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ABSTRACT. This paper considers the robust stabilization of uncertain stochastic switched sys-

tems with constant time-delay. While most of the results on stability analysis of switched systems

in literature assume all subsystems are stable, the results of this paper can deal with stochastic

switched systems consisting of unstable subsystems. Assuming there exists a Hurwitz linear convex

combination for the original system, it is shown that a state-dependent switching rule can be found

to stabilize the stochastically perturbed system with both uncertainties and time-delay, provided

that the perturbation, uncertainties, and time-delay are sufficiently small. An effort was made to

give an explicit stability upper bound for the time-delay. The results are also extended to nonlinear

systems. Numerical examples are presented to demonstrate the results.
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NOTATION

R
n the n-dimensional Euclidean space

R
n×m the set of n × m matrices with real entries

In the n-dimensional identity matrix

‖·‖ ‖x‖ =
√

x2
1 + x2

2 + ... + x2
n, for a vector x = (x1, x2, ..., xn) ∈ R

n

‖A‖ = sup{‖Ax‖ : x ∈ R
m, ‖x‖ = 1}, for a matrix A ∈ R

n×m

tr [P ] the trace of matrix P

‖·‖
tr

‖A‖
tr

=
√

tr [AT A], i.e. the trace norm of a matrix A

Ch the Banach space of R
n-valued continuous functions defined on the

interval [−h, 0]

‖·‖Ch
the norm on Ch defined by ‖φ‖ = sup

−h≤s≤0
‖φ(s)‖, for φ ∈ Ch

λmax (P ) the maximal eigenvalue of matrix P , similarly for λmin(P )

(Ω,F , P ) a complete probability space

{Ft, t ≥ 0} a standard filtration on a given complete probability space (Ω,F , P )
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w(t) a Brownian motion with appropriate dimensions with respect to

(Ω,F , P ) and {Ft, t ≥ 0}
E [·] the mathematical expectation

L
2,h
Ft

the family of all Ft measurable Ch-valued random variables

φ = {φ(θ) : −h ≤ θ ≤ 0} such that E
[

‖φ‖2
Ch

]

< ∞

1. INTRODUCTION

Stochastic dynamic modeling plays an essential role in numerous physics and en-

gineering applications. It can be applied wherever random properties of a dynamical

system have to be considered. Considerable emphasis has been placed on the stability

analysis of the stochastic dynamical systems (see [3,8,15,21]). Moreover, in many ap-

plications, the physical or chemical processes are governed by more than one dynam-

ics, in which the dynamic changes among a family of choices depending on the time t or

the state x. Such processes are often described by switched systems, or more generally,

hybrid systems, which have been studied extensively in recent years (see [18,27,32] and

references therein). Due to its many applications in control of mechanical systems,

automotive industry, aircraft and air traffic control, switching power converters, and

many other fields, the stability analysis of switched systems has attracted a large num-

ber of researchers from mathematics, control engineering, and, more recently, com-

puter science communities (see, e.g., [1,2,4–6,9–11,16,19,20,24–26,28–31,34,38–42]).

While major advances on this topic have been made by various authors, many impor-

tant questions related to the stability analysis of such systems still remain unanswered,

even for linear systems (see a recent survey on this topic by [33]).

For switched systems, [17] and [33] summarized some basic problems related to

their stability issues, among which we note, in particular, the problem of constructing

stabilizing switching rule for a family of individually unstable systems. In [35] (see

also [37]), the authors address the following problem:

Given two linear system x′ = A1x and x′ = A2x, where A1 and A2 are

not Hurwitz in that they both have some eigenvalues in the right half plane,

determine if there exists a switching rule such that the resulting switched

system is stable.

It is established in [35] that, if there exists a Hurwitz convex linear combination of

A1 and A2, i.e. there exists some α ∈ (0, 1) such that αA1 + (1 − α)A2 is Hurwitz,

then a stabilizing switching rule does exist. This result can be easily generalized to

the case of finitely many subsystems. Namely, consider a family of linear systems

with coefficient matrices A1, A2, . . . , AN and assume there exists a Hurwitz convex

linear combination of these matrices, i.e. there exist real numbers αi ∈ (0, 1) with
∑N

i=1 αi = 1 such that
∑N

i=1 αiAi is Hurwitz. Then a stabilizing switching rule can
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also be constructed. The idea of proof involves constructing a common quadratic

Lyapunov function and the stability obtained is actually quadratic stability. Later,

the work of [35] is extended in [36], by using piecewise quadratic Lyapunov functions

as opposed to quadratic Lyapunov functions.

Following the treatment of [35], Kim et al. [12] (see also [13]) considered a class of

switched systems with time-delay and established similar results for delayed switched

systems. Actually, they considered a linear switched system which may consist of

more than two subsystems, i.e.

ẋ(t) = Aix(t) + Bix(t − h),

where i ∈ {1, 2, . . . , N}. The Hurwitz linear convex combination then became

N
∑

i=1

αi(Ai + Bi),

with 0 < αi < 1 and
∑N

i=1 αi = 1. In [12], they also quantified the size of the stability

bound for the time-delay.

While numerous researches have been done on switched systems and hybrid sys-

tems, much of the work has focused only on deterministic models that completely

characterize the future of the system without allowing any uncertainty. Since nonde-

terministic factors are almost indispensable in practices, more suitable models should

be uncertain and stochastic hybrid systems. Motivated by this fact, the main objec-

tive of this paper is to establish a stochastic version of the results in [12] and [35].

The following semi-linear stochastic switched system will be considered:

(1.1) dx(t) = [(Ai+∆Ai(t))x(t)+(Bi+∆Bi(t))x(t−h)]dt+gi(t, x(t), x(t−h))dw(t),

where i ∈ {1, 2, . . . , N} and both ∆Ai(t) and ∆Bi(t) represent the uncertainties,

gi(t, x(t), x(t − h)) the stochastic perturbation, and h the constant time-delay.

For nonlinear switched systems, we will consider the system given by

(1.2) dx(t) = [fi(t, x(t), x(t−h))+∆fi(t, x(t), x(t−h))]dt+gi(t, x(t), x(t−h))dw(t),

where i ∈ {1, 2, . . . , N} and fi can be nonlinear, ∆fi represent the uncertainties, gi

the stochastic perturbation, and h the time-delay.

It should be mentioned that the stability we considered here consists of two types.

One is the exponential stability in mean square, and the other is almost sure expo-

nential stability. Both types have been studied by many authors, e.g. [8,14,15,21,22],

none of which, however, dealt with switched systems. It should also be noted that

although stochastic switched systems were rarely studied, many authors studied the

stochastic systems with Markov jump, or Markovian switching (e.g. [23]), where the

switching rule is a continuous Markov process. In this sense, our switched systems

should be regarded as systems with deterministic switching rules. A most natural
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question arises: Is deterministic switching rule a special case of stochastic switching

rule and thus our study on deterministically switched systems seems unnecessary?

The answer should be no. Actually, there are at least two reasons for this. First,

the techniques dealing with Markovian switchings are different from those with de-

terministic switchings. Second, as far as stabilization by constrained switching rule

is concerned, a deterministic rule would be more applicable than a stochastic one.

The organization of the rest of this paper is as follows. The main results are

presented in Section 2, which consists of four subsections. Section 2.1 sets up the

problem and proposes a switching rule for semi-linear stochastic switched systems.

Section 2.2 proves that under the proposed switching rule and certain conditions on

uncertainties, time-delay, and stochastic perturbation, our system is exponentially

stable. As special cases, Section 2.3 considers deterministic switched systems, i.e.

gi ≡ 0 in (1.1) and (1.2), while Section 2.4 deals with non-switched systems, i.e.,

stochastic and deterministic differential equations. Section 3 extends the results in

Section 2 to nonlinear systems. Section 4 presents numerical examples to demonstrate

the main results in Sections 2 and 3. Finally, the paper is concluded with Section 5.

2. STABILITY OF SEMI-LINEAR STOCHASTIC

SWITCHED SYSTEMS

2.1. Problem statement and construction of the switching rule. Consider

the following stochastic uncertain switched system

dx(t) = [(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))x(t − h)]dt

+ gi(t, x(t), x(t − h))dw(t), σ(t) = i, t ≥ t0,(2.1)

xt0 = φ,

where σ : [t0,∞) → {1, 2, . . . , N} is the switching rule, x ∈ R
n is the state, h is the

constant time-delay, w(t) is an m-dimensional standard Wiener process, φ ∈ L
2,h
Ft

is

the initial data, Ai, Bi ∈ R
n×n are constant real matrices, and ∆Ai(t), ∆Bi(t) are

bounded time-dependent uncertainties. We assume gi(t, x(t), x(t−h)) : [t0,∞)×R
n×

R
n → R

n×m be locally Lipschitz continuous and satisfy the linear growth conditions

as well, which guarantees that every single subsystem of (2.1) has a global unique

solution (see [21]). It should be noted that although the switching rule σ here is

state-dependent, we might not be able to denote it as a function of x. We shall

explain this in detail when the switching rule is described. Moreover, based on the

property of the switching rule, which will be explained later as well, we can see that

the switched system (2.1) has a unique solution, which is denoted by x(t; φ) in this

paper. Moreover, if we let xt be defined by xt(θ) = x(t+θ), −h ≤ θ ≤ 0, then xt ∈ Ch

for each sample ω. It can also be proved that xt ∈ L
2,h
Ft

for all t ≥ t0 (see [21]). We
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assume that g(t, 0, 0) ≡ 0 so that system (2.1) yields a trivial solution, whose stability

is the main purpose of study in this paper.

Before we construct the switching rule, an essential assumption has to be pre-

sented, i.e.

Assumption 2.1. For system (2.1) defined above, there exists a Hurwitz linear

convex combination of Ai + Bi, that is

(2.2) H =
N

∑

i=1

αi(Ai + Bi),

where 0 < αi < 1 and
∑N

i=1 αi = 1.

Under Assumption 2.1, there exist positive definite symmetric matrices P and Q

which satisfy

(2.3) HTP + PH = −Q.

Equation (2.3) leads immediately to the following lemma

Lemma 2.1 (Prop. 2 in Kim [12]). Given P and Q in (2.3), define

Ωi = {x ∈ R
n : xT [(Ai + Bi)

T P + P (Ai + Bi)]x ≤ −xT Qx},

then R
n = ∪N

i=1Ωi.

From Lemma 2.1, we can see that if x ∈ Ωi, then the function V (x) = xT Px

decreases along the trajectory of the original system ẋ(t) = (Ai + Bi)x(t), which is

reduced from system (2.1) when there are no uncertainties, stochastic perturbation,

and time-delay. Based on this observation, a stabilizing switching rule is constructed

in [35] and [12]. The idea of hysteresis switching [18] is important here to prevent

chattering and maintain the property that two consecutive switching events are always

separated by a time interval of positive length, i.e. the switching signal function σ(t)

is piecewise constant and has only a finite number of discontinuities on every bounded

time interval.

To define the hysteresis switching, we first enlarge the region Ωi a little bit to Ω′
i

so that they have some overlaps near the boundaries. Ω′
i can be defined as [12]

Ω′
i = {x ∈ R

n : xT [(Ai + Bi)
T P + P (Ai + Bi)]x ≤ −1

ζ
xT Qx},

where ζ > 1 can be arbitrarily chosen. The switching rule σ : [t0,∞) → {1, 2, . . . , N}
now can be constructed as below:

(R1) (Minimal Rule) Starting from some t = t0, let

σ(t0) = arg min
i

xT [(Ai + Bi)
T P + P (Ai + Bi)]x,

where arg denotes the value of the argument i such that the minimal is attained;
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(R2) Maintain σ(t) = i as long as x(t) ∈ Ω′
i and σ(t−) = i;

(R3) Once x(t1) hits the boundary of Ω′
i for some t1, let t0 = t1 and start over

according to (R1).

Remark 2.1. The designed overlapping regions serve as “buffering regions” and

thus allow the switching rule to avoid chattering, i.e. the switching signal function

σ(t) is piecewise constant and has only a finite number of discontinuities, actually

only discontinuities from the left, on every bounded time interval. This observation

also enables us to easily construct the unique solution of system (2.1) step by step.

Remark 2.2. The observation that we might not be able to write σ as a function of

x is based on the fact that the value of σ is not determined by the current value of x

alone, but depends also on the previous value of σ according to (R2).

If ∆Ai(t) ≡ ∆Bi(t) ≡ gi(t, x, y) ≡ 0, then the work of Wick [35] and Kim [12]

guarantees the stability of system (2.1) under the switching rule σ constructed above.

In the following section, we will show that the stability is preserved for the stochastic

system provided ∆Ai(t), ∆Bi(t), and gi(t, x, y) are sufficiently small.

2.2. Exponential stabilization of stochastic switched systems.

Theorem 2.1. Let Assumption 2.1 hold and P , Q be defined as thereafter. Assume

also there exist positive constants βj, 1 ≤ j ≤ 4, such that

(2.4) ‖∆Ai(t)‖ ≤ β1, ‖∆Bi(t)‖ ≤ β2,

and

(2.5) ‖gi(t, x, y)‖2
tr
≤ β3 ‖x‖2 + β4 ‖y‖2

,

for all t ≥ t0, x ∈ R
n, y ∈ R

n and i ∈ {1, 2, . . . , N}. If for some ζ > 1,

h <
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
,

where

a =
1

ζ
λmin(Q) − ‖P‖ (2β1 + 2β2 + β3 + β4) > 0,

c = 2 max
1≤i≤N

‖PBi‖ ( max
1≤i≤N

‖Ai‖ + max
1≤i≤N

‖Bi‖ + β1 + β2),

d = max
1≤i≤N

‖PBi‖2 (β3 + β4),

then system (2.1) is exponentially stable in mean square.

Proof. For any given initial data φ, we write x(t; φ) as x(t) for simplicity. By Itô’s

formula, we have

d[xT (t)Px(t)] = 2xT (t)P [(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))x(t − h)]dt
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+ tr
[

gT
i (t, x(t), x(t − h))Pgi(t, x(t), x(t − h))

]

dt

+ 2xT (t)Pgi(t, x(t), x(t − h))dw(t).(2.6)

Note that here σ(t) = i and thus we have x(t) ∈ Ω′
i, which is exactly how we have

constructed σ(t). By the definition of Ω′
i,

xT [(Ai + Bi)
T P + P (Ai + Bi)]x ≤ −1

ζ
xT Qx.

Using this and the assumptions, we obtain that

2xT (t)P [Aix(t) + Bix(t − h)] = 2xT (t)P [Ai + Bi]x(t) − 2xT (t)PBi[x(t) − x(t − h)]

≤ −1

ζ
xT (t)Qx(t) − 2xT (t)PBi[x(t) − x(t − h)]

≤ −1

ζ
λmin(Q) ‖x(t)‖2 − 2xT (t)PBi[x(t) − x(t − h)],

2xT (t)P [∆Ai(t)x(t) + ∆Bi(t)x(t − h)] ≤ ‖P‖ ((2β1 + β2) ‖x(t)‖2 + β2 ‖x(t − h)‖2),

and

tr
[

gT
i (t, x(t), x(t − h))Pgi(t, x(t), x(t − h))

]

≤ ‖P‖ (β3 ‖x(t)‖2 + β4 ‖x(t − h)‖2).

Substituting these into (2.6) gives

d[xT (t)Px(t)] ≤ −
[

1

ζ
λmin(Q) − ‖P‖ (2β1 + β2 + β3)

]

‖x(t)‖2
dt

+ ‖P‖ (β2 + β4) ‖x(t − h)‖2
dt − 2xT (t)PBi[x(t) − x(t − h)]dt

+ 2xT (t)Pgi(t, x(t), x(t − h))dw(t).(2.7)

Moreover, by the definition of stochastic integral, we have, for t ≥ h,

x(t) − x(t − h) =

∫ t

t−h

[(Aσ(r) + ∆Aσ(r)(r))x(r) + (Bσ(r) + ∆Bσ(r)(r))x(r − h)]dr

+

∫ t

t−h

gσ(r)(r, x(r), x(r − h))dw(r).

Note that regarding the switching signal as a function of time gives the simple ex-

pression above. Using this and the assumptions, we obtain, for t ≥ t0 + h,

− 2xT (t)PBi[x(t) − x(t − h)]

≤ [h(γ1 + γ2 + γ3 + γ4) + γ5] ‖x(t)‖2

+ max
1≤i≤N

‖PBi‖2 (γ−1
1 max

1≤i≤N
‖Ai‖2 + γ−1

3 β2
1)

∫ t

t−h

‖x(r)‖2
dr

+ max
1≤i≤N

‖PBi‖2 (γ−1
2 max

1≤i≤N
‖Bi‖2 + γ−1

4 β2
2)

∫ t

t−h

‖x(r − h)‖2
dr

+ γ−1
5 max

1≤i≤N
‖PBi‖2

∥

∥

∥

∥

∫ t

t−h

gσ(r)(r, x(r), x(r − h))dw(r)

∥

∥

∥

∥

2

,
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where γi (1 ≤ i ≤ 5) can be chosen later to optimize the estimation. Substituting this

into (2.7), we have

(i) for t ≥ t0 + h,

d[xT (t)Px(t)] ≤
[

κ1 ‖x(t)‖2 + κ2 ‖x(t − h)‖2 + κ3

∫ t

t−h

‖x(r)‖2
dr

+κ4

∫ t

t−h

‖x(r − h)‖2
dr

]

dt

+ κ5

∥

∥

∥

∥

∫ t

t−h

gσ(r)(r, x(r), x(r − h))dw(r)

∥

∥

∥

∥

2

dt

+ 2xT (t)Pgi(t, x(t), x(t − h))dw(t),(2.8)

where

κ1 = −1

ζ
λmin(Q) + ‖P‖ (2β1 + β2 + β3) + h(γ1 + γ2 + γ3 + γ4) + γ5,

κ2 = ‖P‖ (β2 + β4),

κ3 = max
1≤i≤N

‖PBi‖2 (γ−1
1 max

1≤i≤N
‖Ai‖2 + γ−1

3 β2
1),

κ4 = max
1≤i≤N

‖PBi‖2 (γ−1
2 max

1≤i≤N
‖Bi‖2 + γ−1

4 β2
2),

κ5 = γ−1
5 max

1≤i≤N
‖PBi‖2

.

(ii) for t0 ≤ t < t0 + h,

d[xT (t)Px(t)] ≤ −
[

1

ζ
λmin(Q) − ‖P‖ (2β1 + β2 + β3) + 1

]

‖x(t)‖2
dt

+ ‖P‖ (β2 + β4) ‖x(t − h)‖2
dt + max

1≤i≤N
‖PBi‖2 ‖x(t) − x(t − h)‖2

dt

+ 2xT (t)Pgi(t, x(t), x(t − h))dw(t).(2.9)

Now fix any ε > 0. It is clear that

(2.10) d[eεtxT (t)Px(t)] = εeεtxT (t)Px(t)dt + eεtd[xT (t)Px(t)].

Moreover, by the (vector form) Itô isometry (see [21]), we have

E

[

∥

∥

∥

∥

∫ t

t−h

gσ(r)(r, x(r), x(r − h))dw(r)

∥

∥

∥

∥

2
]

=

∫ t

t−h

E
[

∥

∥gσ(r)(r, x(r), x(r − h))
∥

∥

2

tr

]

dr.(2.11)

Substituting the previous estimates (2.8) and (2.9) for d[xT (t)Px(t)] into (2.10), in-

tegrating from t0 to t, taking expectation from both sides, and by virtue of (2.11), we

can obtain that, for all t ≥ t0 and ε > 0,

E
[

eεtxT (t)Px(t)
]
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≤ E [φ(0)Pφ(0)] + (κ1 + ‖P‖ ε)E

[
∫ t

t0+h

eεs ‖x(s)‖2
ds

]

+ κ2E

[
∫ t

t0+h

eεs ‖x(s − h)‖2
ds

]

+ κ3

∫ t

t0+h

eεs

∫ s

s−h

E
[

‖x(r)‖2]
drds

+ κ4

∫ t

t0+h

eεs

∫ s

s−h

E
[

‖x(r − h)‖2]
drds

+ κ5

∫ t

t0+h

eεs

∫ s

s−h

E
[
∥

∥gσ(r)(r, x(r), x(r − h))
∥

∥

tr

]2
drds + c0

≤ E [φ(0)Pφ(0)] + (κ1 + ‖P‖ ε)E

[
∫ t

t−h

eεs ‖x(s)‖2
ds

]

+ κ2E

[
∫ t

t0+h

eεs ‖x(s − h)‖2
ds

]

+ (κ3 + κ5β3)

∫ t

t0+h

eεs

∫ s

s−h

E
[

‖x(r)‖2]
drds

+ (κ4 + κ5β4)

∫ t

t0+h

eεs

∫ s

s−h

E
[

‖x(t − h)‖2]
drds + c0,(2.12)

where

c0 = −
[

1

ζ
λmin(Q) − ‖P‖ (2β1 + β2 + β3 + ε) + 1

]

E

[
∫ h

t0

eεs ‖x(t)‖2
ds

]

+ κ2E

[
∫ h

t0

eεs ‖x(s − h)‖2
ds

]

+ max
1≤i≤N

‖PBi‖2 E

[
∫ h

t0

eεs ‖x(s) − x(s − h)‖2
ds

]

≤ −
[

1

ζ
λmin(Q) − ‖P‖ (2β1 + β2 + β3 + ε) + 1 + κ2 + 2 max

1≤i≤N
‖PBi‖2

]

× heεhE
[

‖φ‖2
Ch

]

+ 2 max
1≤i≤N

‖PBi‖2
heεhE

[

‖xt0+h‖2
Ch

]

< ∞.

To get a simpler estimation of the right hand side, we compute the integrals in the

previous inequality as follows. Firstly, for t ≥ t0 + h,

E

[
∫ t

t0+h

eεs ‖x(s − h)‖2
ds

]

= E

[
∫ t−h

t0

eε(s+h) ‖x(s)‖2
ds

]

≤ eεhE

[
∫ t

t0+h

eεs ‖x(s)‖2
ds

]

+ c1,

where c1 = he2εhE
[

‖φ‖2
Ch

]

< ∞. Secondly,

∫ t

t0+h

eεs

∫ s

s−h

E
[

‖x(r)‖2]
drds ≤

∫ t

t0

E
[

‖x(r)‖2]
∫ r+h

r

eεsdsdr

≤ heεhE

[
∫ t

t0+h

eεr ‖x(r)‖2
dr

]

+ c2,
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where c2 = hc1 < ∞. Thirdly,
∫ t

t0+h

eεs

∫ s

s−h

E
[

‖x(r − h)‖2]
drds ≤ heεhE

[
∫ t

t0

eεr ‖x(r − h)‖2
dr

]

≤ he2εhE

[
∫ t

t0+h

eεs ‖x(s)‖2
ds

]

+ c3,

where c3 = c1(h + heεh) < ∞. Substituting all these into (2.12) and reorganizing the

items, we finally get

(2.13) E
[

eεtxT (t)Px(t)
]

≤ ρ1 + ρ2E

[
∫ t

t0

eεr ‖x(s)‖2
ds

]

,

where

ρ1 = E [φ(0)Pφ(0)] + κ2c1 + (κ3 + κ5β3)c2 + (κ4 + κ5β4)c3 + c0 < ∞,

and

ρ2 = κ1 + ‖P‖ ε + κ2e
εh + (κ3 + κ5β3)heεh + (κ4 + κ5β4)he2εh.

Our aim is to find some positive ε such that ρ2 = 0. Since ρ2 is increasing with

respect to ε, it is clear that if

κ1 + κ2 + (κ3 + κ5β3)h + (κ4 + κ5β4)h < 0,

then there exists some positive ε such that ρ2 becomes 0. Recall what we denote by

κi (1 ≤ i ≤ 4) and solve the previous inequality for h gives that

h <

1
ζ
λmin(Q) − ‖P‖ (2β1 + 2β2 + β3 + β4) − γ5

D
,

where

D = (γ1 + γ2 + γ3 + γ4) + max
1≤i≤N

‖PBi‖2 ×

(γ−1
1 max

1≤i≤N
‖Ai‖2 + γ−1

2 max
1≤i≤N

‖Bi‖2 + γ−1
3 β2

1 + γ−1
4 β2

2 + γ−1
5 β3 + γ−1

5 β4).

Moreover, to relax the restriction on h, γi (1 ≤ i ≤ 5) can be chosen to minimize the

denominator D, that is

γ1 = max
1≤i≤N

‖PBi‖ max
1≤i≤N

‖Ai‖ ,

γ2 = max
1≤i≤N

‖PBi‖ max
1≤i≤N

‖Bi‖ ,

γ3 = max
1≤i≤N

‖PBi‖β1,

γ4 = max
1≤i≤N

‖PBi‖β2,

which immediately gives that

D = 2 max
1≤i≤N

‖PBi‖ ( max
1≤i≤N

‖Ai‖+ max
1≤i≤N

‖Bi‖+ β1 + β2) + γ−1
5 max

1≤i≤N
‖PBi‖2 (β3 + β4).
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Now, γ5 is still not determined. To finish this, we observed that the function f(x) on

(0,∞) defined as

f(x) =
a − x

c + x−1d

for positive a, c, and d is increasing on (0, ad

d+
√

d2+acd
) and deceasing on ( ad

d+
√

d2+acd
,∞).

Hence if we use the notations

a =
1

ζ
λmin(Q) − ‖P‖ (2β1 + 2β2 + β3 + β4),

c = 2 max
1≤i≤N

‖PBi‖ ( max
1≤i≤N

‖Ai‖ + max
1≤i≤N

‖Bi‖ + β1 + β2),

d = max
1≤i≤N

‖PBi‖2 (β3 + β4),

then γ5 = ad

d+
√

d2+acd
would maximize the upper bound of h and actually yields

h <
a − ad

d+
√

d2+acd

c + d+
√

d2+acd
a

=
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
,

which is our final restriction on h to guarantee that there exists some ε such that ρ2

becomes 0. Hence we have for this ε that

(2.14) E
[

eεtxT (t)Px(t)
]

≤ ρ1,

for t ≥ t0 + h, which eventually implies

E
[

‖x(t)‖2] ≤ ρ1e
−εt

λmin(P )
,

for all t ≥ t0 + h. Hence

lim sup
t→∞

1

t
log(E

[

‖x(t)‖2]) ≤ −ε,

which means system (2.1) is exponentially stable in mean square.

Remark 2.3. The main techniques we use here in the proof are essentially the same

as those in [22], with some modifications to make it suitable for switched systems and

improve the results.

On the almost sure stability of system (2.1), we have the following theorem.

Theorem 2.2. Under the same assumptions as in Theorem 2.1, system (2.1) is also

almost surely exponentially stable.

Proof. The proof is based on Doobs martingale inequality and the Borel-Cantelli

lemma. For a complete proof one can refer to [22].

2.3. Exponential stabilization of deterministic switched systems. If there is

no stochastic perturbation in system (2.1), as corollaries of Theorem 2.1 and Theo-

rem 2.2, we can have some results on deterministic switched systems.
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2.3.1. The case gi(t, x, y) ≡ 0. In this case, system (2.1) reduces to

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))x(t − h), σ(t) = i, t ≥ t0,(2.15)

xt0 = φ.

For this system, we have the following corollary.

Corollary 2.1. Let Assumption 2.1 hold and P , Q be defined as thereafter. Assume

also there exist positive constants βj, 1 ≤ j ≤ 2, such that

(2.16) ‖∆Ai(t)‖ ≤ β1, ‖∆Bi(t)‖ ≤ β2,

for all t ≥ t0 and i ∈ {1, 2, . . . , N}. If for some ζ > 1,

h <
λmin(Q) − 2 ‖P‖ (β1 + β2)ζ

2ζ max
1≤i≤N

‖PBi‖ ( max
1≤i≤N

‖Ai‖ + max
1≤i≤N

‖Bi‖ + β1 + β2)
,

then system (2.15) is exponentially stable in mean square and also almost surely ex-

ponentially stable.

2.3.2. The case gi(t, x, y) ≡ 0 and ∆Ai(t) ≡ ∆Bi(t) ≡ 0. Now system (2.1) further

reduces to

ẋ(t) = Aix(t) + Bix(t − h), σ(t) = i, t ≥ t0,(2.17)

xt0 = φ,

which is actually the same system considered in [12]. For this system, we have the

following corollary.

Corollary 2.2. Let Assumption 2.1 hold and P , Q be defined as thereafter. If for

some ζ > 1,

(2.18) h <
λmin(Q)

2ζ max
1≤i≤N

‖PBi‖ ( max
1≤i≤N

‖Ai‖ + max
1≤i≤N

‖Bi‖)
,

then system (2.17) is exponentially stable in mean square and also almost surely ex-

ponentially stable.

Remark 2.4. Note that ζ > 1 is arbitrarily chosen in the definition of Ω′
i in section 2.1

and it is useful to avoid chattering of the switched system via boundaries. However,

it actually plays no role in the restrictions on the system. For example, (2.18) is

mathematically equivalent to

h ≤ λmin(Q)

2 max
1≤i≤N

‖PBi‖ ( max
1≤i≤N

‖Ai‖ + max
1≤i≤N

‖Bi‖)
.
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2.4. Exponential stabilization of stochastic and deterministic delay differ-

ential equations. Although our main efforts have been devoted to establish results

on switched systems, as a by-product, we can still have the following corollaries on

the exponential stability of differential delay equations, which can also be regarded

as an improvement of the results in [22].

Here, we first consider a stochastic differential equation

ẋ(t) = [(A + ∆A(t))x(t) + (B + ∆B(t))x(t − h)]dt

+ g(t, x(t), x(t − h))dw(t), t ≥ t0,(2.19)

xt0 = φ.

For this equation, we have the following result.

Corollary 2.3. Assume that there exists a pair of symmetric positive definite matrices

P and Q such that

P (A + B) + (A + B)T P = −Q.

Assume also that there exist positive constants βj, 1 ≤ j ≤ 4, such that

(2.20) ‖∆Ai(t)‖ ≤ β1, ‖∆Bi(t)‖ ≤ β2,

and

(2.21) ‖gi(t, x, y)‖2
tr
≤ β3 ‖x‖2 + β4 ‖y‖2

,

for all t ≥ t0, x ∈ R
n, y ∈ R

n and i ∈ {1, 2, . . . , N}. If

h <
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
,

where

a = λmin(Q) − ‖P‖ (2β1 + 2β2 + β3 + β4) > 0,

c = 2 ‖PB‖ (‖A‖ + ‖B‖ + β1 + β2),

d = ‖PB‖2 (β3 + β4),

then system (2.19) is exponentially stable in mean square and also almost surely ex-

ponentially stable.

If gi(t, x, y) ≡ 0, then (2.24) reduces to

ẋ(t) = (A + ∆A(t))x(t) + (B + ∆B(t))x(t − h), t ≥ t0,(2.22)

xt0 = φ.

For this equation, we have the following result.
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Corollary 2.4. Assume that there exists a pair of symmetric positive definite matrices

P and Q such that

P (A + B) + (A + B)T P = −Q.

Assume also that there exist positive constants βj, 1 ≤ j ≤ 4, such that

(2.23) ‖∆Ai(t)‖ ≤ β1, ‖∆Bi(t)‖ ≤ β2,

for all t ≥ t0. If

h <
λmin(Q) − 2 ‖P‖ (β1 + β2)

2 ‖PB‖ (‖A‖ + ‖B‖ + β1 + β2)
,

then system (2.22) is exponentially stable in mean square and also almost surely ex-

ponentially stable.

Furthermore, if ∆A(t) ≡ ∆B(t) ≡ 0, then equation (2.22) reduces to

ẋ(t) = Ax(t) + Bx(t − h), t ≥ t0,(2.24)

xt0 = φ.

For this equation, we have the following result.

Corollary 2.5. Assume that there exists a pair of symmetric positive definite matrices

P and Q such that

P (A + B) + (A + B)T P = −Q.

If

h <
λmin(Q)

2 ‖PB‖ (‖A‖ + ‖B‖) ,

then system (2.24) is exponentially stable in mean square and also almost surely ex-

ponentially stable.

Remark 2.5. From Corollary 2.5, we can see that our results have improved those

in [22]. We shall demonstrate this with some numerical results in the following section.

3. STABILITY OF NONLINEAR STOCHASTIC

SWITCHED SYSTEMS

In this section, we extend the theory in [12, 35] and our previous section to

nonlinear case, i.e. we try to find a suitable switching rule to stabilize switched systems

arising from nonlinear stochastic differential equations.

Generally, we can consider the following nonlinear stochastic switched system

dx(t) = [fi(t, x(t), x(t − h)) + ∆fi(t, x(t), x(t − h))]dt

+ gi(t, x(t), x(t − h))dw(t), σ(t) = i, t ≥ t0,(3.1)

xt0 = φ,
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where σ : [t0,∞) → {1, 2, . . . , N} is the switching rule. We assume that fi and ∆fi

are locally Lipschitz continuous functions from R+ × R
n × R

n → R
n satisfying the

linear growth condition so that each subsystem (i.e. stochastic differential equation)

has a unique solution (see [21]). Then we can have global existence and uniqueness

result for system (3.1) by stepwise argument, i.e. the solution can be constructed and

shown to be unique step by step. Also we assume fi(t, 0, 0) ≡ ∆fi(t, 0, 0) ≡ 0 such

that the system admits a trivia solution x(t; 0) ≡ 0. The following assumption is a

counterpart to Assumption 2.1.

Assumption 3.1. For system (3.1) defined above, there exist a symmetric positive

definite matrix P and positive constants λ and αi, 1 ≤ i ≤ N , such that
∑N

i=1 αi = 1

and

2

N
∑

i

αix
T Pfi(t, x, x) ≤ −λ ‖x‖2

,

for all t ≥ t0 and x ∈ R
n.

Lemma 3.1. Define

Ωi = {x ∈ R
n : xT Pfi(t, x, x) + fT

i (t, x, x)Px ≤ −λ ‖x‖2}.

Then R
n = ∪N

i=1Ωi.

This lemma guarantees that we can construct a state-dependent switching rule

for system (3.1) as we do in section 2. However, we do note that here Ωi may depend

on t. The idea is that for each fixed time t, we can divide the total state space

R
n into N subspaces Ωi, 1 ≤ i ≤ N , such that for each state x (together with the

associated time t), a unique switching signal can be determined as we do in section

2. This does not contradict that we write σ as function of t but not a function of x

(see Remark 2.2). Nevertheless we can prove the following theorem.

Theorem 3.1. Let Assumption 3.1 hold and P be the symmetric positive definite

matrix. Assume also there exist positive constants δj, 1 ≤ j ≤ 3, and βk, 1 ≤ k ≤ 4,

such that

‖fi(t, x, x) − fi(t, x, y)‖ ≤ δ1 ‖x − y‖ ,

‖fi(t, x, y)‖ ≤ δ2 ‖x‖ + δ3 ‖y‖ ,

‖∆fi(t, x, y)‖ ≤ β1 ‖x‖ + β2 ‖y‖ ,

‖gi(t, x, y)‖2
tr
≤ β3 ‖x‖2 + β4 ‖y‖2

,

for all t ≥ t0, x ∈ R
n, y ∈ R

n, and i ∈ {1, 2, . . . , N}. If for some ζ > 1,

h <
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
,
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where

a =
1

ζ
λ − ‖P‖ (2β1 + 2β2 + β3 + β4) > 0,

c = 2δ1 ‖P‖ (δ2 + δ3 + β1 + β2),

d = δ1 ‖P‖2 (β3 + β4),

then system (3.1) is exponentially stable in mean square and also almost surely expo-

nentially stable.

Proof. The proof is essentially similar to the proof for Theorem 2.1 and is omitted.

Now we turn to consider nonlinear deterministic systems. If gi(t, x, y) ≡ 0, then

system (3.1) reduces to a deterministic switched system, i.e.

ẋ(t) = fi(t, x(t), x(t − h)) + ∆fi(t, x(t), x(t − h)), σ(t) = i, t ≥ t0,(3.2)

xt0 = φ.

The following is a corollary of Theorem 2.2.

Corollary 3.1. Let Assumption 3.1 hold and P be the symmetric positive definite

matrix. Assume also there exist positive constants δj, 1 ≤ j ≤ 3, and βk, 1 ≤ k ≤ 2,

such that

‖fi(t, x, x) − fi(t, x, y)‖ ≤ δ1 ‖x − y‖ ,

‖fi(t, x, y)‖ ≤ δ2 ‖x‖ + δ3 ‖y‖ ,

‖∆fi(t, x, y)‖ ≤ β1 ‖x‖ + β2 ‖y‖ ,

for all t ≥ t0, x ∈ R
n, y ∈ R

n, and i ∈ {1, 2, . . . , N}. If for some ζ > 1,

h <
λ − 2 ‖P‖ (β1 + β2)ζ

2δ1ζ ‖P‖ (δ2 + δ3 + β1 + β2)
,

then system (3.2) is exponentially stable in mean square and also almost surely expo-

nentially stable.

Furthermore, if ∆fi(t, x, y) ≡ 0, system (3.2) further reduces to

ẋ(t) = fi(t, x(t), x(t − h)), σ(t) = i, t ≥ t0,(3.3)

xt0 = φ.

For this system, we have the following result.

Corollary 3.2. Let Assumption 3.1 hold and P be the symmetric positive definite

matrix. Assume also there exist positive constants δj, 1 ≤ j ≤ 3, such that

‖fi(t, x, x) − fi(t, x, y)‖ ≤ δ1 ‖x − y‖ ,

‖fi(t, x, y)‖ ≤ δ2 ‖x‖ + δ3 ‖y‖ ,
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for all t ≥ t0, x ∈ R
n, y ∈ R

n, and i ∈ {1, 2, . . . , N}. If for some ζ > 1,

h <
λ

2δ1ζ ‖P‖ (δ2 + δ3)
,

then system (3.3) is exponentially stable in mean square and also almost surely expo-

nentially stable.

To close this section, let us point out that, as byproducts, Theorem 3.1, Corol-

laries 3.1 and 3.2 can be applied to nonlinear stochastic and deterministic differential

equations, i.e. the cases when N = 1 and there is only one subsystem in the switched

system. We have similar corollaries listed in Section 2.4 and hence we omit them to

avoid redundancy.

Remark 3.1. When dealing with nonlinear stochastic and deterministic differential

equations, Corollaries 3.1 and 3.2 also improved the results in [22].

4. NUMERICAL EXAMPLES

4.1. Stabilization of switched system via state-dependent switching rule.

Example 4.1. Consider the switched system given by

dx(t) = [(A1 + ∆A1(t))x(t) + (B1 + ∆B1(t))x(t − h)]dt

+ g1(t, x(t), x(t − h))dw(t), σ(t) = 1,(4.1)

dx(t) = [(A2 + ∆A2(t))x(t) + (B2 + ∆B2(t))x(t − h)]dt

+ g2(t, x(t), x(t − h))dw(t), σ(t) = 2,(4.2)

where

A1 =

[

−2 2

−20 −2

]

, B1 =

[

−1 −7

23 6

]

,

A2 =

[

−2 10

−4 −2

]

, B2 =

[

4 −5

1 −8

]

,

‖∆Ai(t)‖ ≤ 0.1, ‖∆Bi(t)‖ ≤ 0.1, i = 1, 2,

and

‖gi(t, x, y)‖2
tr
≤ 0.1 ‖x‖2 + 0.1 ‖y‖2

, i = 1, 2,

for all t ≥ 0 and x = [x1 x2]
T and y = [y1 y2]

T ∈ R
2. Let

H = 0.52(A1 + B1) + 0.48(A2 + B2)

and Q = I2, we can find

P =

[

0.8247 −0.0429

−0.0429 0.1870

]
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such that PH + HT P = −Q. It is easy to compute that

‖P‖ = 0.8276, max
1≤i≤2

‖PBi‖ = 7.0148, max
1≤i≤2

‖Ai‖ = 20.1803, max
1≤i≤2

‖Bi‖ = 23.9390.

Applying Theorem 2.1 with β1 = β2 = β3 = β4 = 0.1, we can conclude that the system

switching between (4.1) and (4.2) via the switching rule σ is exponentially stable for

h < 5.6895 × 10−4. If there are no stochastic perturbations and uncertainties, i.e.

gi(t, x, y) ≡ 0 and ∆Ai(t) ≡ ∆Bi(t) ≡ 0, then the system reduces to Example 1

in [12]. Corollary 2.2 shows that the system is exponentially stable for h < 0.001615,

which improves the delay upper bound of 0.001573 in [12]. Typical paths of the

evolution and the switching rule σ for the above system are shown in Figures 1 and

2 for h = 0.0005, ζ = 1.1,

∆A1(t) = ∆B1(t) = 0.1 sin(10t)I2,

∆A2(t) = ∆B2(t) = 0.1 cos(10t)I2,

and

g1 = g2 =

√
0.1

2

[

x1 sin(x1y1) + x2 sin(x2y2) 0

0 y1 cos(x1y1) + y2 cos(x2y2)

]

.

Also, Figures 3 and 4 show that each subsystem is unstable even without uncertainties

and stochastic perturbations.

Next we consider a switched system comprised by nonlinear subsystems.

Example 4.2. Consider the switched system given by

dx(t) = [f1(t, x(t), x(t − h)) + ∆f1(t, x(t), x(t − h))]dt

+ g1(t, x(t), x(t − h))dw(t), σ(t) = 1,(4.3)

and

dx(t) = [f2(t, x(t), x(t − h)) + ∆f2(t, x(t), x(t − h))]dt

+ g2(t, x(t), x(t − h))dw(t), σ(t) = 2,(4.4)

where

f1(t, x, y) =

{

0.5x1 + 0.5y1 − x2 sin(t)

x1 cos(t) − x2 − y2

}

,

f2(t, x, y) =

{

−x1 − y1 − x2 cos(t)

x1 sin(t) + 0.1x2 + 0.9y2

}

,

for all t ≥ 0 and x, y ∈ R
2, and the uncertainties ∆fi and stochastic perturbations

gi are assumed to satisfy

‖∆fi(t, x, y)‖ ≤ 0.1 ‖x‖ + 0.1 ‖y‖ ,

‖gi(t, x, y)‖2
tr
≤ 0.1 ‖x‖2 + 0.1 ‖y‖2

,
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Figure 1. The solution of the system switching between (4.1) and

(4.2) according to the switching signal σ(t). The time-delay is set to

be h = 0.0016 and the initial data given by x = [1 − 1]T .

0 1 2 3

0.0

0.5

1.0

1.5

2.0
  

 

t

  sqrt(xTPx) 
  ||x|| 
  

Figure 2. The Euclidian norm ‖x‖ and quadratic norm
√

xT Px vs.

the constructed switching signal σ(t).
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Figure 3. The solution of subsystem (4.1) without uncertainty and

stochastic perturbation. The time-delay is set to be h = 0.0005 and

the initial data given by x = [0.01 0.01]T .
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Figure 4. The solution of subsystem (4.2) without uncertainty and

stochastic perturbation. The time-delay is set to be h = 0.0005 and

the initial data given by x = [0.01 0.01]T .
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for i = 1, 2, t ≥ 0, and x, y ∈ R
2. It is easy to show that

2[
1

2
xT f1(t, x, x) +

1

2
xT f2(t, x, x)] ≤ −‖x‖2

,

‖fi(t, x, x) − fi(t, x, y)‖ ≤ ‖x − y‖ ,

‖fi(t, x, y)‖ ≤ 2 ‖x‖ + ‖y‖ ,

for i = 1, 2, t ≥ 0, and x, y ∈ R
2. To apply Theorem 2.2 with ζ = 1.1, δ1 = 1,

δ2 = 2.24, δ3 = 1.74, β1 = β2 = β3 = β4 = 0.1, P = I2, and λ = 1, we can compute

that

a =
1

ζ
λ − ‖P‖ (2β1 + 2β2 + β3 + β4) = 0.3091,

c = 2δ1 ‖P‖ (δ2 + δ3 + β1 + β2) = 6.4,

d = δ1 ‖P‖2 (β3 + β4) = 0.2.

Thus Theorem 2.2 gives that, for

h <
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
= 0.0258,

(2.20) is exponentially stable. Typical paths of the evolution and the switching rule

σ for the above system are shown in Figures 5 and 6 for h = 0.02, ζ = 1.1,

∆f1 = ∆f2 =

{

0.1x1 sin(y1y2) + 0.1y1 cos(x1x2)

0.1x2 sin(y1y2) + 0.1y2 cos(x1x2)

}

,

and

g1 = g2 =

√
0.1

2

[

x1 sin(x1y1) + x2 sin(x2y2) 0

0 y1 cos(x1y1) + y2 cos(x2y2)

]

.

Also, Figures 7 and 8 show that each subsystem is unstable even without uncertainties

and stochastic perturbations.

4.2. Stability analysis of delay differential equations.

Example 4.3. Consider the following equation

dx(t) = [(A + ∆A(t))x(t) + (B + ∆B(t))x(t − h)]dt

+ g(t, x(t), x(t − h))dw(t), t ≥ 0,(4.5)

where

A =

[

−2 0

1 −1

]

, B =

[

−1 0

−0.5 −1

]

,

‖∆A(t)‖ ≤ 0.1, ‖∆B(t)‖ ≤ 0.1,

and

‖g(t, x, y)‖2
tr
≤ 0.1 ‖x‖2 + 0.1 ‖y‖2

,
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Figure 5. The solution of the system switching between (4.3) and

(4.4) according to the switching signal σ(t). The time-delay is set to

be h = 0.02 and the initial data given by x = [1 − 1]T .
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Figure 6. The Euclidian norm of x vs. the constructed switching sig-

nal σ(t). Note that in this case P = I2 and the quadratic norm
√

xT Px

coincides with the Euclidian norm.
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Figure 7. The solution of subsystem (4.3) without uncertainty and

stochastic perturbation. The time-delay is set to be h = 0.02 and the

initial data given by x = [0.01 0.01]T .
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Figure 8. The solution of subsystem (4.4) without uncertainty and

stochastic perturbation. The time-delay is set to be h = 0.02 and the

initial data given by x = [0.01 0.01]T .
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for all t ≥ 0 and x, y ∈ R
2. Let H = A + B and Q = I2, we can find

P =

[

0.1708 0.0250

0.0250 0.2500

]

such that PH + HT P = −Q. It is easy to compute that

‖P‖ = 0.2572, ‖PB‖ = 0.3191, ‖A‖ = 2.2882, ‖B‖ = 1.2808.

To apply Corollary 2.3 with β1 = β2 = β3 = β4 = 0.1, we can compute that

a = λmin(Q) − ‖P‖ (2β1 + 2β2 + β3 + β4) = 0.8457,

c = 2 ‖PB‖ (‖A‖ + ‖B‖ + β1 + β2) = 2.4054,

d = ‖PB‖2 (β3 + β4) = 0.0204.

Thus Corollary 2.3 shows that (2.20) is exponentially stable for

h <
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
= 0.2879,

which improves the delay upper bound of 0.175 in [22]. If there is no stochastic

perturbation in (4.5), i.e. g(t, x, y) ≡ 0, then Corollary 2.4 shows that (4.5) is expo-

nentially stable for h < 0.3729, which also improves the delay upper bound of 0.189

in [22].

Example 4.4 ( [22, Example 5.2]). Consider the following equation

dx(t) = [f(t, x(t), x(t − h)) + ∆f(t, x(t), x(t − h))]dt

+ g(t, x(t), x(t − h))dw(t),(4.6)

where

f(t, x, y) =

{

−0.5x1 − 0.5y1 + x2 sin(x1x2)

−x1 sin(x1x2) − 0.6x2 − 0.4y2

}

for t ≥ 0 and x, y ∈ R
2, and the uncertainty ∆f and stochastic perturbation g are

assumed to satisfy

‖∆f(t, x, y)‖ ≤ 0.1 ‖x‖ + 0.1 ‖y‖ ,

‖g(t, x, y)‖2
tr
≤ 0.1 ‖x‖2 + 0.1 ‖y‖2

,

for all t ≥ 0 and x, y ∈ R
2. It is easy to show that

2xT f(t, x, x) ≤ −2 ‖x‖2
,

‖f(t, x, x) − f(t, x, y)‖ ≤ 0.5 ‖x − y‖ ,

‖f(t, x, y)‖ ≤ 2.2 ‖x‖ + 0.64 ‖y‖ .

To apply Theorem 2.2 with ζ = 1, δ1 = 0.5, δ2 = 2.2, δ3 = 0.64, β1 = β2 = β3 = β4 =

0.1, P = I2 and λ = 2, we can compute that

a = λ − ‖P‖ (2β1 + 2β2 + β3 + β4) = 1.4,
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c = 2δ1 ‖P‖ (δ2 + δ3 + β1 + β2) = 3.04,

d = δ1 ‖P‖2 (β3 + β4) = 0.1.

Thus Theorem 2.2 gives that for

h <
a2
√

d2 + acd

(d +
√

d2 + acd)(ac + d +
√

d2 + acd)
= 0.3393,

(2.20) is exponentially stable, which improves the delay upper bound of 0.21 in [22].

Note that we have maintained the estimate ‖f(t, x, y)‖ ≤ 2.2 ‖x‖+0.64 ‖y‖ as in [22],

for the sake of comparison. Actually, it is easy to derive another estimate as

‖f(t, x, y)‖ ≤ 1.6 ‖x‖ + 0.5 ‖y‖ .

By virtue of this estimate, we can conclude that (2.20) is exponentially stable for

h < 0.4287.

5. CONCLUSION

The robust stabilization of a class of uncertain stochastic switched systems with

time-delay via a state-dependent switching rule is investigated in this paper. Assum-

ing there exists a Hurwitz linear convex combination for the original system, it has

been shown that under a certain state-dependent switching rule, the stochastically

perturbed system with both uncertainties and time-delay is still exponentially stable,

provided that the perturbation, uncertainties, and time-delay are sufficiently small.

Moreover, the results are extended to nonlinear systems. We have also quantified

the stability upper bound for the time-delay. Numerical results show that our upper

bound improves some results in literature.
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