consequence of higher accuracy. This may significantly reduce the efficiency

of computations. On the other hand, we may notice that the oscillatory nonlinear

activities corresponding to the Townes profile occur only in areas close to the origin.

Therefore, it is not necessary to do the refinement throughout the entire domain. A

standard arc-length adaptation may be too costly here, since shapes of the shooting

solutions change rapidly during computations. To balance the simplicity, accuracy

and effectiveness of the nonuniform meshes without calculating exactly the arc-lengths

of nth mode solutions, we propose an ellipse based nonuniform mesh centered at

(M, 1/2) with a major axis of M in the r direction and a minor axis of 1/2 in the

u = Rn(r) direction, as shown in Figure 1. An equidistribution formula then be

introduced [2, 13, 14]:

hk =
Mh

2C

[

1 +

√

1 −
(xk − M)2

M2

]

, k = 1, 2, . . . , N,

where xk = kh, h = C/N is the mathematical step size and C is the quarter of the

elliptic arc-length as 0 ≤ r ≤ M, 0 ≤ u ≤ 1/2. Distribution of variable physical steps

can thus be conveniently calculated on [0, M ], no matter how big M is.

The nonuniform meshes turn out to be very successful in our simulations. We

will continue to optimize the grid distribution by employing other featured curves

other than ellipses for the basic setting.

3. STABILITY OF THE NUMERICAL METHOD

Here we prove the stability of two forms of the nonlinear equations. Let F (u) = 0

be a nonlinear differential equation defined on [0, M ] and

(3.1) G(v) =
k+n
∑

j=k−m

αjvj = 0

be a semi-implicit finite difference scheme defined on Ω, where αj may depend on

vk−m, vk−m+1, . . . , vk+n−1. Denote h̃ = maxk hk. Based on [15, 16], we have

Definition 3.1. We say that G is a consistent approximation to F if

F (w) − G(w) = O(h̃κ), κ > 0,

where w is a sufficiently smooth function defined on [0, M ]. Further, we say that G

is of order κ in approximation if it is consistent.

Definition 3.2. Let
k+n
∑

ℓ=k−m

αjρ
j = 0
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be corresponding stability polynomial of (3.1) and Φ be the set of its roots. We say

that the semi-implicit difference scheme (3.1) is weakly asymptotically stable if

max
ρ∈Φ

|ρ| = O(1)

as h̃ → 0.

We may prove the weakly asymptotical stability of the schemes (2.2), (2.1).

Theorem 3.1. The uniform scheme (2.2) is weakly asymptotically stable with f(ξ) =

ξ2/ (1 + ξ2).

Proof. Let uk = ρk, ρ 6= 0. Substitute it into (2.2). Simplifying the expressions, we

obtain
ρ2 − 2ρ + 1

h2
+

ρ2 − 1

h(rk+1 + rk−1)
− βρ +

ρρ2k

1 + ρ2k
= 0.

This yields the following quadratic equation:
(

1

h2
+

1

h(rk+1 + rr−1)

)

ρ2 −

(

2

h2
+ β −

ρ2k

1 + ρ2k

)

ρ +
1

h2
−

1

h(rk+1 + rk−1)
= 0.

Solve the above equation, we acquire a pair of roots

ρ =

2
h2 + P ±

√

(

2
h2 + P

)2
− 4

(

1
h4 −

1
h2(rk+1+rk−1)2

)

2
(

1
h2 + 1

h(rk+1+rk−1)

)

=
2 + h2P ±

√

(2 + h2P )2 − 4 (1 − Q2)

2 (1 + Q)

=
1 + h2P

2
±

√

h2P +
(

h2P
2

)2
+ Q2

1 + Q
,(3.2)

where

P = β −
u2

k

1 + u2
k

, Q =
h

rk+1 + rk−1
.

Note that for the rational function s(ξ) = ξ/(1 + ξ), ξ > 0, we have s′(ξ) =

1/(1 + ξ)2 > 0, ξ > 0. Therefore s is monotonically increasing and this indicates

that 0 < s(ξ) < 1 for ξ > 0. On the other hand, for the scaling parameter β we have

0 < β ≤ 1 [2-4, 16]. These indicate that

−1 ≤ P ≤ 1.

And further, due to the fact that rk+1 + rk−1 ≥ 2h, we have

0 < Q ≤
1

2
.

Combining the above inequalities for (3.2), we find that

lim
h→0

ρ =
1 + Q

1 + Q
= 1.

Therefore the difference scheme discussed is weakly asymptotically stable.
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Theorem 3.2. The nonuniform scheme (2.1) is weakly asymptotically stable with

f(ξ) = ξ2/ (1 + ξ2).

Proof. Since Ω is nonuniform, we let uk =
∏k

j=1 ρj , ρj 6= 0, for (2.1). After the

substitution and a straightforward simplification, we observe that

2

hk + hk−1

(

ρk+1ρk − ρk

hk
−

ρk − 1

hk−1

)

+
1

rk+1 + rk−1

(

ρk+1ρk − ρk

hk

+
ρk − 1

hk−1

)

− P̃ ρk = 0, k = 1, 2, . . . ,(3.3)

where

−1 < P̃ = β −
u2

k

1 + u2
k

< 1.

Now, recall the necessary smoothness constraints for nonuniform adaptive grids

[1, 6, 14, 15], we must require that

phk ≤ hk+1 ≤ qhk,

where q = O(p) and q ≥ p > 0. Hence, without loss of generality, we may assume

that hk = ahk−1 = ah, ρk+1 = bρk = bρ, where 0 < a, b ≤ 1 are two constants. A

substitution of these relations into (3.3) yields

2

(1 + a)h

(

bρ2 − ρ

ah
−

ρ − 1

h

)

+
1

rk+1 + rk−1

(

bρ2 − ρ

ah
+

ρ − 1

h

)

− P̃ ρ = 0,

k = 1, 2, . . .

The above can be rearranged to generate the following identity:

b

ah

(

2

(1 + a)h
+

1

rk+1 + rk−1

)

ρ2

−
1

h

[

2

(1 + a)h

(

1 +
1

a

)

+ P̃ h −
1

rk+1 + rk−1

(

1 −
1

a

)]

ρ

+
1

h

(

2

(1 + a)h
−

1

rk+1 + rk−1

)

= 0.

It follows therefore the following quadratic equation must be true:

b

a

(

2

1 + a
+ Q

)

ρ2 −

[

2

1 + a

(

1 +
1

a

)

+ P̃ h2 − Q

(

1 −
1

a

)]

ρ +
2

1 + a
− Q = 0,

for which we may obtain

(3.4) ρ =
2 + aP̃h2 + (1 − a)Q ± R

2b
(

2
1+a

+ Q
) ,

where the quantity

R =

√

[

2 + aP̃h2 + (1 − a) Q
]2

− 4ab

(

4

(1 + a)2
− Q2

)

.
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Based on the boundedness of the functions P̃ , Q, we conclude readily that

ρ = O(1) as h → 0,

and thus the scheme investigated is weakly asymptotically stable for any fixed non-

trivial constants a and b.

4. SIMULATION RESULTS

Our numerical experiments are carried out with β values varying from 0.010 to

0.999. The speed of convergence of the shooting sequences is satisfactory and the

numerical solutions are of great interests. Without loss of generality, we fix the

variables L = 100, M = 64 and N = 6057 throughout our demonstrations, where

N is the maximal number of grids in Ω. These lead to h = 0.10566 for the uniform

mesh; and h = C/N = 0.013278 as the mathematical step size for the variable

nonuniform mesh, since the elliptic arc-length C ≈ 80.430155. Let J be the maximal

number of rounds executed. Unless otherwise declared, Stopping Criteria SC3 and

SC4 are adopted. For the purpose of comparison, we only show numerical results

R0(r), R1(r), R2(r), R3(r), in particular R3(r), obtained via (2.1) on nonuniform

grids. Computations of higher mode Rn(r) are similar. Double precision floating

point arithmetic is used on Dell Precision 670 computer platforms. Fortran

90 and MatLab subroutines are used in the experiments. Values of the scaling

parameter β = 0.5 is used in simulations.

Computed results are verified with known results [12, 16, 18]. Three-dimensional

plots of the extended solution un corresponding to (1.3), (1.4) are given in Figures 2-5.
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Figure 2. Three-dimensional view of the 0th mode quenching optical

wave u0(x, y) generated through the profile R0(r).
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Figure 3. Three-dimensional view of the first mode quenching optical

wave u1(x, y) generated through the profile R1(r).
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Figure 4. Three-dimensional view of the second mode quenching

optical wave u2(x, y) generated through the profile R2(r).
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Figure 5. Three-dimensional view of the third mode quenching op-

tical wave u3(x, y) generated through the profile R3(r).

5. CONCLUSION AND REMARKS

A family of two semi-implicit finite difference schemes equipped with a dynamic

shooting procedure for quenching optical waves are developed and studied. We car-

ried out the simulations on a version of the nonlinear Schrödinger equation with a

saturable nonlinearity. The numerical algorithms are weakly asymptotically stable,

and offer superior quality in convergence. The dynamic shooting strategy developed

utilizes pairs of initial guesses instead one value in conventional methods. A practical

adaptive mesh is introduced to achieve the simplicity of the method, while improving

the efficiency in approaching Rn(r) in a relatively large interval of r. The overall

simulation procedures are simple, reliable and practically useful.

The use of different scaling factor values do not significantly affect the convergence

of the semi-implicit method. Although when β → 1, the convergence to Rn(r) slows

down due to the large amplitudes of peak values of the solutions encountered.

The nonphysical solutions are eliminated effectively during the rounds of shooting

procedures. These may exhibit a particular monotone pattern which needs to be

further investigated. Higher mode number solutions Rn(r), n ≥ 4, can be computed

similarly. However, the convergence is slightly slower in our simulations if large

intervals of r are considered. We have also found stationary solutions for the Kerr

nonlinear median; even though they are unstable. However, as pointed out in [11],

those unstable solutions leave an impact on the quenching wave’s final profile.
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Similar ideas of the semi-implicit nonlinear schemes may be implemented for

solving the generalized nonlinear Schrödinger equation problem (1.1), (1.2) in non-

symmetric cases. Semi-discretization in space, or the method of lines, is a way to

approach. The continuing study of the cases has been in good progress.
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[7] A. Gürtler, C. Winnewisser, H. Helm and P. U. Jepsen, Terahertz pulse propagation in the

near field and the far field, J. Opt. Soc. Am. A, 17 (2000), 74-83.

[8] B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig and D. R. Smith, Spatial mapping

of the internal and external electromagnetic fields of negative index metamaterials, Optics

Express, 14 (2006), 8694.
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