STRATONOVICH STOCHASTIC INCLUSION

ANNA GÓRALCZYK AND JERZY MOTYL

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-516 Zielona Góra, Poland

ABSTRACT. The purpose of the paper is to investigate the existence of strong solutions for the Stratonovich type stochastic inclusion with maximal monotone and upper separated set-valued functions.

AMS (MOS) Subject Classification. 49J53, 60H20, 93E03.

1. PRELIMINARIES

The purpose of the paper is to prove the existence of strong solutions for the following Stratonovich type stochastic inclusion with maximal monotone A and upper separated set-valued functions F and G:

$$x(t) \in x(0) + \int_0^t F(x(s)) \circ dz(s) + \int_0^t G(x(s)) da(s) - \int_0^t A(x(s)) d[m,m](s),$$

where z is a continuous semimartingale, [m, m] is a quadratic variation process of a local continuous martingale part of a semimartingale z and a is a continuous finite variation process. Let us notice that classical existence results dealing with the Stratonovich type stochastic equation require C^2 -regularity of coefficients (see e.g., [6]). J. San Martin in [7] considered the single dimensional Stratonovich equation with coefficients taken from the class of uniformly antiderivative functions (*UAD*). M. Michta and J. Motyl in [3] introduced the concept of upper separated set-valued functions and proved the existence of solutions to the following inclusion:

$$x(t) \in x(0) + \int_0^t F(x(s)) \circ dz(s) + \int_0^t G(x(s)) da(s)$$

with set-valued functions F, G taking their values in $Comp\mathbb{R}$, the space of nonempty, compact and convex subsets of reals. On the other hand, R. Pettersson in [4] proved the existence of solutions to the inclusion of the type:

$$x(t) \in x(0) + \int_0^t b(s, x(s))ds + \int_0^t \sigma(s, x(s))dB(s) - \int_0^t A(x(s))ds$$

Received August 7, 2008

1056-2176 \$15.00 ©Dynamic Publishers, Inc.

with b, σ being Lipschitz and single valued functions and A-maximal monotone setvalued operator. The inclusion considered in the paper generalizes results obtained in [7] and [3] in the direction inspired by [4].

2. UPPER SEPARATED SET-VALUED FUNCTIONS

The paper is devoted the investigation of the existence of strong solutions of the Stratonovich stochastic inclusion. To this end, it is essential to define first a set-valued Stratonovich integral. We describe the class of upper separated set-valued functions for which a set-valued Stratonovich integral is well defined

Definition 2.1. Let F be a set-valued function from \mathbb{R} into nonempty subsets of \mathbb{R} . We define upper and lower bounds of F by the following formulas

> $U_F: X \to \mathbb{R}, \quad U_F(x) = \sup\{b_1: b_1 \in F(x)\}$ $L_F: X \to \mathbb{R}, \quad L_F(x) = \inf\{b_2: b_2 \in F(x)\}.$

We say that F is upper separated if for every x and $\epsilon > 0$ there exists a hyperplane $H_{x,\epsilon}$ strongly separating a point $(x, L_F(x) - \epsilon)$ from the set $Epi(U_F) = \{(x, b) \in X \times \mathbb{R} : U_F(x) \leq b\}.$

Let $Comp\mathbb{R}$ denote a space of all nonempty compact and convex subsets of \mathbb{R} .

Proposition 2.2. The upper separated set-valued function $F : \mathbb{R} \to Comp\mathbb{R}$ admits a convex and locally Lipschitz selection.

Proof. By Proposition 3.4 of [3] the upper separated set-valued function F admits a convex selection $f : \mathbb{R} \to \mathbb{R}$. Let us notice that such f is continuous ([5] Proposition 1.19). By Proposition 1.6 of [5] it follows that a convex and continuous function is locally Lipschitz.

We will give one more useful property of a convex selection of an upper separated set-valued function. In order to do that we define the following class of functions.

Definition 2.3. ([2]) A function $f : \mathbb{R} \to \mathbb{R}$ belongs to the antiderivative class (AD) if f is absolutely continuous and f' admits a cádlág version, that is $f' = h \, dx - a.e.$, for some

 $h \in D = \{h : \mathbb{R} \to \mathbb{R} : h \text{ is right continuous with left limits} \}.$

Proposition 2.4. Let $F : \mathbb{R} \to Comp\mathbb{R}$ be an upper separated set-valued function. Then it admits a selection $f \in AD$.

Proof. By Lemma 2.2 of [7] it suffices to show that f is continuous and its right derivative is cádlág. The upper separated set-valued function F admits a convex and continuous selection f. Convexity of the selection f provides that the right derivative of f is cádlág by [5, Th. 1.16].

3. SET-VALUED INTEGRALS

Let I = [0, T] and let $(\Omega, \mathbf{F}, {\mathbf{F}_t}_{t \in I}, P)$ be a complete filtered probability space satisfying the usual hypothesis, i.e., ${\mathbf{F}_t}_{t \in I}$ is an increasing and right continuous family of σ -subalgebras of \mathbf{F} and \mathbf{F}_0 contains all P-null sets. The stochastic process x is ${\mathbf{F}_t}_{t \in I}$ -adapted or shortly adapted if x(t) is \mathbf{F}_t -measurable for each $t \in I$. A stochastic process x is called cádlág if its almost all sample paths are right continuous, with left limits. A stochastic adapted and cádlág process x is called a continuous semimartingale, if it can be decomposed into a sum x = m+v, where m is a continuous local martingale with respect to ${\mathbf{F}_t}_{t \in I}$ while v is a continuous FV-process, i.e., an adapted process with paths of a finite variation.

We define set-valued integrals, which will be used in the next Section.

Definition 3.1. Let a set-valued function $G : \mathbb{R} \to Comp\mathbb{R}$ be given. For a given semimartingale x and an FV-process a we denote by $S(G \circ x, da)$ the set of a-integrable selections of $G \circ x$, i.e.,

$$S(G \circ x, da) := \{h : h(s) \in G(x(s)), s \in I, a.s., \\ \text{and } \int_0^T |h(s)| |da(s)| < \infty \}.$$

If the set $S(G \circ x, da)$ is nonempty, we define the set-valued integral

$$\int_0^t G(x(s))da(s) = \left\{\int_0^t h(s)da(s) : h \in S(G \circ x, da)\right\}.$$

Remark 3.2. If a set-valued function G is upper separated, x is a continuous semimartingale and a is a continuous FV-process, it follows from Proposition 2.2 that the set $S(G \circ x, da)$ is nonempty.

Definition 3.3. A set-valued function $A : \mathbb{R} \to 2^{\mathbb{R}}$ is maximal monotone if

$$\forall s, t \in I \ \forall u \in A(s), v \in A(t) \ (u - v)(s - t) \ge 0 \text{ and } \operatorname{Range}(Id + A) = \mathbb{R},$$

where Id denotes the identity operator. By $A^0(x)$ we denote the minimal norm element from the set A(x).

Let x = m + v be a continuous semimartingale.

Remark 3.4. Since $h(s) = A^0(x(s))$ is a composition of a nondecreasing function $A^0(\cdot)$ and continuous function $x(\cdot, \omega)$ on I we deduce that the set

$$S(A \circ x, d[m, m]) := \{h : h(s) \in A(x(s)), s \in I, a.s.\}$$

and
$$\int_0^t |h(s)| d[m, m](s) < \infty \text{ for each } t \in I\}$$

is nonempty.

The single valued Stratonovich integral of a semimartingale h with respect to a continuous semimartingale z is meant as

$$\int_0^t h(s) \circ dz(s) = \int_0^t h(s)_- dz(s) + \frac{1}{2} [h, z]^c(t),$$

where $[h, z]^{c}(t)$ denotes the path by path continuous part of [h, z]. Now we are able to define a set-valued Stratonovich integral.

Definition 3.5. Let a set-valued function $F : \mathbb{R} \to Conv\mathbb{R}$ be given. For a continuous semimartingale x we denote by $S(F \circ x, dz)$ the set of Stratonovich integrable selections of $F \circ x$, i.e.,

$$\begin{split} S(F \circ x, dz) &= \{h : h(s) \in F(x(s)), \ s \in I, \text{ a.s.}, \\ \text{and } \int_0^t h(s) \circ dz(s) < \infty \text{ for each } t \in I\}. \end{split}$$

If the set $S(F \circ x, dz)$ is nonempty, we define the set-valued integral

$$\int_0^t F(x(s)) \circ dz(s) = \{ \int_0^t h(s) \circ dz(s) : h \in S(F \circ x, dz) \}.$$

Remark 3.6. Let us notice that an upper separated set-valued function F admits a convex selection f by Proposition 2.2. Since convex functions preserve semimartingales (e.g., [6, Th. IV.47]), then h(s) = f(x(s)) is a semimartingale, too. Therefore, the set $S(F \circ x, dz)$ is nonempty and $\int_0^t F(x(s)) \circ dz(s)$ is well defined.

4. STOCHASTIC STRATONOVICH INCLUSION

We prove the existence of strong solutions to the Stratonovich stochastic inclusion related to set-valued stochastic integrals defined in the previous section.

Let set-valued functions $F, G : \mathbb{R} \to Comp\mathbb{R}$ and $A : \mathbb{R} \to Conv\mathbb{R}$, continuous semimartingales x and z, a continuous FV-process a and $x_0 \in \mathbb{R}$ be given. Let [m, m]denote a quadratic variation process of a local martingale part of z.

Definition 4.1. By the Stratonovich stochastic inclusion we denote the following relation

(SI)
$$x(t) \in x_0 + \int_0^t F(x(s)) \circ dz(s) + \int_0^t G(x(s)) da(s) - \int_0^t A(x(s)) d[m,m](s)$$

and we say that process x is a strong solution to the inclusion (SI) up to explosion time $\widetilde{T} \leq T$ if there exist $f \in S(F \circ x, dz), g \in S(G \circ x, da), h \in S(A \circ x, d[m, m])$ and x is a continuous semimartingale satisfying

$$x(t) = x_0 + \int_0^t f(s)dz(s) + \frac{1}{2}[f,z](t) + \int_0^t g(s)da(s) - \int_0^t h(s)d[m,m](s)$$

for every $t \in [0, \overline{T}]$ a.s.

Let us mention that upper separated set-valued functions need not satisfy the linear growth condition. Therefore, one can expect that solutions of inclusion (SI) may have explosions. Recall, a stopping time \tilde{T} is an explosion time for a solution process x if x is a solution to inclusion (SI) on $[0, \tilde{T}), x(\tilde{T}) = +\infty$ P.1 on $\{\tilde{T} \leq T\}$ and $\tilde{T} = \lim_{n\to\infty} T_n$, where $T_n := \inf\{t \in [0, T] : |x(t)| > n\}$, for $n \ge 1$. If $P(\tilde{T} > T) = 1$, then a process x is a nonexploding solution of a Stratonovich inclusion.

For convenience of the reader we recall definitions and lemmas, which will be used in the proof of our main result.

Definition 4.2 ([1]). Let $f, g : \mathbb{R} \to \mathbb{R}$ be arbitrary functions. We denote $f <^* g$ if for all x there exists $\delta > 0$ such that if $|x - y| < \delta$ and $|x - y'| < \delta$, then $f(y) \le g(y')$.

Lemma 4.3 ([7, Lemma 4.6]). Let m be a continuous local martingale and let a be a continuous, FV-process. Assume $f : \mathbb{R} \to \mathbb{R}$ is locally bounded and satisfies

$$\forall \Lambda \subseteq \mathbb{R} \ compact \ \sup_{(x,y)\in\Lambda\times\Lambda, \ x\neq y} \frac{|f(x) - f(y)|}{|x - y|} < \infty.$$

Let h_1 and h_2 be locally bounded and satisfy $h_1 <^* h_2$. If $x_i(t)$, i = 1, 2 are solutions of

$$x_i(t) = x_0 + \int_0^t f(x_i(s))dm(s) + \int_0^t h_i(x_i(s))da(s),$$

then $x_1(t) \leq x_2(t)$ for all $t \in I$ a.s.

Definition 4.4. Process x is called a minimal solution of a stochastic equation, if any other solution y of the equation satisfies $x(t) \leq y(t)$ for all $t \in I$ a.s.

Lemma 4.5 ([7, Lemma 4.12]). Let $h : \mathbb{R} \to \mathbb{R}$ be a lower semicontinuous function bounded by M. Then if $h_n(x) = \inf_y \{h(y) + n|x - y|\} - \frac{1}{2^n}$, we have the following:

 $\begin{aligned} 1^{\circ} \ \forall x, n \ |h_n(x)| &\leq M+1. \\ 2^{\circ} \ h_n(x) \nearrow h(x). \\ 3^{\circ} \ \forall x, y \ |h_n(x) - h_n(y)| &\leq n|x-y|. \\ 4^{\circ} \ h_n <^* h_{n+1} \\ 5^{\circ} \ If \ h \ is \ continuous \ at \ x \ and \ x_n \to x, \ then \ h_n(x_n) \to h(x). \end{aligned}$

Now, we are ready to prove the main result of the paper.

Theorem 4.6. Let z be a continuous adapted semimartingale, [m, m] be a quadratic variation process of a local martingale part of z and let "a" be a continuous, FVprocess. Let $F, G : \mathbb{R} \to Comp \mathbb{R}^1$ be upper separated set-valued functions and let $A : \mathbb{R} \to Conv\mathbb{R}$ be a maximal monotone set-valued function. Then, there exists a strong solution up to explosion time to Stratonovich stochastic inclusion (SI). Proof. Step 1: By Proposition 2.2 there exist convex and continuous selections f and g for set-valued functions F and G respectively. Additionally, by Proposition 2.4 we know that $f \in AD$. From properties of a maximal monotone set-valued function it follows that a set A(x) is closed and convex for each x. Hence there exists the unique minimal norm element $A^0(x)$ in the set A(x). This implies that a cádlág version of a nondecreasing function $A^0(\cdot)$ (denoted also by A^0) is also a selection of a set-valued function A. For the existence of solutions we need the Lipschitz and boundedness property. Let

$$f_k(u) := \begin{cases} f(u), & u \in [-k, k] \\ f(k), & u > k \\ f(-k), & u < -k \end{cases}$$

and

$$(A^{0})_{k}(u) := \begin{cases} A^{0}(u), & u \in [-k,k] \\ A^{0}(k), & u > k \\ A^{0}(-k), & u < -k \end{cases},$$

for $k \ge 1$. Similarly, a function g_k is defined. By Proposition 2.2 functions f and g are convex and locally Lipschitz. Therefore, functions f_k and g_k are globally Lipschitz. Since $f \in AD$, the derivative of f admits a cádlág version. We denote by f'_k the following function

$$f'_k(u) := \begin{cases} f'(u), & u \in [-k,k) \\ 0, & u < -k \text{ lub } u \ge k \end{cases}$$

Since the derivative f'_k coincides on the interval [-k, k) with the right derivative of a function f, by the proof of Proposition 2.4 it turns out that f'_k is a cádlág function. Additionally, the convexity of a function f implies that its right derivative is a nondecreasing function. It means that f'_k is a nondecreasing and right continuous function on [-k, k). Thus and from the fact that f'_k is equal to zero outside [-k, k)we deduce that f'_k is a globally bounded function. We will prove that for every fixed $k \geq 1$ there exists a unique minimal strong solution \underline{x}_k to the equation

(4.1)
$$x(t) = x_0 + \int_0^t f_k(x(s))dz(s) + \frac{1}{2}\int_0^t f'_k(x(s))f_k(x(s))d[z,z](s) + \int_0^t g_k(x(s))da(s) - \int_0^t (A^0)_k(x(s))d[m,m](s),$$

which is also a solution to the equation

$$\begin{aligned} x(t) &= x_0 + \int_0^t f_k(x(s))dz(s) + \frac{1}{2}[f_k(x), z](t) \\ &+ \int_0^t g_k(x(s))da(s) - \int_0^t (A^0)_k(x(s))d[m, m](s) \end{aligned}$$

Since z = m + v is the canonical decomposition of z into a local continuous martingale m and a continuous FV-process v, then equation (4.1) can be rewritten as

$$\begin{aligned} x(t) &= x_0 + \int_0^t f_k(x(s))dm(s) + \int_0^t f_k(x(s))dv(s) + \int_0^t g_k(x(s))da(s) \\ &+ \frac{1}{2}\int_0^t f'_k(x(s))f_k(x(s))d[m,m](s) + \int_0^t -(A^0)_k(x(s))d[m,m](s). \end{aligned}$$

Since its second and third components have similar properties i.e., $\pm f_k$ and $\pm g_k$ are Lipschitz and bounded while v and a are continuous FV-processes, we will consider them in the same manner. Therefore, we can restrict our study to the following equation

(4.2)
$$x(t) = x_0 + \int_0^t f_k(x(s))dm(s) + \frac{1}{2}\int_0^t f'_k(x(s))f_k(x(s))d[m,m](s) + \int_0^t b_k(x(s))du(s) + \int_0^t -(A^0)_k(x(s))d[m,m](s),$$

with a continuous increasing and adapted process u, and Lipschitz and bounded function b_k . Let us notice that coefficients $f'_k(x(s))f_k(x(s))$ and $-(A^0)_k(x(s))$ need not be Lipschitz. However, using Lemma 4.5 which holds true for lower semicontinuous and bounded functions we can prove the existence of a unique and strong solution to equation (4.2). Since $f'_k(x(s))f_k(x(s))$ are not lower semicontinuous we need to define the following version of the derivative of f_k

$$\widetilde{f}'_k(x) = \begin{cases} f'_k(x-) \wedge f'_k(x), & \text{if } f_k(x) \ge 0\\ f'_k(x-) \vee f'_k(x), & \text{if } f_k(x) < 0. \end{cases}$$

Let us denote $\rho_k(x) = \frac{1}{2} f_k(x) \tilde{f}'_k(x)$. The function ρ_k is lower semicontinuous and moreover, $\liminf_{y\to x} \rho_k(y) = \rho_k(x)$. The nonincreasing function $-(A^0)_k$ is also lower semicontinuous because it is cádlág and moreover,

$$\liminf_{y \to x} \left(-(A^0)_k(y) \right) = \lim_{y \downarrow x} \left(-(A^0)_k(y) \right) = \left(-(A^0)_k(x) \right).$$

Step 2: We will prove that the equation

(4.3)
$$x(t) = x_0 + \int_0^t f_k(x(s))dm(s) + \frac{1}{2}\int_0^t \widetilde{f}'_k(x(s))f_k(x(s))d[m,m](s) + \int_0^t b_k(x(s))du(s) + \int_0^t -(A^0)_k(x(s))d[m,m](s),$$

possesses a unique minimal solution. For this we adapt the method used by J. San Martin in [7]. Without any loss of generality we assume additionally that [m, m] is uniformly bounded by some constant C. This condition can be easy relaxed by the usual localization method. Let us consider the following functions:

$$\rho_k^r(x) = \inf_y \{\rho_k(y) + r|x - y|\} - 2^{-r}$$

A. GORALCZYK AND J. MOTYL

$$b_k^r(x) = \inf_y \{b_k(y) + r|x - y|\} - 2^{-r}$$
$$A_k^r(x) = \inf_y \{(-(A^0)_k(y)) + r|x - y|\} - 2^{-r}$$

Since functions f_k , b_k , and $-(A^0)_k$ are globally bounded, then there exists a constant also denoted by C, which bounds all of them. Therefore, $\rho_k \leq \frac{1}{2}C^2$. Since these functions are lower semicontinuous, then by Lemma 4.5 we deduce

- 1° $\forall x \in R \ |\rho_k^r(x)| \leq C_1, \ |b_k^r(x)| \leq C_1 \text{ and } |A_k^r(x)| \leq C_1, \text{ where } C_1 = (\frac{1}{2}C^2 \vee C) + 1.$ 2° $\rho_k^r(\cdot) \nearrow \rho_k(\cdot), \ b_k^r(\cdot) \nearrow b_k(\cdot), \ A_k^r(\cdot) \nearrow (-(A^0)_k(\cdot)), \text{ with } r \to \infty.$
- $3^{\circ} \rho_k^r$, b_k^r i A_k^r are Lipschitz with constant r.
- $4^{\circ} \ \rho_k^r <^* \rho_k^{r+1}, \ b_k^r <^* b_k^{r+1}, \ A_k^r <^* A_k^{r+1}.$
- 5° If ρ_k and $-(A^0)_k$ are continuous at some point p and $x_r \to p$, then $\rho_k^r(x_r) \to \rho_k(p)$ and $A_k^r(x_r) \to (-(A^0)_k(p))$, as $r \to \infty$, each $k = 1, 2, \ldots$

For each $r = 1, 2, \ldots$ we consider the equation

(4.4)
$$y(t) = x_0 + \int_0^t f_k(y(s))dm(s) + \int_0^t b_k^r(y(s))du(s) + \int_0^t \rho_k^r(y(s))d[m,m](s) + \int_0^t A_k^r(y(s))d[m,m]s$$

Since all coefficients of (4.4) are Lipschitz, this equation has a unique, strong solution $y_k^r(t)$. The sequence of solutions to equations (4.4) is increasing in r for every fixed k and $t \in [0, T]$ a.s. by Lemma 4.3.

Let $\underline{x}_k(t) = \lim_{r \to \infty} y_k^r(t) \leq \infty$. We claim that $\underline{x}_k(t) < \infty$. Really, let us take a process $z_k^r(t) = y_k^r(t) - x_0$, which for every fixed $t \in [0, T]$ is also increasing in r. Using the Doob's inequality and estimating separately coefficients of 4.4 we obtain

$$E\left(\sup_{t\in[0,T]}|\int_{0}^{t}f_{k}(y_{k}^{r}(s))dm(s)|^{2}\right) \leq 4E\left(\int_{0}^{T}|f_{k}(y_{k}^{r}(s))|^{2}d[m,m](s)\right) \leq 4C^{3}$$
$$E\left(\sup_{t\in[0,T]}|\int_{0}^{t}\rho_{k}^{r}(y_{k}^{r}(s))d[m,m](s)|^{2}\right) \leq (C_{1})^{2}C^{2},$$
$$E\left(\sup_{t\in[0,T]}|\int_{0}^{t}A_{k}^{r}(y_{k}^{r}(s))d[m,m](s)|^{2}\right) \leq (C_{1})^{2}C^{2}$$
$$E\left(\sup_{t\in[0,T]}|\int_{0}^{t}b_{k}^{r}(y_{k}^{r}(s))da(s)|^{2}\right) \leq (C_{1})^{2}|u(T)-u(0)|^{2} \leq (C_{1})^{2}C^{2}.$$

Moreover,

$$E\left(\sup_{t\in[0,T]}|z_{k}^{r}(t)|^{2}\right) = E\left(\sup_{t\in[0,T]}|\int_{0}^{t}f_{k}(y_{k}^{r}(s))dm(s) + \int_{0}^{t}b_{k}^{r}(y_{k}^{r}(s))du(s) + \int_{0}^{t}\rho_{k}^{r}(y_{k}^{r}(s))d[m,m](s) + \int_{0}^{t}A_{k}^{r}(y_{k}^{r}(s))d[m,m](s)|^{2}\right) \le C_{2}$$

where $C_2 = 4(4C^3 + 3(C_1)^2C^2)$ does not depend on r. By the Dominated Convergence Theorem we conclude

$$\lim_{r \to \infty} E\left(\sup_{t \in [0,T]} |z_k^r(t)|^2\right) = E\left(\sup_{t \in [0,T]} \left[\left(\underline{x}_k(t) - x_0\right) \lor 0\right]^2\right) \le C_2 < \infty.$$

Thus $\underline{x}_k(t)$ is finite a.s. for every fixed $t \in [0, T]$. To show that $\underline{x}_k(t)$ is a solution to equation (4.3) we have to prove that for each fixed k

 $\begin{array}{ll} (a) & \int_{0}^{t} f_{k}(y_{k}^{r}(s))dm(s) \to \int_{0}^{t} f_{k}(\underline{x}_{k}(s))dm(s) \\ (b) & \int_{0}^{t} b_{k}^{r}(y_{k}^{r}(s))du(s) \to \int_{0}^{t} b_{k}(\underline{x}_{k}(s))du(s) \\ (c) & \int_{0}^{t} \rho_{k}^{r}(y_{k}^{r}(s))d[m,m](s) \to \int_{0}^{t} \rho_{k}(\underline{x}_{k}(s))d[m,m](s) \\ (d) & \int_{0}^{t} A_{k}^{r}(y_{k}^{r}(s))d[m,m](s) \to \int_{0}^{t} (-(A^{0})_{k}(\underline{x}_{k}(s)))d[m,m](s), \end{array}$

where the convergence is meant in the sense of ucp as $r \to \infty$. Since f_k is uniformly continuous and for every fixed $t \in [0,T]$ $y_k^r(t) \to \underline{x}_k(t)$, then by the property 5° of Lemma 4.5 we get $f_k(y_k^r(s)) \to f_k(\underline{x}_k(s))$, as $r \to \infty$. Using again the Doob's inequality we obtain

$$E\left(\sup_{t\in[0,T]} |\int_0^t f_k(y_k^r(s))dm(s) - \int_0^t f_k(\underline{x}_k(s))dm(s)|^2\right)$$

$$\leq 4E\int_0^T |f_k(y_k^r(s)) - f_k(\underline{x}_k(s))|^2 d[m,m](s) \to_{r\to\infty} 0.$$

Therefore, for some subsequence of $(y_k^r(s))_{r\geq 1}$, again denoted by $(y_k^r(s))_{r\geq 1}$, we get

$$\sup_{t \in [0,T]} |\int_0^t f_k(y_k^r(s)) dm(s) - \int_0^t f_k(\underline{x}_k(s)) dm(s)| \to_{r \to \infty} 0 \text{ a.s.}$$

Similarly, we obtain

$$\sup_{t\in[0,T]} \left| \int_0^t [b_k^r(y_k^r(s)) - b_k(\underline{x}_k(s))] du(s) \right| \to_{r\to\infty} 0.$$

Conditions (c) and (d) are still left to be proved. Thus one should show that

(4.5)
$$\rho_k^r(y^r(s)) \to_{r \to \infty} \rho_k(\underline{x}_k(s))$$
$$A_k^r(y_k^r(s)) \to_{r \to \infty} (-(A^0)_k(\underline{x}_k(s)))$$

a.e. relative to the random measure μ associated with [m, m]. The above is clear only for points of continuity of ρ_k and $-(A^0)_k$ respectively. Let us denote

$$y_k^r(t) = x(0) + \int_0^t f_k(y_k^r(s))dm(s) + \int_0^t b_k^r(y_k^r(s))du(s) + \int_0^t [\rho_k^r(y_k^r(s)) + A_k^r(y_k^r(s))]d[m,m](s) = x(0) + S_1 + S_2 + S_3$$

Since y_k^r , S_1 and S_2 are convergent, so S_3 also has to converge. Let us denote its limit by l(t). Hence for t < t' we get

$$|l(t) - l(t')| \le \lim_{r \to \infty} \left(\int_{t}^{t'} (|\rho_k^r(y_k^r(s))| + |A_k^r(y_k^r(s))|) d[m, m](s) \right) \le 2C_1 |[m, m](t) - [m, m](t')|.$$

Therefore, l(t) is continuous and has paths of finite variation. We have shown that

(4.6)
$$\underline{x}_{k}(t) = x_{0} + \int_{0}^{t} f_{k}(\underline{x}_{k}(s)) dm(s) + \int_{0}^{t} b_{k}(\underline{x}_{k}(s)) du(s) + l(t)$$

Thus $\underline{x}_k(t)$ is a continuous semimartingale. Since $y_k^r(t)$ and $\underline{x}_k(t)$ are continuous and $y_k^r(t)$ is an increasing in r and convergent to $\underline{x}_k(t)$ for every fixed t, then by the Dini's theorem we conclude that for every ω , $y_k^r(t) \to_{r\to\infty} \underline{x}_k(t)$ uniformly on compact sets. Denote by D_1 a set of points, in which a function ρ_k is discontinuous. Let us notice that $\mu(D_1) = 0$ because D_1 (with μ taken as a measure on s) coincides with the set of points of discontinuity of a cádlág function f'_k . Let D_2 denotes the set of points of discontinuity of a cadlág function f'_k is monotone on [-k, k] and constant outside this interval, then $\mu(D_2) = 0$. Let $D = D_1 \cup D_2$. For $\alpha > 0$ we define sets

$$D^{\alpha} = \{x : (\rho_k(x) \text{ or } (A^0)_k(x) \text{ are discontinuous}) \text{ and } |f_k(x)| \ge \alpha > 0\}.$$

Let us note that $D = \bigcup_{\alpha>0} D^{\alpha}$ is a set of points of discontinuity of functions ρ_k or $(A^0)_k$, for which $f_k \neq 0$. Since $D^{\alpha} \subset D$, then $\mu(D^{\alpha}) = 0$. To verify conditions (4.5) we will show that $P\{\omega : \mu\{s : \underline{x}_k(s) \in D\} = 0\} = 1$. Let

$$I = E\left(\int_0^t \mathbf{1}_{D^{\alpha}}(\underline{x}_k(s))d[m,m](s)\right)$$

$$\leq E\left(\int_0^t \mathbf{1}_{D^{\alpha}}(\underline{x}_k(s))\alpha^{-2}f_k^2(\underline{x}_k(s))d[m,m](s)\right).$$

By properties of the quadratic covariation process ([6, Th. II.29]Th.II.29) we obtain

$$[\underline{x}_{k}, m](s) = [x_{0} + \int_{0}^{\cdot} f_{k}(\underline{x}_{k}(q))dm(q) + \int_{0}^{\cdot} b_{k}(\underline{x}_{k}(q))du(q) + l(\cdot), m](s)$$
$$= [\int_{0}^{\cdot} f_{k}(\underline{x}_{k}(q))dm(q), m](s) = \int_{0}^{s} f_{k}(\underline{x}_{k}(q))d[m, m](q).$$

Hence $d[\underline{x}_k, m](s) = f_k(\underline{x}_k(s))d[m, m](s)$. Then

$$I \le \alpha^{-2} E(\sup_{t \in [0,T]} \int_0^t 1_{D^{\alpha}}(\underline{x}_k(s)) f_k(\underline{x}_k(s)) d[\underline{x}_k, m](s)),$$

where 1_A denotes a characteristic function of the set A. Using the Kunita-Watanabe inequality ([6, Th. II.25]) we get

$$I \le \alpha^{-2} E\left(\left(\int_{0}^{T} d[m,m](s)\right)^{\frac{1}{2}} \left(\int_{0}^{T} 1_{D^{\alpha}}(\underline{x}_{k}(s))f_{k}^{2}(\underline{x}_{k}(s))d[\underline{x}_{k},\underline{x}_{k}](s)\right)^{\frac{1}{2}}\right)$$
$$\le C^{\frac{1}{2}}\alpha^{-2} E\left(\int_{0}^{T} 1_{D^{\alpha}}(\underline{x}_{k}(s))f_{k}^{2}(\underline{x}_{k}(s))d[\underline{x}_{k},\underline{x}_{k}](s)\right)^{\frac{1}{2}}.$$

By Corollary 1 to Theorem IV.51 of [6] we obtain

$$I \le C^{\frac{1}{2}} \alpha^{-2} E\left(\int_{R} \int_{0}^{T} 1_{D^{\alpha}}(q) f_{k}^{2}(q) L(q, ds) dq\right)^{\frac{1}{2}},$$

where $L(p,s) = L_s^p(\underline{x}_k)$ is the local time of the process \underline{x}_k . Considering a global boundedness of a function f_k we get

$$I \le C^{\frac{3}{2}} \alpha^{-2} E\left(\int_R \int_0^T \mathbf{1}_{D^{\alpha}}(q) L(q, ds) dq\right)^{\frac{1}{2}} \le C^{\frac{3}{2}} \alpha^{-2} E\left(\int_R \int_0^T \mathbf{1}_D(q) L(q, ds) dq\right)^{\frac{1}{2}}.$$

Since the set $\mu(D) = 0$, then

$$\int_R \int_0^T \mathbf{1}_D(q) L(q, ds) dq = 0 \quad \text{a.s.}$$

Therefore, I = 0 a.e. In particular $P\{\omega : \mu\{s : \underline{x}_k(s) \in D^{\alpha}\} = 0\} = 1$. Thus $P\{\omega : \mu\{s : \underline{x}_k(s) \in D\} = 0\} = 1$. Let us denote by D^c a complement of the set D. The functions ρ_k and $-(A^0)_k$ are continuous on D^c . Therefore, there exists a set $B \in F$, P(B) = 1 such that for every $\omega \in B$

$$\rho_k^r(y_k^r(s)) \to_{r \to \infty} \rho_k(\underline{x}_k(s)) \quad d\mu(s) \text{-a.e.}$$

and

$$A^r(y_k^r(s)) \to_{r \to \infty} (-(A^0)_k(\underline{x}_k(s))) \quad d\mu(s)$$
-a.e.

By the Dominated Convergence Theorem we obtain the convergence property of integrals

$$\int_{0}^{t} \rho_{k}^{r}(y^{r}(s))d[m,m](s) \to \int_{0}^{t} \rho_{k}(\underline{x}_{k}(s))d[m,m](s)$$
$$\int_{0}^{t} A_{k}^{r}(y^{r}(s))d[m,m](s) \to \int_{0}^{t} (-(A^{0})_{k}(\underline{x}_{k}(s)))d[m,m](s).$$

Then we have proved that \underline{x}_k is a solution to equation (4.3).

Step 3: Now we will prove that \underline{x}_k is a unique minimal solution to equation (4.2). Let us claim that

$$J(t) = \left| \int_0^t f_k(\underline{x}_k(s)) \widetilde{f}'_k(\underline{x}_k(s)) - f_k(\underline{x}_k(s)) f'_k(\underline{x}_k(s)) d[m,m](s) \right| = 0 \text{ a.s.}$$

Really, similarly as in the step 2 we get

$$J(t) = \left| \int_0^t \widetilde{f}'_k(\underline{x}_k(s)) - f'_k(\underline{x}_k(s))d[\underline{x}_k, m](s) \right|$$

$$\leq \left(\int_0^t d[m, m](s) \right)^{\frac{1}{2}} \left(\int_0^t (\widetilde{f}'_k(\underline{x}_k(s)) - f'_k(\underline{x}_k(s)))^2 d[\underline{x}_k, \underline{x}_k](s) \right)^{\frac{1}{2}}.$$

Using again Corollary 1 to Theorem IV.51 of [6] we obtain

$$J(t) \leq ([m,m](t))^{\frac{1}{2}} \left(\int_{R} \int_{0}^{t} 1_{D}(q) |\widetilde{f}_{k}'(q) - f_{k}'(q)|^{2} L(q,ds) dq \right)^{\frac{1}{2}}$$
$$\leq 2C([m,m](t))^{\frac{1}{2}} \left(\int_{R} \int_{0}^{t} 1_{D}(q) L(q,ds) dq \right)^{\frac{1}{2}} = 0 \text{ a.s.}$$

Therefore, \underline{x}_k is a solution to (4.2) which is in fact equation (4.1). We will prove that \underline{x}_k is a unique minimal solution. Let y_k be any other solution to (4.2). Such an y_k is also a solution to (4.3). By Lemma 4.5 $y_k^r(t) \leq y_k(t)$ for every $t \in [0, T]$, from which we deduce that $\underline{x}_k(t) = \lim_{r\to\infty} y_k^r \leq y_k(t)$ for every $t \in [0, T]$. Then the minimal solution \underline{x}_k is unique.

Step 4: We will prove that $\underline{x} = \lim_{k \to \infty} \underline{x}_k$ is a solution to the equation

(4.7)
$$\begin{aligned} x(t) &= x_0 + \int_0^t f(x(s))dz(s) + \int_0^t g(x(s))da(s) \\ &+ \frac{1}{2}[f(x), z](t) + \int_0^t -A^0(x(s))d[m, m](s), \end{aligned}$$

Let us define stopping times $S_k := \inf\{t \in [0,T] : |\underline{x}_k(t)| > k\}$. Then for k and k+1 solutions \underline{x}_k and \underline{x}_{k+1} satisfy equations

$$\underline{x}_{k}(t \wedge S_{k}) = x_{0} + \int_{0}^{t \wedge S_{k}} f_{k}(\underline{x}_{k}(s))dz(s) + \frac{1}{2} \int_{0}^{t \wedge S_{k}} f_{k}(\underline{x}_{k}(s))f_{k}'(\underline{x}_{k}(s))d[m,m](s) + \int_{0}^{t \wedge S_{k}} g_{k}(\underline{x}_{k}(s))da(s) - \int_{0}^{t \wedge S_{k}} (A^{0})_{k}(\underline{x}_{k}(s))d[m,m](s)$$

and

$$\underline{x}_{k+1}(t \wedge S_{k+1}) = x_0 + \int_0^{t \wedge S_{k+1}} f_{k+1}(\underline{x}_{k+1}(s)) dz(s) + \frac{1}{2} \int_0^{t \wedge S_{k+1}} f_{k+1}(\underline{x}_{k+1}(s)) f'_{k+1}(\underline{x}_{k+1}(s)) d[m,m]s + \int_0^{t \wedge S_{k+1}} g_{k+1}(\underline{x}_{k+1}(s)) da(s) - \int_0^{t \wedge S_{k+1}} (A^0)_{k+1}(\underline{x}_{k+1}(s)) d[m,m](s).$$

Let us note that $f(u) = f_k(u) = f_{k+1}(u)$ for $|u| \le k$ and k = 1, 2, dots. A similar property holds for functions $g, g_k, g_{k+1}, A^0, (A^0)_k, (A^0)_{k+1}$, and multiplications f'f,

 $f'_k f_k, f'_{k+1} f_{k+1}$. Since $|\underline{x}_k(t \wedge S_k)| \leq k$, then

$$\begin{split} \underline{x}_{k}(t \wedge S_{k}) &= x_{0} + \int_{0}^{t \wedge S_{k}} f(\underline{x}_{k}(s))dz(s) + \frac{1}{2} \int_{0}^{t \wedge S_{k}} f(\underline{x}_{k}(s))f'(\underline{x}_{k}(s))d[m,m](s) \\ &+ \int_{0}^{t \wedge S_{k}} g(\underline{x}_{k}(s))da(s) - \int_{0}^{t \wedge S_{k}} A^{0}(\underline{x}_{k}(s))d[m,m](s) \\ &= x_{0} + \int_{0}^{t \wedge S_{k}} f_{k+1}(\underline{x}_{k}(s))dz(s) + \frac{1}{2} \int_{0}^{t \wedge S_{k}} f_{k+1}(\underline{x}_{k}(s))f'_{k+1}(\underline{x}_{k}(s))d[m,m](s) \\ &+ \int_{0}^{t \wedge S_{k}} g_{k+1}(\underline{x}_{k}(s))da(s) - \int_{0}^{t \wedge S_{k}} (A^{0})_{k+1}(\underline{x}_{k}(s))d[m,m](s). \end{split}$$

By the uniqueness of minimal, strong solution we deduce that $\underline{x}_k = \underline{x}_{k+1}$ on $[0, S_k]$. Moreover, $S_k < S_{k+1}$ on $\{S_k < T\}$. Since a sequence of stopping times is increasing, we can define a predictable stopping time $S := \lim_{k \to \infty} S_k$ and the process \underline{x} on the interval [0, S] such that $\underline{x} = \underline{x}_k$ on $[0, S_k]$. The process \underline{x} satisfies equation (4.1) on $[0, S_k]$ for $k = 1, 2, \ldots$, so \underline{x} satisfies also equation (4.6) on [0, S). The stopping time S is the explosion time, which was mentioned in the statement of the Theorem. If P(S > T) = 1, then we have a nonexploding solution. Since f, g and $A^0 \circ \underline{x}$ are selectors of F, G and A, respectively, we deduce that $f \circ \underline{x}, g \circ \underline{x}$ and $A^0 \circ \underline{x}$ are selections desired in Definition 4.1 and that means that \underline{x} is a solution to inclusion (SI).

Example 4.7. Let A be a subset of the interval [0, 1] such that $\mu(A) = 1/2$ and for every interval $[a, b] \subset [0, 1]$ $0 < \mu(A \cap [a, b]) < b - a$. Then the measure of the set $A' = [0, 1] \setminus A$ equals 1/2 and $0 < \mu(A' \cap [a, b]) < b - a$ also. Let us notice that sets Aand A' should be dense in [0, 1]. Define a set-valued function $F : [0, 1] \to 2^{\mathbb{R}}$ by the formula

$$F(x) = \begin{cases} [1, e^{|x|} + 3], & x \in A\\ [2, e^{|x|} + 4], & x \in ([0, 1] \setminus A) \end{cases}$$

It is clear that the set-valued function F is not Lipschitz continuous, nor lower semicontinuous, nor upper semicontinuous in any point. It does not satisfy any of monotone type conditions either. However, F is upper separated.

REFERENCES

- M. T. Barlow and E. Perkins, One-dimensional stochastic differential equations involving a singular increasing process, *Stochastics*, 12:229–249, 1984.
- [2] P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Lecture Notes in Math. 511, 246–400, Springer, Berlin, 1976.
- [3] M. Michta and J. Motyl, Set valued Stratonovich integral and Stratonovich type stochastic inclusion, *Dynam. Systems Appl.* 16 1:141–154, 2007.
- [4] R. Pettersson, Yosida approximations for multivalued stochastic differential equations, Stoch. Stoch. Rep., 52:107–120, 1994.

- [5] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer Verlag, Berlin-Heidelberg-New York, 1989.
- [6] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York, 1990.
- [7] J. San Martin, One-dimensional Stratonovich differential equations, Ann. Probab., 21(1):509– 533, 1993.