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ABSTRACT. In this paper we discuss trigonometric and hyperbolic systems on time scales.

These systems generalize and unify their corresponding continuous-time and discrete-time analo-

gies, namely the systems known in the literature as trigonometric and hyperbolic linear Hamiltonian

systems and discrete symplectic systems. We provide time scale matrix definitions of the usual

trigonometric and hyperbolic functions and show that many identities known from the basic calcu-

lus extend to this general setting, including the time scale differentiation of these functions.
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1. INTRODUCTION

In this paper we study trigonometric and hyperbolic systems on time scales and

properties of their solutions, the time scale matrix trigonometric functions Sin, Cos,

Tan, Cotan, and time scale matrix hyperbolic functions Sinh, Cosh, Tanh, Cotanh,

which are all properly defined in this work. The trigonometric and hyperbolic sys-

tems from this paper generalize and unify their corresponding continuous-time and

discrete-time analogies, namely the systems known in the literature as trigonometric

and hyperbolic linear Hamiltonian systems and discrete symplectic systems. More

precisely, the system of the form

(CTS) X ′ = Q(t) U, U ′ = −Q(t) X,

where t ∈ [a, b], X(t), U(t), and Q(t) are n × n matrices and additionally the matrix

Q(t) is symmetric for all t ∈ [a, b], is called a continuous trigonometric system (CTS).

Basic properties of this system can be found in [3, 20, 30].

The discrete analog of (CTS) has the form

(DTS) Xk+1 = PkXk + QkUk, Uk+1 = −QkXk + PkUk,
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where we use the notation Xk := X(k), k ∈ [a, b] ∩ Z, Xk, Uk, Pk, Qk are n × n

matrices and, additionally, for all k ∈ [a, b] ∩ Z the following holds

P T
k Pk + QT

k Qk = I = PkP
T
k + QkQ

T
k ,(1.1)

P T
k Qk and PkQ

T
k are symmetric,(1.2)

and it is called a discrete trigonometric system (DTS). Basic properties of this system

can be found in [2, 6, 32].

In a similar way we can define the continuous hyperbolic system (CHS) as

(CHS) X ′ = Q(t) U, U ′ = Q(t) X,

where t ∈ [a, b], X(t), U(t) and Q(t) are n× n matrices and, additionally, the matrix

Q(t) is symmetric for all t ∈ [a, b]. The system of this form was studied in [22].

The discrete hyperbolic system (DHS) is defined as

(DHS) Xk+1 = PkXk + QkUk, Uk+1 = QkXk + PkUk,

where k ∈ [a, b] ∩ Z, Xk, Uk, Pk, Qk are n × n matrices and, in addition to (1.2),

P T
k Pk − QT

k Qk = I = PkP
T
k − QkQ

T
k

holds for k ∈ [a, b] ∩ Z. The reader can get acquainted with these systems in [19,32].

The conditions for the coefficient matrices are set in such a way so that the

considered system is Hamiltonian, resp. symplectic. That is, for the relevant matrices
(

0 Q(t)

−Q(t) 0

)
,

(
0 Q(t)

Q(t) 0

)
, resp.

(
Pk Qk

−Qk Pk

)
,

(
Pk Qk

Qk Pk

)
,

we have the identities

ST (t)J + JS(t) = 0, resp. ST
k JSk = J , where J =

(
0 I

−I 0

)
.

The aim of this paper is to unify and generalize the theories of continuous and

discrete trigonometric systems, as well as the theories of continuous and discrete hy-

perbolic systems. This will be done within the theory of symplectic (or Hamiltonian)

systems on time scales T. We derive for general time scales T the same identities

which are known for the special cases of the continuous time T = R or the discrete

time T = Z.

In the continuous time case the study of elementary properties of scalar and

matrix trigonometric functions goes back to the paper [5] of Bohl and to the work

of Barrett, Etgen, Došlý, and Reid, see [3, 12–15, 20, 21, 30]. Discrete time scalar

and matrix trigonometric functions were studied by Anderson, Bohner, and Došlý

in [2,6–8], and more recently by Došlá, Došlý, Pechancová, and Škrabáková in [11,18].

Parallel considerations but for the hyperbolic systems, both continuous and discrete,
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can be found in the work [19, 22, 32] by Došlý, Filakovský, Posṕı̌sil, and the second

author. As for the general time scale setting, scalar trigonometric and hyperbolic

functions were defined in [9, Chapter 3] by Bohner and Peterson and in [27] by

Posṕı̌sil. Some properties of the matrix analogs of the time scale trigonometric and

hyperbolic functions were established in the papers [16,28,29] by Došlý and Posṕı̌sil.

By the same technique as in [14], namely considering two different systems with

the same initial conditions, we establish additive and difference formulas for trigono-

metric and hyperbolic systems on time scales. In particular, utilizing these identities

in the continuous time we derive n-dimensional analogies of many classical formulas

which are known for trigonometric and hyperbolic systems in the scalar case. The

second purpose of this paper is to provide a concise but complete treatment of prop-

erties of time scale matrix trigonometric and hyperbolic functions, as well as to point

out to the analogies between them.

The setup of this paper is the following. In the next section we collect preliminary

properties of time scales and time scale symplectic systems which will be needed

throughout the paper. In Section 3 we present the theory and new formulas for the

trigonometric systems on time scales. Similar results are then derived in Section 4 for

the hyperbolic systems on time scales. Finally, in Section 5 we discuss the difficulties

which arise in extending some of the scalar addition formulas to time scales.

We remark, that we present all results in the real case (i.e., for the real-valued

coefficients and solutions), but they hold in the complex domain as well. For this we

only need to replace the transpose of a matrix by the conjugate transpose, the term

“symmetric” by “Hermitian”, and “orthogonal” by “unitary”. Note also that all our

results hold on arbitrary infinite (continuous, discrete, or time scale) intervals. This

fact is important for the future possible development of the oscillation theory of the

trigonometric and hyperbolic systems.

2. PRELIMINARIES ON TIME SCALES AND

SYMPLECTIC SYSTEMS

In this section we introduce basic concepts, notations, and fundamental properties

of time scales and time scale symplectic systems. The founder of the time scale theory

is Stefan Hilger who established in [23] the calculus of time scales or measure chains.

The monographs [9] and [10] offer extended knowledge of this theory.

By definition, a time scale T is any nonempty closed subset of the real numbers

R. In this paper we will consider a bounded time scale T which can therefore be

identified with the time scale interval [a, b]T := [a, b] ∩ T, where a := min T and

b := max T, and where [a, b] is the usual interval of real numbers. Similarly, we use

the notation [a, b]Z for a discrete interval with a, b ∈ Z, i.e., [a, b]Z := [a, b]∩Z. Open

and half-open time scale intervals are defined accordingly.
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The forward jump operator σ : T → T is defined by σ(t) := inf{s ∈ T | s > t}

(and simultaneously we put inf ∅ := sup T). The backward jump operator ρ : T → T is

defined by ρ(t) := sup{s ∈ T | s < t} (simultaneously we put sup ∅ := inf T). A point

t ∈ (a, b]T is said to be left-dense if ρ(t) = t, while a point t ∈ [a, b)T right-dense if

σ(t) = t. Also a point t ∈ [a, b]T is left-scattered, resp. right-scattered if ρ(t) < t, resp.

σ(t) > t. The graininess function µ : T → [0,∞) is defined by µ(t) := σ(t) − t.

For a function f on [a, ρ(b)]T the time scale derivative f∆(t) is defined in such

a way that it reduces to the usual derivative f ′(t) at every right-dense point t (in

particular, in the continuous time at all t), and it reduces to the forward difference

∆f(t) = f(t + 1)− f(t) at every right-scattered point t (in particular, in the discrete

time at all t). In addition, if T = R, then σ(t) = t = ρ(t) and µ(t) ≡ 0, while if

T = Z, then σ(t) = t +1, ρ(t) = t− 1, and µ(t) ≡ 1. For brevity, we use the notation

fσ(t) := f(σ(t)) and f ρ(t) := f(ρ(t)).

A function f : [a, b]T → R is said to be rd-continuous (f ∈ Crd) if it is continuous

at each right-dense point and there exists a finite left-hand limit at each left-dense

point. A function f is said to be rd-continuously ∆-differentiable (f ∈ C1
rd) if f∆

exists on [a, ρ(b)]T and f∆ ∈ Crd. Note that if f∆(t) exists, then

(2.1) fσ(t) = f(t) + µ(t) f∆(t).

If b is a left-scattered point, then f∆(b) is not well-defined. The usual differential rules

take in this case the form (f ± g)∆(t) = f∆(t) ± g∆(t) and (fg)∆(t) = f∆(t) g(t) +

fσ(t) g∆(t). The time scale integral is defined accordingly but it will not be used in

this paper.

A matrix function A : [a, ρ(b)]T → R
n×n is said to be regressive on an interval

J ⊆ [a, ρ(b)]T if the matrix I + µ(t) A(t) is invertible for all t ∈ J . It is known, see

e.g. [23, Theorem 5.7], that if A ∈ Crd and A is regressive on [a, t0)T, then the initial

value problem

z∆ = A(t) z, t ∈ [a, ρ(b)]T, z(t0) = z0,

has a unique solution z(t) on [a, b]T for any t0 ∈ [a, b]T and any z0. Observe that the

regressivity assumption is void if t0 = a.

Let A be a differentiable n×n matrix-valued function such that AAσ is invertible.

Then the differentiation of the identity AA−1 = I yields

(2.2) (A−1)∆ = −(Aσ)−1A∆ A−1 = −A−1A∆(Aσ)−1.

The time scale symplectic (or Hamiltonian) system is the first order linear system

(S) X∆ = A(t) X + B(t) U, U∆ = C(t) X + D(t) U,
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where X, U : [a, b]T → R
n×n, the coefficients A,B, C,D ∈ Crd(R

n×n) on [a, ρ(b)]T, and

the matrix S(t) :=
(
A(t) B(t)
C(t) D(t)

)
satisfies

(2.3) ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0 on [a, ρ(b)]T.

This identity implies that the matrix I +µ(t)S(t) is symplectic. Recall that a 2n×2n

matrix M is symplectic if MTJM = J . Basic references for time scale symplectic

systems are [17, 25].

Since every symplectic matrix is invertible, it follows that the matrix function S

is regressive on [a, ρ(b)]T. Therefore, the initial value problems associated with (S)

have unique solutions for any initial point t0 ∈ [a, b]T and any (vector or matrix)

initial values, see also [9, Corollary 7.12].

If T = R, then with A(t) := A(t), B(t) := B(t), and C(t) := C(t) the system (S)

is the linear Hamiltonian system (see e.g. [26] or [31])

X ′ = A(t) X + B(t) U, U ′ = C(t) X − AT (t) U,

where the matrix S(t) :=
(

A(t) B(t)

C(t) −AT (t)

)
satisfies J S(t) + ST (t)J = 0 for all t ∈ [a, b],

i.e., the matrix S(t) is Hamiltonian. If T = Z, then with Ak := I +A(k), Bk := B(k),

Ck := C(k), and Dk := I +D(k) the system (S) is the discrete symplectic system (see

e.g. [1, 32])

Xk+1 = AkXk + BkUk, Uk+1 = CkXk + DkUk,

where the matrix Sk :=
(
Ak Bk

Ck Dk

)
is symplectic.

In the block notation identity (2.3) is equivalent to (we omit the argument t)

BT − B + µ (BTD −DTB) = 0,

CT − C + µ (CTA−ATC) = 0,

AT + D + µ (ATD − CTB) = 0.

This implies that the matrices BT (I +µD) and CT (I +µA) are symmetric. Note that

other equivalent identities are derived in [10, Remark 10.1] by using the fact that

I + µ(t)ST (t) is symplectic. But these identities are not used in this paper.

If Z = (X
U) and Z̃ =

(
X̃
Ũ

)
are any solutions of (S), then their Wronskian matrix

is defined on [a, b]T as W (Z, Z̃)(t) := XT (t) Ũ(t) − UT (t) X̃(t). The following is a

simple consequence of W∆(Z, Z̃)(t) ≡ 0.

Proposition 2.1. Let Z = (X
U) and Z̃ =

(
X̃
Ũ

)
be any solutions of (S). Then the

Wronskian W (Z, Z̃)(t) ≡ W is constant on [a, b]T.

A solution Z = (X
U) of (S) is said to be a conjoined solution if W (Z, Z) ≡ 0, i.e.,

XT U is symmetric at one and hence at any t ∈ [a, b]T. Two solutions Z and Z̃ are

normalized if W (Z, Z̃) ≡ I. A solution Z and is said to be a basis if rank Z(t) ≡ n
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on [a, b]T. It is known that for any conjoined basis Z there always exists another

conjoined basis Z̃ such that Z and Z̃ are normalized (see [9, Lemma 7.29]).

Proposition 2.2. Let Z be any solution of (S). Then rank Z(t) ≡ r is constant on

[a, b]T.

Proof. Let Φ(t) be a fundamental matrix of system (S), i.e., Φ = (Z, Z̃), where Z and

Z̃ are normalized. Then every solution of (S) is a constant multiple of Φ(t), that is,

Z(t) = Φ(t) M on [a, b]T for some M ∈ R
2n×n. If rank Z(t0) = r at some t0 ∈ [a, b]T,

then rankM = r. Consequently, rankZ(t) = r for all t ∈ [a, b]T.

From Propositions 2.1 and 2.2 we can see that the defining properties of conjoined

bases of (S) can be prescribed just at one point t0 ∈ [a, b]T, for example by the initial

condition Z(t0) = Z0 with ZT
0 JZ0 = 0 and rankZ0 = n.

Proposition 2.3. Two solutions Z and Z̃ of system (S) are normalized conjoined

bases if and only if the 2n × 2n matrix Φ(t) := (Z(t), Z̃(t)) is symplectic for all

t ∈ [a, b]T.

The proof is straightforward and can be found e.g. in [9, Lemma 7.27]. It follows

that Z = (X
U) and Z̃ =

(
X̃
Ũ

)
are normalized conjoined bases if and only if

(2.4)

{
XT Ũ − UT X̃ = I = XŨT − UX̃T ,

XT U = UT X, X̃T Ũ = ŨT X̃, XX̃T = X̃XT , UŨT = ŨUT .

The fact that the matrix Φ is symplectic for all t ∈ [a, b]T implies that Φ−1 = J T ΦTJ ,

and thus from Φσ = (I + µS) Φ we get ΦσJ T ΦTJ = I + µS. That is,

(2.5)





XσŨT − X̃σUT = I + µA, X̃σXT − XσX̃T = µB,

ŨσXT − UσX̃T = I + µD, UσŨT − ŨσUT = µC.

For a given point t0 ∈ [a, b]T, the conjoined basis
(

X̂
Û

)
of (S) determined by the

initial conditions X̂(t0) = 0 and Û(t0) = I is called the principal solution at t0.

3. TIME SCALE TRIGONOMETRIC SYSTEMS

In this section we consider the system (S), where the matrix S(t) takes the form

S(t) =
(

P(t) Q(t)
−Q(t) P(t)

)
, where P,Q ∈ Crd(R

n×n) on [a, ρ(b)]T. Therefore, from (2.3) we

get that the matrices P and Q satisfy the identities (we omit the argument t)

QT −Q + µ (QTP − PTQ) = 0,(3.1)

PT + P + µ (QTQ + PTP) = 0(3.2)

for all t ∈ [a, ρ(b)]T, see also [9, pg. 312] and [24, Theorem 7].
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Definition 3.1 (Time scale trigonometric system). The system

(TTS) X∆ = P(t) X + Q(t) U, U∆ = −Q(t) X + P(t) U,

where the coefficient matrices satisfy identities (3.1) and (3.2) for all t ∈ [a, ρ(b)]T, is

called a time scale trigonometric system (TTS).

Remark 3.2. System (S) is trigonometric if its coefficients satisfy, in addition to

(2.3) the identity J TS(t)J = S(t) for all t ∈ [a, ρ(b)]T. Therefore, trigonometric

systems are also called self-reciprocal, see [9, Definition 7.50].

Remark 3.3. Now, we compare the continuous time trigonometric system arising

from Definition 3.1, with the system (CTS) introduced in Section 1. For [a, b]T = [a, b],

the system (TTS) from Definition 3.1 takes the form

(3.3) X ′ = P(t) X + Q(t) U, U ′ = −Q(t) X + P(t) U,

where Q(t) is symmetric and P(t) is antisymmetric, see (3.1) and (3.2) with µ = 0.

Now we use the special transformation to reduce the system (3.3) into (CTS), see

[8, 30].

More precisely, let H(t) be a solution of the system H ′ = P(t) H with the initial

condition HT (a) H(a) = I, i.e., the matrix H(a) is orthogonal. Now, we consider the

transformation X̄ := H−1(t) X and Ū := HT (t) U , which yields

X̄ ′ = H−1(t)Q(t) HT−1(t) Ū , Ū ′ = −HT (t)Q(t) H(t) X̄.

Hence, this resulting system will be of the form (CTS) once we show that HT (t) =

H−1(t) for all t ∈ [a, b]. But this follows from the calculation (HT H)′ = 0 and

from the initial condition on H(a). Now, we put Q̃(t) := HT (t)Q(t) H(t) which is

symmetric, so that

X̄ ′ = Q̃(t) Ū , Ū ′ = −Q̃(t) X̄.

Remark 3.4. Now we consider the discrete case and show that the time scale trigono-

metric system (TTS) reduces for [a, b]T = [a, b]Z to the system (DTS) introduced in

Section 1. Upon setting Pk := I + P(k) and Qk := Q(k) one can easily see that

identities (3.1) and (3.2) are in this case equivalent to the properties of Pk and Qk in

(1.1)–(1.2).

Now we turn our attention to solutions of the general time scale trigonometric

system.

Lemma 3.5. The pair (X
U) solves the trigonometric system (TTS) if and only if the

pair
(

U
−X

)
solves the same system. Equivalently (U

X) solves (TTS) if and only if
(
−X

U

)

does so.
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The following definition extend to time scales the matrix sine and cosine functions

known in the continuous time in [3, pg. 511] and in the discrete case in [2, pg. 39].

Definition 3.6. Let s ∈ [a, b]T be fixed. We define the n×n matrix-valued functions

sine (denoted by Sins) and cosine (denoted by Coss) by

Sins(t) := X(t), Coss(t) := U(t),

where the pair (X
U) is the principal solution of system (TTS) at s, that is, it is given

by the initial conditions X(s) = 0 and U(s) = I. We suppress the index s when

s = a, i.e., we denote Sin := Sina and Cos := Cosa.

Remark 3.7. (i) The matrix functions Sins and Coss are n-dimensional analogs of

the scalar trigonometric functions sin(t − s) and cos(t − s).

(ii) When n = 1 and P = 0 and Q = p with p ∈ Crd, the matrix functions Sins(t)

and Coss(t) reduce exactly to the scalar time scale trigonometric functions sinp(t, s)

and cosp(t, s) from [9, Definition 3.25].

(iii) In the continuous time scalar case and when P = 0, i.e., system (TTS) is

the same as (CTS), the solutions Sin(t) = sin
∫ t

a
Q(τ) dτ and Cos(t) = cos

∫ t

a
Q(τ) dτ .

Similar formulas hold for the discrete scalar case, see [2, pg. 40].

Remark 3.8. By using Lemma 3.5, the above matrix sine and cosine functions can

be alternatively defined as Coss(t) := X̃(t) and Sins(t) := −Ũ (t), where
(

X̃
Ũ

)
is the

solution of system (TTS) with the initial conditions X̃(s) = I and Ũ(s) = 0.

By definition, the Wronskian of the two solutions (Cos
Sin) and

(
−Sin

Cos

)
is W (t) ≡

W (a) = I. Hence, (Cos
Sin) and

(
− Sin

Cos

)
form normalized conjoined bases of the system

(TTS) and

(3.4) Φ̂(t) :=

(
Cos(t) − Sin(t)

Sin(t) Cos(t)

)

is a fundamental matrix of (TTS). Therefore, every solution (X
U) of (TTS) has the

form

X(t) = Cos(t) X(a) − Sin(t) U(a) and U(t) = Sin(t) X(a) + Cos(t) U(a)

for all t ∈ [a, b]T. As a consequence of formulas (2.4) and (2.5) we get the following.

Corollary 3.9. For all t ∈ [a, b]T the identities

CosT Cos + SinT Sin = I = Cos CosT + Sin SinT ,(3.5)

CosT Sin = SinT Cos, Cos SinT = Sin CosT(3.6)

hold, while for all t ∈ [a, ρ(b)]T we have the identities

Cosσ CosT + Sinσ SinT = I + µP, Cosσ SinT − Sinσ CosT = µQ.
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The following result is a matrix analog of the fundamental formula cos2(t) +

sin2(t) = 1 for scalar continuous time trigonometric functions, see also [9, Exer-

cise 3.30]. Here ‖·‖F is the usual Frobenius norm, i.e., ‖V ‖F =
(∑n

i,j=1 v2
ij

) 1

2 , see [4,

pg. 346].

Corollary 3.10. For all t ∈ [a, b]T we have the identity

(3.7) ‖Cos‖2
F + ‖Sin‖2

F = n.

Proof. Since for arbitrary matrix V ∈ R
n×n the identity tr(V T V ) = ‖V ‖2

F holds,

equation (3.7) follows directly from (3.5).

Corollary 3.11. For all t ∈ [a, ρ(b)]T we have

Cos∆ CosT + Sin∆ SinT = P,(3.8)

Sin∆ CosT −Cos∆ SinT = Q.(3.9)

Proof. Since (Sin
Cos) is the solution of system (TTS), we have Sin∆ = P Sin +QCos and

Cos∆ = −Q Sin +P Cos. If we now multiply the first of these two identities by the

matrix SinT from the right and the second one by CosT from the right, and if we

add the two obtained equations, then formula (3.8) follows. In these computations

we also used the second identities from (3.5) and (3.6). Similar calculations lead to

formula (3.9).

Remark 3.12. If the matrix Cos and/or Sin is invertible at some point t ∈ [a, b]T,

then, by (3.5) and (3.6), we can write

(3.10) Cos−1 = CosT + SinT CosT−1 SinT , Sin−1 = SinT + CosT SinT−1 CosT .

Next we present additive formulae for matrix trigonometric functions on time

scales. This result generalizes its continuous time counterpart in [21, Theorem 1.1]

to time scales.

Theorem 3.13. For t, s ∈ [a, b]T we have

Sins(t) = Sin(t) CosT (s) − Cos(t) SinT (s),(3.11)

Coss(t) = Cos(t) CosT (s) + Sin(t) SinT (s),(3.12)

Sin(t) = Sins(t) Cos(s) + Coss(t) Sin(s),(3.13)

Cos(t) = Coss(t) Cos(s) − Sins(t) Sin(s).(3.14)

Proof. We set

V (t) := Sin(t) CosT (s) − Cos(t) SinT (s), Y (t) := Cos(t) CosT (s) + Sin(t) SinT (s).
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Then we calculate

V ∆(t) = Sin∆(t) CosT (s) − Cos∆(t) SinT (s) = P(t)V (t) + Q(t)Y (t),

Y ∆(t) = Cos∆(t) CosT (s) + Sin∆(t) SinT (s) = −Q(t)V (t) + P(t)Y (t),

where we used the second identities from (3.5) and (3.6) at t. The initial values are

V (s) = 0 and Y (s) = I, where we used the second identities from (3.5) and (3.6)

at s. Hence, equations (3.11) and (3.12) follow from the uniqueness of solutions of

time scale symplectic systems. That is V (t) = Sins(t) and Y (t) = Coss(t). Note that

equations (3.11) and (3.12) can be written as

(3.15)
(
Sins(t) Coss(t)

)
=
(
Sin(t) Cos(t)

)( CosT (s) SinT (s)

− SinT (s) CosT (s)

)
,

where the 2n × 2n matrix on the right-hand side equals to Φ̂−1(s) and the matrix

Φ̂(s) is defined in (3.4). Multiplying equality (3.15) by Φ̂(s) from the right, identities

(3.13) and (3.14) follow.

With respect to Remark 3.7 for the scalar continuous time case, identities (3.11)–

(3.14) are matrix analogies of elementary trigonometric identities.

Interchanging the parameters t and s in (3.11) and (3.12) yields expected prop-

erties of the matrix trigonometric functions.

Corollary 3.14. Let t, s ∈ [a, b]T. Then

(3.16) Sins(t) = − SinT
t (s) and Coss(t) = CosT

t (s).

Remark 3.15. In the scalar continuous time case and when Q(t) ≡ 1 the formulas in

(3.16) have the form sin(t−s) = − sin(s−t) and cos(t−s) = cos(s−t). Consequently, if

we let s = 0, we obtain sin(t) = − sin(−t) and cos(t) = cos(−t), so that Corollary 3.14

is the matrix analogue of the statement about the parity for the scalar functions sine

and cosine.

Next we wish to generalize the sum and difference formulae for solutions of two

time scale symplectic systems. This can be done via the approach from [14]. This

leads to a generalization of several formulas known in the scalar continuous case.

Observe that, comparing to Theorem 3.13 in which we consider one system and

solutions with different initial conditions, we shall now deal with two systems and

solutions with the same initial conditions. Consider the following two time scale

trigonometric systems

(3.17) X∆ = P(i)(t) X + Q(i)(t) U, U∆ = −Q(i)(t) X + P(i)(t) U

with initial conditions X(i)(a) = 0 and U(i)(a) = I, where i = 1, 2. Denote by Sin(i)(t)

and Cos(i)(t) the corresponding matrix sine and cosine functions from Definition 3.6.
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Put

Sin±(t) := Sin(1)(t) CosT
(2)(t) ± Cos(1)(t) SinT

(2)(t),(3.18)

Cos±(t) := Cos(1)(t) CosT
(2)(t) ∓ Sin(1)(t) SinT

(2)(t).(3.19)

Theorem 3.16. Assume that P(i) and Q(i) satisfy (3.1) and (3.2). The pair Sin± and

Cos± solves the system

(3.20)





X∆ = P(1)X + Q(1)U + XPT
(2) ± UQT

(2)

+ µ [P(1) (XPT
(2) ± UQT

(2)) + Q(1) (∓XQT
(2) + UPT

(2))],

U∆ = −Q(1)X + P(1)U ∓ XQT
(2) + UPT

(2)

+ µ [−Q(1) (XPT
(2) ± UQT

(2)) + P(1) (∓XQT
(2) + UPT

(2))]

with the initial conditions X(a) = 0 and U(a) = I. Moreover, for all t ∈ [a, b]T we

have

Sin± (Sin±)T + Cos± (Cos±)T = I = (Sin±)T Sin± + (Cos±)T Cos±,(3.21)

Sin± (Cos±)T = Cos± (Sin±)T , (Sin±)T Cos± = (Cos±)T Sin± .(3.22)

Proof. All the statements in this theorem are proven by straightforward calculations.

In these we use the identities, see (2.1),

Sinσ
(1) = Sin(1) +µ Sin∆

(1) = Sin(1) +µ (P(1) Sin(1) +Q(1) Cos(1)),

Cosσ
(1) = Cos(1) +µ Cos∆

(1) = Cos(1) +µ (−Q(1) Sin(1) +P(1) Cos(1)),

the time scale product rule, and system (3.17) for i = 1, 2. Then it follows that the

pair Sin± and Cos± solves the system (3.20) and Sin±(a) = 0, Cos±(a) = I.

Next we show identity (3.21). From the definition of Sin+ and Cos+, from the

first identity in (3.5) for i = 1, and from the second identity in (3.6) for i = 2 we get

Sin+ (Sin+)T + Cos+ (Cos+)T = Sin(1) (CosT
(2) Cos(2) + SinT

(2) Sin(2)) SinT
(1)

+ Cos(1) (CosT
(2) Cos(2) + SinT

(2) Sin(2)) CosT
(1)

= Cos(1) CosT
(1) + Sin(1) SinT

(1) = I.

The other identities in (3.21) are shown in analogous way. Similarly, by using (3.5)

and (3.6) for i = 1, 2 one can show that all the identities in (3.22) hold true.

Remark 3.17. The properties in (3.21) and (3.22) of solutions Sin± and Cos± of

system (3.20) mirror the properties in (3.5) and (3.6) of normalized conjoined bases

of (S). However, the two pairs
(

Sin+

Cos+

)
and

(
Sin−

Cos−

)
are not conjoined bases of their

corresponding systems, because these systems are not symplectic.

Remark 3.18. In the continuous time case the assertion of Theorem 3.16 is proven

in [14, Theorem 1]. On the other hand, the discrete form is new. The details can be

found in [33, Theorem 3.14].
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When the two systems in (3.17) are the same, Theorem 3.16 yields the following.

Corollary 3.19. Assume that P and Q satisfy (3.1) and (3.2). Then the system

X∆ = PX + QU + XPT + UQT + µ [P (XPT + UQT ) + Q (−XQT + UPT )],

U∆ = −QX + PU − XQT + UPT + µ [−Q (XPT + UQT ) + P (−XQT + UPT )]

with the initial conditions X(a) = 0 and U(a) = I possesses the solution

X = 2 Sin CosT and U = Cos CosT − Sin SinT ,

where Sin and Cos are the matrix functions in Definition 3.6. Moreover, the above

matrices X and U commute, i.e., XU = UX.

Proof. The statement follows from Theorem 3.16 in which we take P(1) = P(2) = P,

Q(1) = Q(2) = Q, and Sin(1) = Sin(2) = Sin, Cos(1) = Cos(2) = Cos. Finally, from

(3.5) and (3.6) we get that XU − UX = 0.

The previous corollary can be viewed as the n-dimensional analogy of the double

angle formulae for scalar continuous time trigonometric functions. In the continuous

time case, the content of Corollary 3.19 is [20, Theorem 1.1]. On the other hand,

in the discrete case this result is new, see [33, Corollary 3.16]. The details are here

omitted.

Corollary 3.20. For all t ∈ [a, b]T we have the identities

Sin(1) SinT
(2) =

1

2
(Cos−−Cos+),(3.23)

Cos(1) CosT
(2) =

1

2
(Cos− + Cos+),(3.24)

Sin(1) CosT
(2) =

1

2
(Sin− + Sin+).(3.25)

Proof. Subtracting the two equations in (3.19) we obtain Cos− −Cos+ = 2 Sin(1) SinT
(2)

from which formula (3.23) follows. Similarly, we have Cos− + Cos+ = 2 Cos(1) CosT
(2)

and Sin− + Sin+ = 2 Sin(1) CosT
(2) from which we get (3.24) and (3.25).

In the scalar continuous time case, identities (3.23)–(3.25) have the form of ele-

mentary trigonometric identities. The next definition is a natural time scale matrix

extension of the scalar trigonometric tangent and cotangent functions. It extends the

discrete matrix tangent and cotangent functions known in [2, pg. 42] to time scales.

Definition 3.21. Whenever Cos(t), resp. Sin(t), is invertible we define the matrix-

valued function tangent (we write Tan), resp. cotangent (we write Cotan), by

Tan(t) := Cos−1(t) Sin(t), resp. Cotan(t) := Sin−1(t) Cos(t).
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Theorem 3.22. Whenever Tan(t) is defined we get

TanT (t) = Tan(t),(3.26)

Cos−1(t) CosT−1(t) − Tan2(t) = I.(3.27)

Moreover, if Cos(t) and Cosσ(t) are invertible, then

(3.28) Tan∆(t) = [Cosσ(t)]−1Q(t) CosT−1(t).

Proof. From (3.6) it follows that

TanT −Tan = Cos−1(Cos SinT − Sin CosT ) CosT−1 = 0,

while from (3.5) and (3.26) we get

I = Cos (Cos−1 Sin SinT CosT−1 +I) CosT = Cos (Tan2 +I) CosT ,

which can be written as equation (3.27). In order to show (3.28) we note that if

Cos(t0) and Cosσ(t0) are invertible, then Tan∆(t0) exists and, by (3.5), (2.2), (3.10),

and (3.26), we get

Tan∆ = (Cos−1 Sin)∆ = −(Cosσ)−1 Cos∆ Cos−1 Sin +(Cosσ)−1 Sin∆

= (Cosσ)−1Q (− Sin Cos−1 Sin + Cos) = (Cosσ)−1QCosT−1 .

Therefore (3.28) is established.

Similar results as in Theorem 3.22 can be shown for the matrix function cotan-

gent.

Theorem 3.23. Whenever Cotan(t) is defined we get

CotanT (t) = Cotan(t),(3.29)

Sin−1(t) SinT−1(t) − Cotan2(t) = I.(3.30)

Moreover, if Sin(t) and Sinσ(t) are invertible, then

(3.31) Cotan∆(t) = −[Sinσ(t)]−1Q(t) SinT−1(t).

Proof. It is analogous to the proof of Theorem 3.22.

Remark 3.24. In the scalar case n = 1 identities (3.26) and (3.29) are trivial. In the

scalar continuous time case, identities (3.27), (3.30), (3.28), and (3.31) take the form

1

cos2(s)
− tan2(s) = 1,

1

sin2(s)
− cotan2(s) = 1, with s =

∫ t

a

Q(τ) dτ ,

(
tan

∫ t

a

Q(τ) dτ

)′

=
Q(t)

cos2 s
,

(
cotan

∫ t

a

Q(τ) dτ

)′

=
−Q(t)

sin2 s
,

compare with Remark 3.7 (iii). The discrete versions of these identities can be found

in [2, Corollary 6 and Lemma 12].
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Remark 3.25. In the continuous time case with Q(t) ≡ I, i.e., when system (CTS)

is X ′ = U , U ′ = −X and hence it represents the second order matrix equation

X ′′ + X = 0, the matrix functions Sin, Cos, Tan, and Cotan satisfy

Sin′ = Cos, Cos′ = − Sin, Tan′ = Cos−1 CosT−1, Cotan′ = − Sin−1 SinT−1 .

The first two equalities follow from the definition of Sin and Cos, while the last two

equalities are simple consequences of (3.28) and (3.31).

Next, similarly to the definitions of the time scale matrix functions Sin(i), Cos(i),

Sin±, and Cos± from (3.17)–(3.19) we define the following functions

Tan(i)(t) := Cos−1
(i) (t) Sin(i)(t), Cotan(i)(t) := Sin−1

(i) (t) Cos(i)(t),

Tan±(t) := [Cos±(t)]−1 Sin±(t), Cotan±(t) := [Sin±(t)]−1 Cos±(t).

Remark 3.26. It is natural that the matrix-valued functions Tan± have similar

properties as the function Tan. In particular, the first identity in (3.22) implies that

Tan± are symmetric. Similarly, the functions Cotan± are also symmetric.

The results of the following theorem are new even in the special case of continuous

and discrete time, see [33, Theorem 3.26].

Theorem 3.27. For all t ∈ [a, b]T such that all involved functions are defined we

have (suppressing the argument t)

Tan(1) ±Tan(2) = Tan(1) (Cotan(2) ±Cotan(1)) Tan(2),(3.32)

Tan(1) ±Tan(2) = Cos−1
(1) Sin± CosT−1

(2) ,(3.33)

Cotan(1) ±Cotan(2) = Cotan(1) (Tan(2) ±Tan(1)) Cotan(2),(3.34)

Cotan(1) ±Cotan(2) = ± Sin−1
(1) Sin± SinT−1

(2) ,(3.35)

Tan± = CosT−1
(2) (I ∓ Tan(1) Tan(2))

−1 (Tan(1) ±Tan(2)) CosT
(2),(3.36)

Cotan± = SinT−1
(2) (Cotan(2) ±Cotan(1))

−1 (Cotan(1) Cotan(2) ∓I) SinT
(2) .(3.37)

Proof. For identity (3.32) we have

Tan(1) ±Tan(2) = Cos−1
(1) Sin(1) (Sin−1

(2) Cos(2) ± Sin−1
(1) Cos(1)) Cos−1

(2) Sin(2)

= Tan(1) (Cotan(2) ±Cotan(1)) Tan(2) .

The equations in (3.33) follow by the symmetry of Tan(2), i.e.,

Tan(1) ±Tan(2) = Cos−1
(1) (Sin(1) CosT

(2) ±Cos(1) SinT
(2)) CosT−1

(2) = Cos−1
(1) Sin± CosT−1

(2) .

The proofs of identities (3.34) and (3.35) are simialar to the proofs of (3.32) and

(3.33). Next, upon transposing identity (3.33) we get

Tan(1) ±Tan(2) = Cos−1
(2) (Tan±)T (Cos±)T CosT−1

(1) ,



TRIGONOMETRIC AND HYPERBOLIC SYSTEMS 497

from which we eliminate Tan±. That is, with the symmetry of Tan± and Tan(i) we

have

Tan±=(Cos±)−1 Cos(1) (TanT
(1) ±TanT

(2)) CosT
(2)

=[Cos(1)(I ∓ Cos−1
(1) Sin(1) SinT

(2) CosT−1
(2) ) CosT

(2)]
−1 Cos(1)(Tan(1) ±Tan(2)) CosT

(2)

=CosT−1
(2) (I ∓ Tan(1) Tan(2))

−1 (Tan(1) ±Tan(2)) CosT
(2) .

Therefore, the formulas in (3.36) are established. The identities in (3.37) follow from

(3.36) by noticing that Tan± Cotan± = I and by using the symmetry of Cotan(i).

Consider the system (TTS) in the scalar continuous time case with P(t) ≡ 0

and Q(t) ≡ 1, or equivalently system (CTS) with Q(t) ≡ 1. Then the identities in

(3.32)–(3.37) have the form of elementary trigonometric identities.

4. TIME SCALE HYPERBOLIC SYSTEMS

In this section we define time scale matrix hyperbolic functions and prove analo-

gous results as for the trigonometric functions in the previous section. In particular,

we derive time scale matrix extensions of several identities which are known for the

continuous time scalar hyperbolic functions. The proofs are similar to the correspond-

ing proofs for the trigonometric case and therefore mostly they will be omitted. We

wish to remark that some results from this section have previously been derived in

the unpublished paper [28] by Z. Posṕı̌sil. We now present these results for complete-

ness and clear comparison with the corresponding trigonometric results established

in Section 3, as well as derive several new formulas for time scale matrix hyperbolic

functions.

Consider the system (S) with the matrix S(t) =
(

P(t) Q(t)
Q(t) P(t)

)
, where the coefficients

satisfy the identities

Q
T − Q + µ (QT

P − P
T
Q) = 0,(4.1)

P + P
T + µ (PT

P − Q
T
Q) = 0,(4.2)

see also [28, pg. 9] and [24, Theorem 8].

Definition 4.1 (Time scale hyperbolic system). The system

(THS) X∆ = P(t) X + Q(t) U, U∆ = Q(t) X + P(t) U,

where the matrices P(t) and Q(t) satisfy identities (4.1) and (4.2) for all t ∈ [a, ρ(b)]T,

is called a time scale hyperbolic system (THS).

Remark 4.2. The above time scale hyperbolic system is in general defined through

two coefficient matrices P and Q. However, in the continuous time case we can use

the same transformation as in Remark 3.3 and write the hyperbolic system (THS) in
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the form of (CHS). Similarly, by using the same arguments as in Remark 3.4, in the

discrete case we can write the above hyperbolic system as (DHS).

Remark 4.3. In the discrete case it is known that the matrix Pk is necessarily

invertible for all k ∈ [a, b]Z, see [19, identity (12)] or [32, Remark 67]. Similarly, in

the general time scale setting we have that identity (4.2) implies (I +µPT ) (I +µP) =

I + µ2 QT Q > 0, that is, the matrix I + µP is invertible. And then (4.1) yields that

Q (I + µP)−1 is symmetric.

Lemma 4.4. The pair (X
U) solves the time scale hyperbolic system (THS) if and only

if the pair (U
X) solves the same hyperbolic system.

Following [28, Definition 2.1], we next define the time scale matrix hyperbolic

functions. See also the discrete version in [19, Definition 3.1] or [32, Definition 32].

Definition 4.5. Let s ∈ [a, b]T be fixed. We define the n×n matrix valued functions

hyperbolic sine (denoted by Sinhs) and hyperbolic cosine (denoted Coshs) by

Sinhs(t) := X(t), Coshs(t) := U(t),

where the pair (X
U) is the principal solution of system (THS) at s, that is, it is given

by the initial conditions X(s) = 0 and U(s) = I. We suppress the index s when

s = a, i.e., we denote Sinh := Sinha and Cosh := Coshs.

Remark 4.6. (i) The matrix functions Sinhs and Coshs are n-dimensional analogs

of the scalar hyperbolic functions sinh(t − s) and cosh(t − s).

(ii) When n = 1 and P = 0 and Q = p with p ∈ Crd, the matrix functions Sinhs(t)

and Coshs(t) reduce exactly to the scalar time scale hyperbolic functions sinhp(t, s)

and coshp(t, s) from [9, Definition 3.17].

(iii) In the continuous time scalar case and when P = 0, i.e., system (THS) is the

same as (CHS), we have Sinh(t) = sinh
∫ t

a
Q(τ) dτ and Cosh(t) = cosh

∫ t

a
Q(τ) dτ , see

[22, pg. 12]. Similar formulas hold for the discrete scalar case, see [19, equations (27)–

(28)].

Since the solutions (Cosh
Sinh) and (Sinh

Cosh) form normalized conjoined bases of (THS),

Ψ̂(t) :=

(
Cosh(t) Sinh(t)

Sinh(t) Cosh(t)

)

is a fundamental matrix of (THS). Therefore, every solution (X
U) of (THS) has the

form

X(t) = Cosh(t) X(a) + Sinh(t) U(a) and U(t) = Sinh(t) X(a) + Cosh(t) U(a)

for all t ∈ [a, b]T. As a consequence of formulas (2.4) and (2.5) we get for solutions of

time scale hyperbolic systems the following, see also [28, Theorem 2.1].
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Corollary 4.7. For all t ∈ [a, b]T the identities

CoshT Cosh− SinhT Sinh = I = Cosh CoshT − Sinh SinhT ,(4.3)

CoshT Sinh = SinhT Cosh, Cosh SinhT = Sinh CoshT(4.4)

hold, while for all t ∈ [a, ρ(b)]T we have the identities

Coshσ CoshT − Sinhσ SinhT = I + µP, Sinhσ CoshT −Coshσ SinhT = µQ.

Now we establish a matrix analog of the formula cosh2(t) − sinh2(t) = 1, see

also [28, Theorem 2.1], as well as the formulas from [28, Theorem 2.5].

Corollary 4.8. For all t ∈ [a, b]T the identity

‖Cosh‖2
F − ‖Sinh‖2

F = n

holds, while for all t ∈ [a, ρ(b)]T we have

Cosh∆ CoshT − Sinh∆ SinhT = P, Sinh∆ CoshT −Cosh∆ SinhT = Q.

Remark 4.9. It follows from identity (4.3) that the matrix Cosh(t) is invertible for

all t ∈ [a, b]T. Moreover, if Sinh(t) is invertible at some t, then from (4.3) and (4.4)

we get

Cosh−1 = CoshT − SinhT CoshT−1 SinhT , Sinh−1 = CoshT SinhT−1 CoshT − SinhT .

The following additive formulas are established in [28, Theorem 2.2]. They are

proven in a similar way to the formulas in Theorem 3.13.

Theorem 4.10. For t, s ∈ [a, b]T we have

Sinhs(t) = Sinh(t) CoshT (s) − Cosh(t) SinhT (s),(4.5)

Coshs(t) = Cosh(t) CoshT (s) − Sinh(t) SinhT (s),(4.6)

Sinh(t) = Sinhs(t) Cosh(s) + Coshs(t) Sinh(s),(4.7)

Cosh(t) = Coshs(t) Cosh(s) + Sinhs(t) Sinh(s).(4.8)

With respect to Remark 4.6 for the scalar continuous time case, identities (4.5)–

(4.8) are matrix analogies of elementary hyperbolic identities.

Interchanging the parameters t and s in (4.5) and (4.6) we get [28, formula (34)].

Corollary 4.11. Let t, s ∈ [a, b]T. Then

(4.9) Sinhs(t) = − SinhT
t (s) and Coshs(t) = CoshT

t (s).

Remark 4.12. In the scalar continuous time case and when Q(t) ≡ 1 and s = 0, the

formulas in (4.9) show that sinh(t) = − sinh(−t) and cosh(t) = cosh(−t). So we can

see that Corollary 4.11 gives the matrix analogies of the statement about the parity

for the scalar functions hyperbolic sine and hyperbolic cosine.
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Now we use the same approach as for the time scale trigonometric functions to ob-

tain generalized sum and difference formulas for solutions of two time scale hyperbolic

systems. Hence, we consider the following two time scale hyperbolic systems

(4.10) X∆ = P(i)(t) X + Q(i)(t) U, U∆ = Q(i)(t) X + P(i)(t) U

with initial conditions X(i)(a) = 0 and U(i)(a) = I, where i = 1, 2. Denote by

Sinh(i)(t) and Cosh(i)(t) the corresponding matrix hyperbolic sine and hyperbolic

cosine functions from Definition 4.5. If we set

Sinh±(t) := Sinh(1)(t) CoshT
(2)(t) ± Cosh(1)(t) SinhT

(2)(t),(4.11)

Cosh±(t) := Cosh(1)(t) CoshT
(2)(t) ± Sinh(1)(t) SinhT

(2)(t),(4.12)

then similarly to Theorem 3.16 we have the following.

Theorem 4.13. Assume that P(i) and Q(i) satisfy (4.1) and (4.2). The pair Sinh±

and Cosh± solves the system

X∆ = P(1)X + Q(1)U + XP
T
(2) ± UQ

T
(2)

+ µ [P(1) (XP
T
(2) ± UQ

T
(2)) + Q(1) (±XQ

T
(2) + UP

T
(2))],

U∆ = Q(1)X + P(1)U ± XQ
T
(2) + UP

T
(2)

+ µ [Q(1) (XP
T
(2) ± UQ

T
(2)) + P(1) (±XQ

T
(2) + UP

T
(2))]

with the initial conditions X(a) = 0 and U(a) = I. Moreover, for all t ∈ [a, b]T we

have

Cosh±(Cosh±)T − Sinh±(Sinh±)T = I = (Cosh±)T Cosh±−(Sinh±)T Sinh±,(4.13)

Sinh±(Cosh±)T = Cosh±(Sinh±)T , (Sinh±)T Cosh± = (Cosh±)T Sinh± .(4.14)

Remark 4.14. An analogous statement as in Remark 3.17 now applies to the solu-

tions
(

Sinh+

Cosh+

)
and

(
Sinh−

Cosh−

)
. Namely, these two pairs are not conjoined bases of their

corresponding systems, because these systems are not symplectic.

Remark 4.15. In the continuous time case, the assertion of Theorem 4.13 can be

found in [22, Theorem 4.2]. For the discrete time hyperbolic systems this result is

new, see the details in [33, Theorem 4.13].

When the two systems in (4.10) are the same, Theorem 4.13 yields the following.

Corollary 4.16. Assume that P and Q satisfy (4.1) and (4.2). Then the system

X∆ = PX + QU + XP
T + UQ

T + µ [P (XP
T + UQ

T ) + Q (XQ
T + UP

T )],

U∆ = QX + PU + XQ
T + UP

T + µ [Q (XP
T + UQ

T ) + P (XQ
T + UP

T )]

with the initial conditions X(a) = 0 and U(a) = I possesses the solution

X = 2 Sinh CoshT and U = Cosh CoshT + Sinh SinhT ,
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where Sinh and Cosh are the matrix functions in Definition 4.5. Moreover, the above

matrices X and U commute, i.e., XU = UX.

The previous corollary can be viewed as the n-dimensional analogy of the double

angle formulae for scalar continuous time hyperbolic functions. In the continuous

time case the content of Corollary 4.16 can be found in [22, Corollary 1]. In the

discrete case we get a new result, namely [33, Corollary 4.15].

Now we can prove as in Corollary 3.20 the following identities.

Corollary 4.17. For all t ∈ [a, b]T we have the identities

Sinh(1) SinhT
(2) =

1

2
(Cosh+ −Cosh−),(4.15)

Cosh(1) CoshT
(2) =

1

2
(Cosh+ + Cosh−),(4.16)

Sinh(1) CoshT
(2) =

1

2
(Sinh+ + Sinh−).(4.17)

In the scalar continuous time case identities (4.15)–(4.17) have the form of el-

ementary hyperbolic identities. The next definition of time scale matrix hyperbolic

tangent and cotangent functions is from [28, Definition 2.2]. It extends the discrete

matrix hyperbolic tangent and hyperbolic cotangent functions known in [19, Defini-

tion 3.2] to time scales. Recall that the matrix function Cosh is invertible for all

t ∈ [a, b]T, see Remark 4.9.

Definition 4.18. We define the matrix-valued function hyperbolic tangent (we write

Tanh) and, whenever Sinh(t) is invertible the matrix-valued function hyperbolic cotan-

gent (we write Cotanh), by

Tanh(t) := Cosh−1(t) Sinh(t) and Cotanh(t) := Sinh−1(t) Cosh(t).

Similarly to Theorems 3.22 and 3.23 we can establish the symmetry of the

functions Tanh and Cotanh. The following two results can be found in [28, The-

orems 2.4, 2.5].

Theorem 4.19. The following identities hold true

TanhT (t) = Tanh(t),(4.18)

Cosh−1(t) CoshT−1(t) + Tanh2(t) = I,(4.19)

Tanh∆(t) = [Coshσ(t)]−1
Q(t) CoshT−1(t).(4.20)

Theorem 4.20. Whenever Cotanh(t) is defined we get

CotanhT (t) = Cotanh(t),(4.21)

Cotanh2(t) − Sinh−1(t) SinhT−1(t) = I.(4.22)
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Moreover, if Sinh(t) and Sinhσ(t) are invertible, then

(4.23) Cotanh∆(t) = −[Sinhσ(t)]−1
Q(t) SinhT−1(t).

Remark 4.21. In the scalar case n = 1 identities (4.18) and (4.21) are trivial. In the

scalar continuous time case identities (4.19), (4.22), (4.20), and (4.23) take the form

1

cosh2(s)
+ tanh2(s) = 1, cotanh2(s) −

1

sinh2(s)
= 1, with s =

∫ t

a

Q(τ) dτ ,

(
tanh

∫ t

a

Q(τ) dτ

)′

=
Q(t)

cosh2 s
,

(
cotanh

∫ t

a

Q(τ) dτ

)′

=
−Q(t)

sinh2 s
,

compare with Remark 4.6 (iii). The discrete versions of these identities can be found

in [19, Theorem 3.4] or [32, Theorem 89].

Next, similarly to the definitions of the time scale matrix functions Sinh(i),

Cosh(i), Sinh±, and Cosh± from (4.10)–(4.12) we define

Tanh(i)(t) := Cosh−1
(i) (t) Sinh(i)(t), Cotanh(i)(t) := Sinh−1

(i) (t) Cosh(i)(t),

Tanh±(t) := [Cosh±(t)]−1 Sinh±(t), Cotanh±(t) := [Sinh±(t)]−1 Cosh±(t).

Remark 4.22. As in Remark 3.26 we conclude that the first identities from (4.14)

imply the symmetry of the functions Tanh±. Similarly, the functions Cotanh± are

also symmetric.

As it was the case for the trigonometric functions in Theorem 3.27, the results

of the following theorem are new even in the special case of continuous and discrete

time, see also [33, Theorem 4.25].

Theorem 4.23. For all t ∈ [a, b]T such that all involved functions are defined we

have (suppressing the argument t)

Tanh(1) ±Tanh(2) = Tanh(1) (Cotanh(2) ±Cotanh(1)) Tanh(2),(4.24)

Tanh(1) ±Tanh(2) = Cosh−1
(1) Sinh± CoshT−1

(2) ,(4.25)

Cotanh(1) ±Cotanh(2) = Cotanh(1) (Tanh(2) ±Tanh(1)) Cotanh(2),(4.26)

Cotanh(1) ±Cotanh(2) = ± Sinh−1
(1) Sinh± SinhT−1

(2) ,(4.27)

Tanh± = CoshT−1
(2) (I ± Tanh(1) Tanh(2))

−1 (Tanh(1) ±Tanh(2)) CoshT
(2),(4.28)

Cotanh± = SinhT−1
(2) (Cotanh(2) ±Cotanh(1))

−1 ×(4.29)

× (Cotanh(1) Cotanh(2) ±I) SinhT
(2) .

Consider now the system (THS) in the scalar continuous time case with P(t) ≡ 0

and Q(t) ≡ 1, or equivalently system (CHS) with Q(t) ≡ 1. Then the identities

(4.24)–(4.29) have the form of elementary hyperbolic identities.
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5. CONCLUDING REMARKS

In this paper we extended to the time scale matrix case several identities known

in particular for the scalar continuous time trigonometric and hyperbolic functions.

Namely, for trigonometric functions these are the identity cos2(t) + sin2(t) = 1 in

Corollary 3.10, and the identities displayed in Theorems 3.13, 3.22, and 3.27, Re-

marks 3.15 and 3.24, and Corollaries 3.19 and 3.20. For hyperbolic functions these

are the identity cosh2(t) − sinh2(t) = 1 in Corollary 4.8, and the identities displayed

in Theorems 4.10 and 4.23, Remarks 4.12 and 4.21, and Corollary 4.17.

On the other hand, there are still several trigonometric and hyperbolic identities

which we could not extend to the general time scale matrix case. For example, these

are the identities sin x ± sin y = 2 sin x±y

2
cos x∓y

2
, as well as other corresponding

identities for the sum or difference of scalar trigonometric and hyperbolic functions.

When y = 0 in the above identity, we get sin x = 2 sin x
2

cos x
2
. The right-hand side is

similar to the solution X(t) in Corollary 3.19, but the left-hand side is not the matrix

function Sin, because the corresponding system is not a trigonometric system (TTS),

see Remark 3.17.

Furthermore, as for the time scale versions of the identities

(5.1)






sin (x + y) sin (x − y) = sin2 x − sin2 y,

cos (x + y) cos (x − y) = cos2 x − sin2 y,

sinh (x + y) sinh (x − y) = sinh2 x − sinh2 y,

cosh (x + y) cosh (x − y) = sinh2 x + cosh2 y,

in the scalar case on an arbitrary time scale we can calculate the products

(5.2)

{
Sin+ Sin− = Sin2

(1) − Sin2
(2), Sinh+ Sinh− = Sinh2

(1) − Sinh2
(2),

Cos+ Cos− = Cos2
(1) − Sin2

(2), Cosh+ Cosh− = Sinh2
(1) + Cosh2

(2),

because the cross terms cancel due to the commutativity. However, in the general

case the matrix products Sin+ Sin−, Cos+ Cos−, Sinh+ Sinh−, and Cosh+ Cosh− corre-

sponding to the left-hand side of (5.1) do not simplify as in (5.2), since the matrix

multiplication is not commutative.
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