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ABSTRACT. By employing a class of kernel functions Φ(t, s, l) and a generalized Riccati technique,

some new oscillation criteria are established for second-order nonlinear damped differential equations,

which extend, improve and unify some related results known in the literature.
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1. INTRODUCTION

Consider the second-order nonlinear damped differential equation

(1.1) (r(t)ψ(x(t))ϕ(x′(t)))
′
+ p(t)ϕ(x′(t)) + q(t)f(x(t)) = 0, t ≥ t0,

where r(t), p(t), q(t) ∈ C([t0,∞),R), and ψ(x), ϕ(x), f(x) ∈ C(R,R).

Throughout this paper we shall assume the following conditions hold.

(C1) r(t) > 0 and xf(x) > 0 for all x 6= 0;

(C2) 0 < c1 ≤ ψ(x) ≤ c2 for all x ∈ R;

(C3) k > 0 and kϕ2(y) ≤ yϕ(y) for all y ∈ R;

(C4) f ′(x) exists, f ′(x) ≥ µ > 0 for x 6= 0;

or

(C4′) q(t) ≥ 0, f(x)
x

≥ λ > 0 for x 6= 0, where c1, c2, k, µ and λ are constants.

We say that a function x : [t0, t1) → R, t1 > t0 is a solution of Eq. (1.1) if x(t)

satisfies Eq. (1.1) for all t ∈ [t0, t1). In the sequel, we always assume that solutions

of Eq. (1.1) exist on some half-line [T,∞)(T ≥ t0). A solution x(t) of Eq. (1.1) is

called oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscillatory.

Eq. (1.1) is called oscillatory if all its solutions are oscillatory.
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The oscillation problem for Eq. (1.1) and its various particular cases such as the

nonlinear damped differential equation

(1.2) (r(t)x′(t))
′
+ p(t)x′(t) + q(t)f(x(t)) = 0

has been studied extensively in recent years, e.g., see [1, 3–8, 10, 11] and the references

therein. In 2004, by using a new kernel function of the form Φ(t, s, l) and a Riccati

transformation

w(t) =
r(t)x′(t)

f(x(t))
,

Sun [8] studied the oscillatory behavior of Eq. (1.2) and obtained the following results

for the equation with r(t) ≡ 1.

Theorem A ([8, Theorem 2.3]). Eq. (1.2) with r(t) ≡ 1 is oscillatory provided that

for each l ≥ t0, there exists a constant α > 1/2 such that

lim sup
t→∞

1

t2α+1

∫ t

l

(t− s)2α(s− l)2

[

4µq(s) − p2(s) + 4
t− (1 + α)s+ αl

(t− s)(s− l)
p(s)

]

ds

>
4α

(2α− 1)(2α+ 1)
.

Theorem B ([8, Theorem 2.4]). Eq. (1.2) with r(t) ≡ 1 is oscillatory provided that

for each l ≥ t0, there exists a constant β > 1/2 such that

lim sup
t→∞

1

t2β+1

∫ t

l

(t− s)2(s− l)2β

[

4µq(s) − p2(s) + 4
βt− (1 + β)s+ l

(t− s)(s− l)
p(s)

]

ds

>
4β

(2β − 1)(2β + 1)
.

However, in Theorems A and B of Sun [8], the author required that r(t) ≡ 1,

ψ(x(t)) ≡ 1 and ϕ(x) = x in Eq. (1.1), which restrict their applications.

In 2000, Ayanlar and Tiryaki [1] used the following generalized Riccati type

substitution

(1.3) w(t) = A(t)

[

r(t)ψ(x(t))ϕ(x′(t))

x(t)
+ r(t)B(t) +

1

2k
p(t)

]

and obtained several oscillation theorems for Eq. (1.1) which required q(t) ≥ 0 and

p(t) to be differentiable.

In 2004, by using the following generalized Riccati transformations

v(t) = A(t)r(t)

[

ψ(x(t))ϕ(x′(t))

f(x(t))
+B(t)

]

and

w(t) = A(t)r(t)

[

ψ(x(t))ϕ(x′(t))

x(t)
+B(t)

]

,
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Wang [10] obtained more general results for Eq. (1.1) without the term 1
2k
p(t) as in

(1.3) and any restriction on the sign and differentiability of p(t).

The results of Ayanlar and Tiryaki [1] and Wang [10] involve a class of functions

H(t, s) defined by Philos [6] which is used extensively and are given in the form that

lim supt→∞[·] = +∞.

Recently, Fu [3] employed Φ(t, s, l) functions and Riccati transformations

w(t) =
r(t)ψ(x(t))ϕ(x′(t))

f(x(t))
+
p(t)

2µk

and

w(t) =
r(t)ψ(x(t))ϕ(x′(t))

x(t)
+
p(t)

2k

to extend the main results of Sun [8] to Eq. (1.1) and obtained the following results

which required p(t) to be differentiable.

Theorem C ([3, Theorem 2.4]). Assume that conditions (C1)–(C4) hold and

limt→∞R(t) = ∞, where R(t) =
∫ t

l
ds/r(s) for t ≥ l ≥ t0. If for every l ≥ t0, there

exists a constant α > 1/2 such that

lim sup
t→∞

1

R2α+1(t)

∫ t

l

[R(t) −R(s)]2α[R(s) − R(l)]2
µk

c2
Q(s) ds >

α

(2α− 1)(2α+ 1)
,

where

(1.4) Q(t) = q(t) −
p2(t)

4µkc1r(t)
−
p′(t)

2µk
,

then Eq. (1.1) is oscillatory.

Theorem D ([3, Theorem 2.5]). Assume that conditions (C1)–(C4) hold and

limt→∞R(t) = ∞, where R(t) =
∫ t

l
ds/r(s) for t ≥ l ≥ t0. If for every l ≥ t0, there

exists a constant β > 1/2 such that

lim sup
t→∞

1

R2β+1(t)

∫ t

l

[R(t) − R(s)]2[R(s) − R(l)]2βµk

c2
Q(s) ds >

β

(2β − 1)(2β + 1)
,

where Q(t) is defined by (1.4), then Eq. (1.1) is oscillatory.

Motivated by the ideas of Wang [10], Sun [8], Sun and Meng [9], Dubé and

Mingarelli [2], in the present paper, we shall establish several new oscillation criteria

for Eq. (1.1) by introducing functions of the form Φ(t, s, l) and employing two more

generalized Riccati transformations due to Wang [10]. The criteria extend, improve

and unify the results of Sun [8] and Fu [3]. Our results are different from most known

ones in the sense that they are given in the form that lim supt→∞[·] is greater than

a constant, rather than in the form lim supt→∞[·] = +∞. Thus, our results can

be applied to many cases, which are not covered by existing ones. Finally, several

interesting examples are also included to show the applications of our results.
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2. KAMENEV-TYPE OSCILLATION CRITERIA

Following Sun [8] and Sun and Meng [9], we shall define a class of functions Y.

We say that a function Φ = Φ(t, s, l) belongs to the function class Y , denoted by

Φ ∈ Y , if Φ ∈ C(E,R), where E = {(t, s, l) : t ≥ s ≥ l ≥ t0}, which satisfies

Φ(t, t, l) = Φ(t, l, l) = 0 for t ≥ l ≥ t0 and has the partial derivative Φs = ∂Φ
∂s

on E

such that Φs ∈ L2
loc(E,R).

Now, we are in a position to give our first result.

Theorem 2.1. Suppose that conditions (C1)–(C4) hold. If for each l ≥ t0, there

exist functions Φ ∈ Y,A ∈ C1([t0,∞),R+) and B ∈ C([t0,∞),R) such that (rB) ∈

C1([t0,∞),R) and

(2.1)

lim sup
t→∞

∫ t

l

[

Φ2(t, s, l)Q1(s) −
c2A(s)r(s)

µk

(

G1(s)

2
Φ(t, s, l) − Φs(t, s, l)

)2
]

ds > 0,

where R
+ = (0,∞),

Q1(t) = A(t)

[

q(t) −
1

4µk

(

1

c1
−

1

c2

)

p2(t)

r(t)
(2.2)

−
1

c2
p(t)B(t) +

µk

c2
r(t)B2(t) − (r(t)B(t))′

]

and

(2.3) G1(t) = −
A′(t)

A(t)
−

2µk

c2
B(t) +

p(t)

c2r(t)
,

then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Without loss of generality,

we may assume that x(t) 6= 0 on [T0,∞) for some sufficiently large T0 ≥ t0. Define

(2.4) v(s) = A(s)r(s)

[

ψ(x(s))ϕ(x′(s))

f(x(s))
+B(s)

]

, for s ≥ T0.

Then differentiating (2.4) and using (1.1) and (C1)-(C4), it follows that for s ≥ T0

v′(s) =
A′(s)

A(s)
v(s) − A(s)p(s)

ϕ(x′(s))

f(x(s))
−A(s)q(s)(2.5)

−
A(s)r(s)ψ(x(s))ϕ(x′(s))x′(s)f ′(x(s))

f 2(x(s))
+ A(s)(r(s)B(s))′

≤
A′(s)

A(s)
v(s) − A(s)q(s) + A(s)(r(s)B(s))′

−
µkA(s)r(s)

ψ(x(s))

[

(

ψ(x(s))ϕ(x′(s))

f(x(s))

)2

+
p(s)

µkr(s)

ψ(x(s))ϕ(x′(s))

f(x(s))

]
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=
A′(s)

A(s)
v(s) − A(s)q(s) + A(s)(r(s)B(s))′ +

A(s)p2(s)

4µkr(s)ψ(x(s))

−
µkA(s)r(s)

ψ(x(s))

[

ψ(x(s))ϕ(x′(s))

f(x(s))
+

p(s)

2µkr(s)

]2

≤
A′(s)

A(s)
v(s) − A(s)q(s) + A(s)(r(s)B(s))′ +

A(s)p2(s)

4µkc1r(s)

−
µkA(s)r(s)

c2

[

ψ(x(s))ϕ(x′(s))

f(x(s))
+

p(s)

2µkr(s)

]2

=
A′(s)

A(s)
v(s) − A(s)q(s) + A(s)(r(s)B(s))′ +

A(s)p2(s)

4µkc1r(s)

−
µkA(s)r(s)

c2

[

v(s)

A(s)r(s))
− B(s) +

p(s)

2µkr(s)

]2

= −Q1(s) −G1(s)v(s) −
µk

c2A(s)r(s)
v2(s),

where Q1(s) and G1(s) are defined by (2.2) and (2.3), respectively.

Multiplying (2.5) by Φ2(t, s, T0)(t ≥ T0), and integrating it with respect to s from

T0 to t, we have

∫ t

T0

Φ2(t, s, T0)Q1(s) ds ≤

∫ t

T0

Φ2(t, s, T0)[−v
′(s) −G1(s)v(s)] ds

−

∫ t

T0

Φ2(t, s, T0)
µk

c2A(s)r(s)
v2(s) ds.

Integrating by parts, we obtain for t ≥ T0

∫ t

T0

Φ2(t, s, T0)Q1(s) ds ≤

∫ t

T0

[

− [G1(s)Φ(t, s, T0) − 2Φs(t, s, T0)]Φ(t, s, T0)v(s)

−
µk

c2A(s)r(s)
Φ2(t, s, T0)v

2(s)

]

ds

= −

∫ t

T0

[
√

µk

c2A(s)r(s)
Φ(t, s, T0)v(s)

+

√

c2A(s)r(s)

µk

(

G1(s)

2
Φ(t, s, T0) − Φs(t, s, T0)

)

]2

ds

+

∫ t

T0

c2A(s)r(s)

µk

(

G1(s)

2
Φ(t, s, T0) − Φs(t, s, T0)

)2

ds

≤

∫ t

T0

c2A(s)r(s)

µk

(

G1(s)

2
Φ(t, s, T0) − Φs(t, s, T0)

)2

ds
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that is,

(2.6)
∫ t

T0

[

Φ2(t, s, T0)Q1(s) −
c2A(s)r(s)

µk

(

G1(s)

2
Φ(t, s, T0) − Φs(t, s, T0)

)2
]

ds ≤ 0.

Taking the superior limit in (2.6), we have

lim sup
t→∞

∫ t

T0

[

Φ2(t, s, T0)Q1(s) −
c2A(s)r(s)

µk

(

G1(s)

2
Φ(t, s, T0) − Φs(t, s, T0)

)2
]

ds ≤ 0,

which contradicts the assumption (2.1). The proof is complete.

From Theorem 2.1, we can obtain different sufficient conditions for oscillation of

Eq. (1.1) by different choices of Φ(t, s, l). For instance, let

Φ(t, s, l) =
√

ρ(s)(t− s)α(s− l)β,

where ρ(s) ∈ C1([t0,∞),R+), and α, β > 1 are constants, then we have

Φs(t, s, l) =
Φ(t, s, l)

2

(

ρ′(s)

ρ(s)
+
βt− (α + β)s+ αl

(t− s)(s− l)

)

.

Thus, by Theorem 2.1, we have the following oscillation result.

Theorem 2.2. Suppose that conditions (C1)–(C4) hold. If for each l ≥ t0, there exist

functions A, ρ ∈ C1([t0,∞),R+), B ∈ C([t0,∞),R) and two constants α, β > 1 such

that (rB) ∈ C1([t0,∞),R) and

lim sup
t→∞

∫ t

l

ρ(s)(t− s)α(s− l)β

×

[

Q1(s) −
c2A(s)r(s)

4µk

(

G1(s) −
ρ′(s)

ρ(s)
−
βt− (α + β)s+ αl

(t− s)(s− l)

)2]

ds > 0,

where Q1(s) and G1(s) are defined by (2.2) and (2.3), respectively, then Eq. (1.1) is

oscillatory.

Define

R(t) =

∫ t

t0

1

r(s)
ds, t ≥ t0,

and let

Φ(t, s, l) =

√

ρ(s) [R(t) − R(s)]α [R(s) − R(l)]β,

where ρ(s) ∈ C1([t0,∞),R+), and α, β > 1 are constants, then we have

Φs(t, s, l) =
Φ(t, s, l)

2

(

ρ′(s)

ρ(s)
+

βR(t) − (α + β)R(s) + αR(l)

r(s)[R(t) − R(s)][R(s) − R(l)t]

)

.

By Theorem 2.1, we get the following oscillation criterion.
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Theorem 2.3. Suppose that conditions (C1)–(C4) hold. If for each l ≥ t0, there exist

functions A, ρ ∈ C1([t0,∞),R+), B ∈ C([t0,∞),R) and two constants α, β > 1 such

that (rB) ∈ C1([t0,∞),R) and

lim sup
t→∞

∫ t

l

ρ(s)[R(t) −R(s)]α[R(s) −R(l)]β

[

Q1(s)(2.7)

−
c2A(s)r(s)

4µk

(

G1(s) −
ρ′(s)

ρ(s)
−
βR(t) − (α + β)R(s) + αR(l)

r(s)[R(t) − R(s)][R(s) − R(l)]

)2]

ds > 0,

where Q1(s) and G1(s) are defined by (2.2) and (2.3), respectively, then Eq. (1.1) is

oscillatory.

Taking ρ(t) ≡ 1 and A(t) ≡ 1 in Theorem 2.3, we have the following interesting

theorem.

Theorem 2.4. Suppose that conditions (C1)–(C4) hold and limt→∞R(t) = ∞. If for

each l ≥ t0, there exist a function B ∈ C([t0,∞),R) and two constants α, β > 1 such

that (rB) ∈ C1([t0,∞),R) and

lim sup
t→∞

1

Rα+β−1(t)

∫ t

l

[R(t) − R(s)]α[R(s) − R(l)]β

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
+
G2(s)[βR(t) − (α + β)R(s) + αR(l)]

2[R(t) −R(s)][R(s) −R(l)]

]

ds(2.8)

> αβ(α+ β − 2)
Γ(α− 1)Γ(β − 1)

4Γ(α + β)
,

where

(2.9) Q2(t) = q(t) −
1

4µk

(

1

c1
−

1

c2

)

p2(t)

r(t)
−

1

c2
p(t)B(t) +

µk

c2
r(t)B2(t) − (r(t)B(t))′

and

(2.10) G2(t) = −
2µk

c2
B(t) +

p(t)

c2r(t)
,

then Eq. (1.1) is oscillatory.

Proof. By setting u = R(s) − R(l) and w = R(t) − R(l), we have

∫ t

l

[R(t) −R(s)]α−2[R(s) − R(l)]β−2[βR(t) − (α + β)R(s) + αR(l)]2
1

r(s)
ds

(2.11)

=

∫ t

l

[R(t) −R(s)]α−2 [R(s) −R(l)]β−2 [β[R(t) −R(s)] − α[R(s) − R(l)]]2 dR(s)

=

∫ R(t)−R(l)

0

uβ−2 [R(t) −R(l) − u]α−2 [β[R(t) − R(l) − u] − αu]2 du
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=

∫ w

0

uβ−2(w − u)α−2[β(w − u) − αu]2 du

= β2

∫ w

0

uβ−2(w − u)αdu− 2αβ

∫ w

0

uβ−1(w − u)α−1du

+ α2

∫ w

0

uβ(w − u)α−2du.

Using the following Euler’s Beta function,
∫ 1

0

xm−1(1 − x)n−1dx =
Γ(m)Γ(n)

Γ(m+ n)
, Re(m,n) > 0.

we obtain (upon setting x = u
w
)

∫ w

0

uβ−2(w − u)αdu = wα+β−1Γ(β − 1)Γ(α+ 1)

Γ(α+ β)
,

∫ w

0

uβ−1(w − u)α−1du = wα+β−1Γ(β)Γ(α)

Γ(α + β)
,

∫ w

0

uβ(w − u)α−2du = wα+β−1Γ(β + 1)Γ(α− 1)

Γ(α+ β)
.

Thus,
∫ w

0

uβ−2(w − u)α−2[β(w − u) − αu]2 du(2.12)

= β2wα+β−1Γ(β − 1)Γ(α + 1)

Γ(α + β)
− 2αβwα+β−1Γ(β)Γ(α)

Γ(α + β)

+ α2wα+β−1Γ(β + 1)Γ(α− 1)

Γ(α+ β)

= wα+β−1Γ(β − 1)Γ(α− 1)

Γ(α+ β)

[

β2α(α− 1)

− 2αβ(β − 1)(α− 1) + α2β(β − 1)

]

= αβ(α+ β − 2)
Γ(α− 1)Γ(β − 1)

Γ(α + β)
wα+β−1.

Substituting back in for w = R(t) − R(l), (2.11) and (2.12) give
∫ t

l

[R(t) − R(s)]α−2[R(s) −R(l)]β−2[βR(t) − (α+ β)R(s) + αR(l)]2
1

r(s)
ds

= αβ(α+ β − 2)
Γ(α− 1)Γ(β − 1)

Γ(α + β)
[R(t) −R(l)]α+β−1.

So we have that

µk

c2
lim sup

t→∞

1

Rα+β−1(t)

∫ t

l

[R(t) −R(s)]α[R(s) −R(l)]β(2.13)

×

[

Q2(s) −
c2r(s)

4µk

(

G2(s) −
βR(t) − (α + β)R(s) + αR(l)

r(s)[R(t) − R(s)][R(s) − R(l)]

)2
]

ds
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= lim sup
t→∞

1

Rα+β−1(t)

∫ t

l

[R(t) −R(s)]α[R(s) −R(l)]β

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
+
G2(s)[βR(t) − (α + β)R(s) + αR(l)]

2[R(t) − R(s)][R(s) − R(l)]

]

ds

−
1

4
lim sup

t→∞

1

Rα+β−1(t)

∫ t

l

[R(t) − R(s)]α−2[R(s) − R(l)]β−2[βR(t)

− (α + β)R(s) + αR(l)]2
1

r(s)
ds

= lim sup
t→∞

1

Rα+β−1(t)

∫ t

l

[R(t) −R(s)]α[R(s) −R(l)]β

[

µk

c2
Q2(s)

−
r(s)G2

2(s)

4
+
G2(s)[βR(t) − (α + β)R(s) + αR(l)]

2[R(t) −R(s)][R(s) −R(l)]

]

ds

− αβ(α+ β − 2)
Γ(α− 1)Γ(β − 1)

4Γ(α+ β)
.

From (2.8) and (2.13), we can easily obtain

lim sup
t→∞

∫ t

l

[R(t) − R(s)]α[R(s) − R(l)]β

×

[

Q2(s) −
c2r(s)

4µk

(

G2(s) −
βR(t) − (α + β)R(s) + αR(l)

r(s)[R(t) −R(s)][R(s) − R(l)]

)2
]

ds > 0,

and hence, Eq. (1.1) is oscillatory by Theorem 2.3. The proof is complete.

Remark 2.1. The values α = β = 1 are prohibited as a simple evaluation of the

integrals in (2.11) with these values shows. Hence, the restriction on α and β is

greater than 1.

By
∫ t

l

Φ2(t, s, l)g′(s) ds = −2

∫ t

l

Φ(t, s, l)Φs(t, s, l)g(s) ds, g ∈ C1([t0,∞),R)

and Theorem 2.4, we have the following corollaries.

Corollary 2.1. In Theorem 2.4, suppose that p(t) ∈ C1([t0,∞),R) and condition

(2.8) is replaced by the condition

lim sup
t→∞

1

Rα+β−1(t)

∫ t

l

[R(t) − R(s)]α[R(s) − R(l)]β

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
−

(r(s)G2(s))
′

2

]

ds

> αβ(α+ β − 2)
Γ(α− 1)Γ(β − 1)

4Γ(α + β)
,

then Eq. (1.1) is oscillatory.
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Corollary 2.2. Suppose that conditions (C1)–(C4) hold and limt→∞R(t) = ∞. If for

each l ≥ t0, there exist a function B ∈ C([t0,∞),R) such that (rB) ∈ C1([t0,∞),R)

and a constant α > 1/2 or β > 1/2 such that

(1) lim sup
t→∞

1

R2α+1(t)

∫ t

l

[R(t) − R(s)]2α[R(s) − R(l)]2

×

{

µk

c2
Q2(s) −

r(s)G2
2(s)

4
+
G2(s)[R(t) − (α + 1)R(s) + αR(l)]

[R(t) − R(s)][R(s) −R(l)]

}

ds

>
α

(2α− 1)(2α+ 1)

or

(2) lim sup
t→∞

1

R2β+1(t)

∫ t

l

[R(t) − R(s)]2[R(s) − R(l)]2β

×

{

µk

c2
Q2(s) −

r(s)G2
2(s)

4
+
G2(s)[βR(t) − (β + 1)R(s) +R(l)]

[R(t) − R(s)][R(s) −R(l)]

}

ds

>
β

(2β − 1)(2β + 1)
,

where Q2(s) and G2(s) are defined by (2.9) and (2.10), respectively, then Eq. (1.1) is

oscillatory.

Proof. (1) In (2.8), replaced α and β by 2α and 2, respectively, we obtain

lim sup
t→∞

1

R2α+1(t)

∫ t

l

[R(t) − R(s)]2α[R(s) − R(l)]2

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
+
G2(s)[R(t) − (α + 1)R(s) + αR(l)]

[R(t) − R(s)][R(s) − R(l)]

]

ds

> (2α)2(2α+ 2 − 2)
Γ(2α− 1)Γ(2 − 1)

4Γ(2α+ 2)

= 4α(2α)
Γ(2α− 1)Γ(1)

4(2α+ 1)(2α)(2α− 1)Γ(2α− 1)

=
α

(2α− 1)(2α + 1)
.

(2) In (2.8), replaced α and β by 2 and 2β, respectively, the rest of the proof is

similar to that of (1) and hence omitted.

Corollary 2.3. Suppose that conditions (C1)–(C4) hold, p(t) ∈ C1([t0,∞),R) and

limt→∞R(t) = ∞. If for each l ≥ t0, there exist a function B ∈ C([t0,∞),R) such

that (rB) ∈ C1([t0,∞),R) and a constant α > 1/2 or β > 1/2 such that

lim sup
t→∞

1

R2α+1(t)

∫ t

l

[R(t) −R(s)]2α[R(s) − R(l)]2

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
−

(r(s)G2(s))
′

2

]

ds
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>
α

(2α− 1)(2α + 1)

or

lim sup
t→∞

1

R2β+1(t)

∫ t

l

[R(t) −R(s)]2[R(s) − R(l)]2β

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
−

(r(s)G2(s))
′

2

]

ds(2.14)

>
β

(2β − 1)(2β + 1)
,

where Q2(s) and G2(s) are defined by (2.9) and (2.10), respectively, then Eq. (1.1) is

oscillatory.

Remark 2.2. Applying Corollary 2.3 with r(t) ≡ 1 and B(t) ≡ 0 to the following

Euler equation

x′′(t) +
γ

t2
x(t) = 0, t ≥ t0 > 0,

or as the results in [2, 8] show, we can obtain that the above Euler equation is

oscillatory when γ > 1/4, and nonoscillatory when γ ≤ 1/4 (If γ ≤ 1/4, evidently,

the above Euler equation has a nonoscillatory solution x(t) = t
1+

√
1−4γ

2 ). Therefore,

the oscillation constants in the right hand sides of inequalities in Corollaries 2.1, 2.2,

2.3, etc. are sharp.

Remark 2.3. It is easy to see that Sun’s two main theorems in [8] (Theorems 2.3

and 2.4, see also Theorems A and B in Section 1) are the special cases of Corollary 2.2

when r(t) ≡ 1, ψ(x) ≡ 1, ϕ(x) = x and B(t) ≡ 0. In addition, Theorem 2.4 above

can be applied to the case when r(t) 6≡ 1 and limt→∞

∫ t

t0

1
r(s)

ds = ∞.

Remark 2.4. Fu’s Theorems 2.4 and 2.5 in [3] (see Theorems C and D in Section 1)

are the special cases of Corollary 2.2 when B(t) = p(t)
2µkr(t)

.

If f(x) is of no monotonicity and satisfies condition (C4′), we have the following

oscillation criterion.

Theorem 2.5. Suppose that conditions (C1)–(C3) and (C4′) hold. If for each l ≥ t0,

there exist functions Φ ∈ Y,A ∈ C1([t0,∞),R+) and B ∈ C([t0,∞),R) such that

(rB) ∈ C1([t0,∞),R) and

lim sup
t→∞

∫ t

l

[

Φ2(t, s, l)Q3(s) −
c2A(s)r(s)

k

(

G3(s)

2
Φ(t, s, l) − Φs(t, s, l)

)2
]

ds > 0,

where

Q3(t) = A(t)

[

λq(t) −
1

4k

(

1

c1
−

1

c2

)

p2(t)

r(t)
(2.15)
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−
1

c2
p(t)B(t) +

k

c2
r(t)B2(t) − (r(t)B(t))′

]

and

(2.16) G3(t) = −
A′(t)

A(t)
−

2k

c2
B(t) +

p(t)

c2r(t)
,

then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1). Without loss of generality,

we may assume that x(t) 6= 0 on [T0,∞) for some sufficiently large T0 ≥ t0. Define

(2.17) w(s) = A(s)r(s)

[

ψ(x(s))ϕ(x′(s))

x(s)
+B(s)

]

, for s ≥ T0.

Then differentiating (2.17) and using (1.1), (C1)–(C3) and (C4′), we obtain that for

s ≥ T0

w′(s) =
A′(s)

A(s)
w(s) − A(s)p(s)

ϕ(x′(s))

x(s)
−A(s)q(s)

f(x(s))

x(s)

−
A(s)r(s)ψ(x(s))ϕ(x′(s))x′(s)

x2(s)
+ A(s)(r(s)B(s))′

≤
A′(s)

A(s)
w(s) − λA(s)q(s) + A(s)(r(s)B(s))′

−
kA(s)r(s)

ψ(x(s))

[

p(s)

kr(s)

ψ(x(s))ϕ(x′(s))

x(s)
+

(

ψ(x(s))ϕ(x′(s))

x(s)

)2]

=
A′(s)

A(s)
w(s) − λA(s)q(s) + A(s)(r(s)B(s))′ +

A(s)p2(s)

4kr(s)ψ(x(s))

−
kA(s)r(s)

ψ(x(s))

[

ψ(x(s))ϕ(x′(s))

x(s)
+

p(s)

2kr(s)

]2

≤
A′(s)

A(s)
w(s) − λA(s)q(s) + A(s)(r(t)B(s))′ +

A(s)p2(s)

4kc1r(s)

−
kA(s)r(s)

c2

[

ψ(x(s))ϕ(x′(s))

x(s)
+

p(s)

2kr(s)

]2

=
A′(s)

A(s)
w(s) − λA(s)q(s) + A(s)(r(s)B(s))′ +

A(s)p2(s)

4kc1r(s)

−
kA(s)r(s)

c2

[

w(s)

A(s)r(s)
− B(s) +

p(s)

2kr(s)

]2

= −Q3(s) −G3(s)w(s) −
k

c2A(s)r(s)
w2(s),

where Q3(s) and G3(s) are defined by (2.15) and (2.16), respectively. The remainder

of the proof is similar to that of Theorem 2.1, so we omit the details. The proof is

complete.
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Remark 2.5. Similar to Theorem 2.5, we can obtain some corresponding oscilla-

tion theorems and corollaries for Eq. (1.1) if we replace condition (C4) with (C4′) in

Theorems 2.2–2.4 and Corollaries 2.1–2.3.

3. INTERVAL OSCILLATION CRITERIA

We can see that Theorems 2.1–2.5 and other results in [1, 3–6, 8, 10, 11] involve

the integral of the coefficients r, p and q, and hence require the information of the

coefficients on the entire half-line [t0,∞). It is difficult to apply them to the cases

when Eq. (1.1) is “bad” on a big part of [t0,∞), e.g., when
∫∞

t0
q(t)dt = −∞. This

should motivate further study of the interval property for Eq. (1.1). In the following,

we will establish several new interval oscillation criteria for Eq. (1.1), that is, criteria

given by the behavior of Eq. (1.1) (or r, p and q) only on a sequence of subintervals of

[t0,∞). The results may be applied to the extreme cases such as
∫∞

t0
q(t)dt = −∞.

Theorem 3.1. Assume that conditions (C1)–(C4) hold. If for each l ≥ t0, there exist

functions Φ ∈ Y,A ∈ C1([t0,∞),R+), B ∈ C([t0,∞),R) and two constants b > a ≥ l

such that (rB) ∈ C1([t0,∞),R) and

(3.1)

∫ b

a

[

Φ2(b, s, a)Q1(s) −
c2A(s)r(s)

µk

(

G1(s)

2
Φ(b, s, a) − Φs(b, s, a)

)2
]

ds > 0,

where Q1(s) and G1(s) are defined by (2.2) and (2.3), respectively, then Eq. (1.1) is

oscillatory.

Proof. With the proof of Theorem 2.1, where t and l are replaced by b and a, respec-

tively, we can easily see that every solution of Eq. (1.1) has at least one zero in (a, b),

i.e., every solution of Eq. (1.1) has arbitrarily large zero on [t0,∞). This completes

the proof of Theorem 3.1.

Similar to the discussion in Section 2, we have the following corollaries and the-

orem.

Corollary 3.1. Assume that conditions (C1)–(C4) hold. If for each l ≥ t0, there

exist functions A, ρ ∈ C1([t0,∞),R+), B ∈ C([t0,∞),R), two constants α, β > 1,

and two constants b > a ≥ l such that (rB) ∈ C1([t0,∞),R) and

∫ b

a

ρ(s)(b− s)α(s− a)β

[

Q1(s)(3.2)

−
c2A(s)r(s)

4µk

(

G1(s) −
ρ′(s)

ρ(s)
−
βb− (α + β)s+ αa

(b− s)(s− a)

)2]

ds > 0,

where Q1(s) and G1(s) are defined by (2.2) and (2.3), respectively, then Eq. (1.1) is

oscillatory.
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Corollary 3.2. Assume that conditions (C1)–(C4) hold. If for each l ≥ t0, there

exist functions A, ρ ∈ C1([t0,∞),R+), B ∈ C([t0,∞),R), two constants α, β > 1,

and two constants b > a ≥ l such that (rB) ∈ C1([t0,∞),R) and

∫ b

a

ρ(s)[R(b) −R(s)]α[R(s) − R(a)]β

[

Q1(s) −
c2A(s)r(s)

4µk

(

G1(s)

−
ρ′(s)

ρ(s)
−
βR(b) − (α + β)R(s) + αR(a)

r(s)[R(b) − R(s)][R(s) − R(a)]

)2]

ds > 0,

where Q1(s) and G1(s) are defined by (2.2) and (2.3), respectively, then Eq. (1.1) is

oscillatory.

Theorem 3.2. Assume that conditions (C1)–(C3) and (C4′) hold. If for each l ≥

t0, there exist functions Φ ∈ Y , A ∈ C1([t0,∞), R
+), B ∈ C([t0,∞),R) and two

constants b > a ≥ l such that (rB) ∈ C1([t0,∞),R) and

∫ b

a

[

Φ2(b, s, a)Q3(s) −
c2A(s)r(s)

k

(

G3(s)

2
Φ(b, s, a) − Φs(b, s, a)

)2
]

ds > 0,

where Q3(s) and G3(s) are defined by (2.15) and (2.16), respectively, then Eq. (1.1) is

oscillatory.

Remark 3.1. Similar to Theorem 3.2, we can obtain some corresponding oscillation

results for Eq. (1.1) if we replace condition (C4) with (C4′) in Corollaries 3.1 and 3.2.

Remark 3.2. The results in this paper are presented in the form of a high degree

of generality: they give many possibilities for oscillation criteria with appropriate

choices of the functions Φ ∈ Y , A ∈ C1([t0,∞),R+) and B ∈ C([t0,∞),R).

4. EXAMPLES

In this section, we will show the applications of our oscillation criteria by three

examples. The first example illustrates Corollary 2.3.

Example 4.1. Consider the nonlinear damped differential equation
(

1

t2
1

1 + e−|x(t)|

x′(t)

1 + σx′2(t)

)′

+
2

t3 − 1

x′(t)

1 + σx′2(t)
(4.1)

+
γ

t4
x(t)

(

1 + x4(t)
)

= 0, t ≥ t0 > 1,

where σ ≥ 0 and γ > 5/4 are constants.

Clearly, the conditions (C1)–(C4) hold for c1 = 1/2, c2 = µ = k = 1, and

R(t) =
∫ t

t0

1
r(s)

ds = 1
3
(t3 − t30), limt→∞R(t) = ∞. Let us apply Corollary 2.3 with

B(t) = t2

t3−1
, then

Q2(t) =
γ

t4
−

1

4
t2

4

(t3 − 1)2
−

2t2

(t3 − 1)2
+

1

t2
t4

(t3 − 1)2
−

(

1

t2
t2

t3 − 1

)′



OSCILLATION OF SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS 389

=
γ

t4
+

t2

(t3 − 1)2
,

G2(t) = −2
t2

t3 − 1
+ t2

2

t3 − 1
= 0.

For any l ≥ t0, a straightforward computation yields

lim sup
t→∞

1

R2β+1(t)

∫ t

l

[R(t) − R(s)]2[R(s) − R(l)]2β

×

[

µk

c2
Q2(s) −

r(s)G2
2(s)

4
−

(r(s)G2(s))
′

2

]

ds

= lim
t→∞

1

R2β+1(t)

∫ t

l

[R(t) − R(s)]2[R(s) −R(l)]2β

(

γ

s4
+

s2

(s3 − 1)2

)

ds

= lim
t→∞

∫ t

l
[R(s) −R(l)]2β

(

γ

s4 + s2

(s3−1)2

)

ds

R2β−1(t)

− lim
t→∞

2
∫ t

l
R(s)[R(s) −R(l)]2β

(

γ

s4 + s2

(s3−1)2

)

ds

R2β(t)

+ lim
t→∞

∫ t

l
R2(s)[R(s) − R(l)]2β

(

γ

s4 + s2

(s3−1)2

)

ds

R2β+1(t)

= lim
t→∞

[R(t) −R(l)]2β
(

γ

t4
+ t2

(t3−1)2

)

(2β − 1)R2β−2(t)t2

− lim
t→∞

R(t)[R(t) − R(l)]2β
(

γ

t4
+ t2

(t3−1)2

)

βR2β−1(t)t2

+ lim
t→∞

R2(t)[R(t) −R(l)]2β
(

γ

t4
+ t2

(t3−1)2

)

(2β + 1)R2β(t)t2

=
γ + 1

9

1

β(2β − 1)(2β + 1)
.

Since γ > 5/4, i.e., γ+1 > 9/4, we can choose an appropriate constant β > 1/2 such

that γ + 1 > 9β2, and hence

γ + 1

9

1

β(2β − 1)(2β + 1)
>

β

(2β − 1)(2β + 1)
.

Thus, the condition (2.14) holds. From Corollary 2.3, we have that Eq. (4.1) is oscil-

latory for γ > 5/4.

The second example illustrates Theorem 3.1.

Example 4.2. Consider the nonlinear damped differential equation

(

(1 + cos2 t)
1 + e−|x(t)|

2
x′(t)

(

1 − e−x′2(t)
)

)′

+ sin 2tx′(t)
(

1 − e−x′2(t)
)

(4.2)
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+
c

1 + cos2 t
x(t)

(

1 + x2(t)
)

= 0, t ≥ 1,

where c > 9/4 is a constant.

Obviously, the conditions (C1)–(C4) hold for c1 = 1/2, c2 = µ = k = 1. For

any l ≥ 1, there exists n ∈ N0 = {0, 1, 2, . . .} such that 2nπ ≥ l. Let a = 2nπ, and

b = (2n + 1)π. Choose Φ(b, s, a) =
√

sin(b− s) sin(s− a) = sin s for a ≤ s ≤ b, then

Φs(b, s, a) = cos s. Let us apply Theorem 3.1 with A(t) = 1 + cos2 t, B(t) = sin 2t
1+cos2 t

for all t ≥ 1, then

Q1(t) = (1 + cos2 t)

(

c

1 + cos2 t
−

1

4

sin2 2t

1 + cos2 t
− sin 2t

sin 2t

1 + cos2 t
+

sin2 2t

1 + cos2 t
− 2 cos 2t

)

= c−
1

4
sin2 2t− 2 cos 2t(1 + cos2 t),

G1(t) =
2 cos t sin t

1 + cos2 t
− 2

sin 2t

1 + cos2 t
+

sin 2t

1 + cos2 t
= 0.

A direct computation yields

∫ b

a

[

Φ2(b, s, a)Q1(s) −
c2A(s)r(s)

µk

(

G1(s)

2
Φ(b, s, a) − Φs(b, s, a)

)2
]

ds

=

∫ π

0

{

sin2 s

[

c−
1

4
sin2 2s− 2 cos 2s(1 + cos2 s)

]

− (1 + cos2 s)2 cos2 s

}

ds

=

∫ π

0

(

4c− 9

8
−

16c+ 95

32
cos 2s+

1

8
cos 4s+

3

32
cos 6s−

1

8
cos3 2s

)

ds

=
4c− 9

8
π,

thus, by c > 9/4, we have

∫ b

a

[

Φ2(b, s, a)Q1(s) −
c2A(s)r(s)

µk

(

G1(s)

2
Φ(b, s, a) − Φs(b, s, a)

)2
]

ds > 0.

This means that (3.1) holds. From Theorem 3.1, we find that Eq. (4.2) is oscillatory.

The third example illustrates Corollary 3.1.

Example 4.3. Consider the nonlinear damped differential equation
(

t2
1 + x2(t)

2 + x2(t)
x′(t)

(

1 − e−x′2(t)
)

)′

+ p(t)x′(t)
(

1 − e−x′2(t)
)

(4.3)

+ q(t)x(t)
(

5 + x4(t)
)

= 0, t ≥ 1,

where

δp(t) = q(t) =







δ(t− 2n)(2n + 1 − t), 2n ≤ t < 2n + 1,

n(2n+ 1 − t)(2n + 2 − t), 2n+ 1 ≤ t < 2n+ 2,

for δ > 51/20 is a constant, n ∈ N0 = {0, 1, 2, · · · }.
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Clearly, the conditions (C1)–(C4) hold for c1 = 1/2, c2 = k = 1, µ = 5. For any

l ≥ 1, there exists n ∈ N0 such that 2n ≥ l. Let a = 2n, b = 2n+ 1, α = β = 2, and

ρ(t) ≡ 1. Choose A(t) = 1/t, B(t) ≡ 0, then the left-hand side of (3.2) becomes
∫ 1

0

(1 − s)2s2

[

δ(1 − s) −
1

20s
(1 − s)2 −

s

20

(

1 + s

1 − s

)2
]

ds

= δ

∫ 1

0

(1 − s)3s2ds−
1

20

∫ 1

0

(1 − s)4sds−
1

20

∫ 1

0

(1 + s)2s3ds

=
δ

60
−

17

400
> 0,

since δ > 51/20.

Therefore, (3.2) holds and we conclude by Corollary 3.1 that Eq. (4.3) is oscilla-

tory. Note that in this equation, we have
∫∞

1
p(t)dt =

∫∞

1
q(t)dt = −∞ and p(t) is

not differentiable when δ 6= n. Also, the criteria in [1–11] fail to apply to Eq. (4.3).
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