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ABSTRACT. In this paper we study the existence of solutions for the initial value problem for

functional differential equations, as well as, for neutral functional differential equations of fractional

order with state-dependent delay. The nonlinear alternative of Leray-Schauder type is the main tool

in our analysis.
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1. INTRODUCTION

The purpose of this paper is to study the existence of solutions for initial value

problems (IVP for short) for both functional differential equations of fractional order

with state-dependent delay

(1.1) Dβy(t) = f(t, yρ(t,yt)), for each t ∈ J = [0, b], 0 < β < 1,

(1.2) y(t) = ϕ(t), t ∈ (−∞, 0]

as well as for neutral functional differential equations of fractional order with state-

dependent delay

(1.3) Dβ[y(t) − g(t, yρ(t,yt))] = f(t, yρ(t,yt)), for each t ∈ J,

(1.4) y(t) = ϕ(t), t ∈ (−∞, 0],

where Dβ is the standard Riemman-Liouville fractional derivative.

Here, f : J × B → R, g : J × B → R and ρ : J × B → (−∞, b] are appropriate

given functions, ϕ ∈ B, ϕ(0) = 0, g(0, ϕ) = 0 and B is called a phase space that will

be defined later (see Section 2).

For any function y defined on (−∞, b] and any t ∈ J , we denote by yt the element

of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].
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The notion of the phase space B plays an important role in the study of both

qualitative and quantitative theory for functional differential equations. A usual

choice is a semi-normed space satisfying suitable axioms, which was introduced by

Hale and Kato [12] (see also Kappel and Schappacher [19] and Schumacher [30]). For

a detailed discussion on this topic we refer the reader to the book by Hino et al [18].

Functional differential equations with state-dependent delay appear frequently

in applications as model of equations and for this reason the study of this type of

equation has received a significant amount of attention in the last years, we refer

to [2, 3, 5, 7, 13, 14, 15] and the references therein. On the other hand, the first

serious attempt to give a logical definition of a fractional derivative is due to Liouville.

Now, the fractional calculus topic is enjoying growing interest among scientists and

engineers, see [9, 17, 20, 22, 24, 25, 26, 27] and references therein.

Differential equations of fractional order play a very important role in describing

some real world problems. For example some problems in physics, mechanics and

other fields can be described with the help of fractional differential equations, see

[8, 10, 17, 23, 27, 28, 29] and references therein. The theory of differential equations

of fractional order has recently received a lot of attention and now constitutes a

significant branch of nonlinear analysis. Numerous research papers and monographs

have appeared devoted to fractional differential equations, for example see [1, 20, 21,

26, 31].

Our approach is based on the nonlinear alternative of Leray-Schauder type [11].

These results can be considered as a contribution to this emerging field.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which

are used throughout this paper.

Let R
+ = {x ∈ R : x > 0}, and let C0(R+) be the space of all continuous

functions on R
+. Consider also the space C0(R+

0 ) of all continuous real functions on

R
+
0 = {x ∈ R : x ≥ 0},

which later identify by abuse of notation, with the class of all f ∈ C0(R+) such that

lim
t→0+

f(t) = f(0+) ∈ R.

By C(J,R) we denote the Banach space of all continuous functions from J into

R with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J},

where | · | denotes a suitable complete norm on R.

Now, we recall some definitions and facts about fractional derivatives and frac-

tional integrals of arbitrary orders, see [20, 25, 26, 27].
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Definition 2.1. The fractional primitive of order β > 0 of a function h : R
+ → R of

order β ∈ R
+ is defined by

I
β
0 h(t) =

∫ t

0

(t− s)β−1

Γ(β)
h(s)ds,

provided the right hand side exists pointwise on R
+. Γ is the gamma function. For

instance, Iβh exists for all β > 0, when h ∈ C0(R+) ∩ L1
loc(R

+); note also that when

h ∈ C0(R+
0 ) then Iβh ∈ C0(R+

0 ) and moreover Iβh(0) = 0.

Definition 2.2. The fractional derivative of order β > 0 of a continuous function

h : R
+ → R is given by

dβh(t)

dtβ
=

1

Γ(1 − β)

d

dt

∫ t

a

(t− s)−βh(s)ds

=
d

dt
I1−β
a h(t).

For our existence results we will need the following lemma.

Lemma 2.3. [6] Let 0 < β < 1 and let h : (0, b] → R be continuous and lim
t→0+

h(t) =

h(0+) ∈ R. Then y is a solution of the fractional integral equation

y(t) =
1

Γ(β)

∫ t

0

(t− s)β−1h(y(s))ds,

if and only if, y is a solution of the initial value problem for the fractional differential

equation

Dβy(t) = h(y(t)), t ∈ (0, b],

y(0) = 0.

In this paper, we will employ an axiomatic definition for the phase space B which

is similar to those introduced in [18]. More precisely, B will be a linear space of all

functions from (−∞, 0] to R endowed with a seminorm ‖ · ‖B satisfying the following

axioms:

(A) If y : (−∞, b] → R, b > 0, is continuous on J and y0 ∈ B, then for every t ∈ J

the following conditions hold:

(i) yt ∈ B,

(ii) ‖yt‖B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t} +M(t)‖y0‖B,

(iii) |y(t)| ≤ H‖yt‖B,

where H > 0 is a constant, K : [0,∞) → [1,∞) is continuous, M : [0,∞) →

[1,∞) is locally bounded and H, K, M are independent of y(·).

(A-1) For the function y(·) in (A), yt is a B-valued continuous function on [0, b].

(A-2) The space B is complete.

The next lemma is a consequence of the phase space axioms and is proved in [13].
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Lemma 2.4. Let ϕ ∈ B and I = (γ, 0] be such that ϕt ∈ B for every t ∈ I.

Assume that there exists a locally bounded function Jϕ : I → [0,∞) such that

‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ I. If y : (∞, b] → R is continuous on J and

y0 = ϕ, then

‖yt‖B ≤ (Mb+J
ϕ(max{γ,−|s|})‖ϕ‖B+Kb sup{|y(θ)| : θ ∈ [0,max{0, s}]}, s ∈ (γ, b],

where, we denoted Kb = supt∈J K(t) and Mb = supt∈J M(t).

Finally, we state the following generalization of Gronwall’s lemma for singular

kernels, whose proof can be found in [16], Lemma 7.1.1, will be essential for our main

results.

Lemma 2.5. Let v : [0, b] → [0,∞) be a real function and w(·) is a nonnegative,

locally integrable function on [0, b] and there are constants a > 0 and 0 < β < 1 such

that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)β
ds,

then, there exists a constant K = K(β) such that

v(t) ≤ w(t) +Ka

∫ t

0

w(s)

(t− s)β
ds,

for every t ∈ [0, b].

3. FDEs OF FRACTIONAL ORDER

In this section, the nonlinear alternative of Leray-Schauder type is used to inves-

tigate the existence of solutions of problem (1.1)–(1.2).

Let us start by defining what we mean by a solution of problem (1.1)–(1.2).

Definition 3.1. A function y : (−∞, b] → R is said to be a solution of (1.1)–(1.2) if

y0 = ϕ, yρ(s,ys) ∈ B for every s ∈ J and

y(t) =
1

Γ(β)

∫ t

0

f(s, yρ(s,ys))

(t− s)1−β
ds, t ∈ J.

In what follows we assume that ρ : J × B → (−∞, b] is continuous and ϕ ∈ B

and f satisfies the following hypotheses:

(H1) f is a continuous function;

(H2) There exist p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖B

for t ∈ J and each u ∈ B, and ‖Iβp‖∞ < +∞;
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(H3) The function t → ϕt is well defined and continuous from the set R(ρ−) =

{ρ(s, ψ) : (s, ψ) ∈ J×B, ρ(s, ψ) ≤ 0} into B. Moreover, there exists a continuous

and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for

every t ∈ R(ρ−).

Remark 3.2. The hypothesis (H3) is adapted from [13], where we refer for remarks

concerning this hypothesis.

Theorem 3.3. Assume that the hypotheses (H1)–(H3) hold. If ρ(t, ψ) ≤ t for every

(t, ψ) ∈ J × B, then the IVP (1.1)–(1.2) has at least one solution on (−∞, b].

Proof. Let Y = {u ∈ C(J,R) : u(0) = ϕ(0) = 0} endowed with the uniform conver-

gence topology and N : Y → Y be the operator defined by

Ny(t) =
1

Γ(β)

∫ t

0

f(s, ȳρ(s,ȳs))

(t− s)1−β
ds, t ∈ J,

where ȳ : (−∞, b] → R is such that ȳ0 = ϕ and ȳ = y on J . From axiom (A) and our

assumption on ϕ, we infer that Ny(·) is well defined and continuous.

Let ϕ̄ : (−∞, b] → R be the extension of ϕ to (−∞, b] such that ϕ̄(θ) = ϕ(0) = 0

on J and J̃ϕ = sup{Jϕ : s ∈ R(ρ−)}.

We will prove thatN(·) is completely continuous from Br(ϕ̄|J , Y ) into Br(ϕ̄|J , Y ).

Step 1: N is continuous on Br(ϕ̄|J , Y ).

This was proved in [13, p. 515, Step 3].

Step 2: The set N(Br(ϕ̄|J , Y ))(t) = {Ny(t) : y ∈ Br(ϕ̄|J , Y )} is relatively

compact in R for every t ∈ J .

The case t = 0 is obvious. Let 0 < ǫ < t ≤ b. If y ∈ Br(ϕ̄|J , Y ), from Lemma 2.4

follows that

‖ȳρ(t,ȳt)‖B ≤ r∗ = (Mb + J̃ϕ)‖ϕ‖B +Kbr

and so

|(Ny)(t)| =
1

Γ(β)

∫ t

0

f(s, ȳρ(s,ȳs))

(t− s)1−β
ds

≤
1

Γ(β)

∫ t

0

p(s) + q(s)‖ȳρ(s,ȳs)‖B
(t− s)1−β

ds

=
bβ‖p‖∞
Γ(β + 1)

+
bβ‖q‖∞
Γ(β + 1)

r∗ := ℓ

Step 3: N maps bounded sets into equicontinuous sets of Y .
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Let t1, t2 ∈ [0, b], t1 < t2 and let Br as in Step 2. Let y ∈ Br. Then for each

t ∈ [0, b], we have

|(Ny)(t2) − (Ny)(t1)| =
1

Γ(β)

∣

∣

∣

∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1]f(s, ȳρ(s,ȳs)) ds

+
1

Γ(β)

∫ t2

t1

f(s, ȳρ(s,ȳs))

(t2 − s)1−β
ds

∣

∣

∣

≤
‖p‖∞ + r∗‖q‖∞

Γ(β)

∫ t1

0

[(t1 − s)β−1 − (t2 − s)β−1]ds

+
‖p‖∞ + r∗‖q‖∞

Γ(β)

∫ t2

t1

ds

(t2 − s)1−β

≤
‖p‖∞ + r∗‖q‖∞

Γ(β + 1)
[(t2 − t1)

β + t
β
1 − t

β
2 ]

+
‖p‖∞ + r∗‖q‖∞

Γ(β + 1)
(t2 − t1)

β

≤
2(‖p‖∞ + r∗‖q‖∞)

Γ(β + 1)
(t2 − t1)

β.

As t1 −→ t2 the right-hand side of the above inequality tends to zero. The equicon-

tinuity for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 is obvious.

As a consequence of Steps 1 to 3, together with the Arzelá-Ascoli theorem, we

can conclude that N is continuous and completely continuous.

Step 4: (A priori bounds). We now show there exists an open set U ⊆ Y

with y 6= λN(y) for λ ∈ (0, 1) and y ∈ ∂U .

Let y ∈ Y and y = λN(y) for some 0 < λ < 1. Then for each t ∈ [0, b] we have

y(t) = λ
[ 1

Γ(β)

∫ t

0

f(s, ȳρ(s,ȳs))

(t− s)1−β
ds

]

.

This implies by (H2)

|y(t)| =
1

Γ(β)

∫ t

0

f(s, ȳρ(s,ȳs))

(t− s)1−β
ds

≤
1

Γ(β)

∫ t

0

p(s) + q(s)[(Mb + J̃ϕ)‖ϕ‖B +Kb sup{|ȳ(s)| : s ∈ [0, t]}]

(t− s)1−β
ds

≤
bβ‖p‖∞
Γ(β + 1)

+
‖q‖∞
Γ(β)

∫ t

0

(Mb + J̃ϕ)‖ϕ‖B +Kb sup{|ȳ(s)| : s ∈ [0, t]}

(t− s)1−β
ds,

since ρ(s, ȳs) ≤ s for every s ∈ J . Here J̄φ = sup{Jφ(s) : s ∈ R(ρ−)}.

If µ(t) = (Mb + J̃ϕ)‖ϕ‖B +Kb sup{|ȳ(s)| : s ∈ [0,max{0, ρ(s, ȳt)}] then we obtain

µ(t) ≤
bβ‖p‖∞
Γ(β + 1)

+
‖q‖∞
Γ(β)

∫ t

0

(t− s)β−1µ(s)ds.
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Then from Lemma 2.5, there exists K = K(β) such that we have

|µ(t)| ≤
bβ‖p‖∞
Γ(β + 1)

+
‖q‖∞
Γ(β)

K(β)

∫ t

0

(t− s)β−1 b
β‖p‖∞

Γ(β + 1)
ds

=
bβ‖p‖∞
Γ(β + 1)

{

1 +
‖q‖∞
Γ(β)

K(β)

∫ t

0

(t− s)β−1ds

}

≤
bβ‖p‖∞
Γ(β + 1)

{

1 +
‖q‖∞

Γ(β + 1)
K(β)bβ

}

.

Then

‖µ‖∞ ≤
bβ‖p‖∞
Γ(β + 1)

{

1 +
‖q‖∞

Γ(β + 1)
K(β)bβ

}

:= M∗.

Set

U = {y ∈ Y : ‖y‖∞ < M∗ + 1}.

N : U → Y is continuous and completely continuous. From the choice of U , there is

no y ∈ ∂U such that y = λN(y), for λ ∈ (0, 1). As a consequence of the nonlinear

alternative of Leray-Schauder type [11], we deduce that N has a fixed point y in

U .

4. NFDEs OF FRACTIONAL ORDER

In this section we give existence results for the IVP (1.3)–(1.4).

Definition 4.1. A function y : (−∞, b] → R is said to be a solution of (1.3)–(1.4) if

y0 = ϕ, yρ(s,ys) ∈ B for every s ∈ J and

y(t) = g(s, yρ(s,ys)) +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, yρ(s,ys))ds, t ∈ J.

Theorem 4.2. Assume (H1)–(H2) and the following condition:

(H4) the function g is continuous and completely continuous, and for any bounded

set Q in B ∩ C([0, b],R), the set {t → g(t, yt) : y ∈ Q} is equicontinuous in

C([0, b],R), and there exist constants 0 ≤ Kbd1 < 1, d2 ≥ 0 such that

|g(t, u)| ≤ d1‖u‖B + d2, t ∈ [0, b], u ∈ B.

If ρ(t, ψ) ≤ t for every (t, ψ) ∈ J × B, then the IVP (1.3)–(1.4) has at least one

solution on (−∞, b].

Proof. Consider the operator N0 : C((−∞, b],R) → C((−∞, b],R) defined by,

N0(y)(t) =



























ϕ(t), if t ∈ (−∞, 0],

ϕ(0) − g(0, ϕ) + g(t, yρ(t,yt))

+
1

Γ(β)

∫ t

0

(t− s)β−1f(s, yρ(s,ys))ds, if t ∈ [0, b].
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In analogy to Theorem 3.3, we consider the operator N1 : Y → Y defined by

(N1y)(t) =







0, t ≤ 0,

g(t, ȳρ(s,ȳs)) +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, ȳρ(s,ȳs))ds, t ∈ [0, b].

We shall show that the operator N1 is continuous and completely continuous.

Using (H4) it suffices to show that the operator N2 : Y → Y defined by,

N2(y)(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s, ȳρ(s,ȳs)) ds, t ∈ [0, b],

is continuous and completely continuous. This was proved in Theorem 3.3.

We now show there exists an open set U ⊆ Y with y 6= λN1(y) for λ ∈ (0, 1) and

y ∈ ∂U .

Let y ∈ Y and y = λN1(y) for some 0 < λ < 1. Then

y(t) = λ

[

g(s, ȳρ(s,ȳs)) +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, ȳρ(s,ȳs)) ds

]

, t ∈ [0, b],

and

|y(t)| ≤ d1((Mb + J̃ϕ)‖ϕ‖B +Kb sup{|y(s)| : s ∈ [0, t]}) + d2

+
1

Γ(β)

∫ t

0

(t− s)β−1[p(s) + q(s)((Mb + J̃ϕ)‖ϕ‖B +Kb sup{|y(s)| : s ∈ [0, t]})ds

≤ d1((Mb + J̃ϕ)‖ϕ‖B +Kb sup{|y(s)| : s ∈ [0, t]}) + d2

+
bβ‖p‖∞
Γ(β + 1)

+
‖q‖∞
Γ(β)

∫ t

0

(t− s)β−1((Mb + J̃ϕ)‖ϕ‖B +Kb sup{|y(s)| : s ∈ [0, t]})ds,

for t ∈ (0, b]. If µ(t) = sup{|y(s)| : s ∈ [0, t]} then

µ(t) ≤ d1(Mb + J̃ϕ)‖ϕ‖B + d1Kbµ(t) + d2

+
bβ‖p‖∞
Γ(β + 1)

+
bβ‖q‖∞
Γ(β + 1)

∫ t

0

(t− s)β−1(Mb + J̃ϕ)‖ϕ‖B

+
‖q‖∞
Γ(β)

Kb

∫ t

0

(t− s)β−1µ(s) ds

≤ d1(Mb + J̃ϕ)‖ϕ‖B + d1Kbµ(t) + d2

+
bβ‖p‖∞
Γ(β + 1)

+
bβ‖q‖∞
Γ(β + 1)

bβ−1(Mb + J̃ϕ)‖ϕ‖B

+Kb

‖q‖∞
Γ(β)

∫ t

0

(t− s)β−1µ(s) ds, t ∈ (0, b],
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or

µ(t)

≤
1

1 −Kbd1

[

d1(Mb + J̃ϕ)‖ϕ‖B + d2 +
bβ‖p‖∞
Γ(β + 1)

+
bβ‖q‖∞
Γ(β + 1)

(Mb + J̃ϕ)‖ϕ‖B

]

+
Kb

1 −Kbd1

‖q‖∞
Γ(β)

∫ t

0

(t− s)β−1µ(s) ds, t ∈ (0, b].

Consequently

‖µ‖∞

≤
1

1 −Kbd1

[

d1(Mb + J̃ϕ)‖ϕ‖B + d2 +
bβ‖p‖∞
Γ(β + 1)

+
bβ‖q‖∞
Γ(β + 1)

(Mb + J̃ϕ)‖ϕ‖B

]

+
Kb

1 −Kbd1

‖q‖∞
Γ(β)

∫ t

0

(t− s)β−1µ(s) ds

and by Lemma 2.5, there exists K = K(β) such that

‖µ‖∞ ≤ Λ1 + Λ2K(β)

∫ t

0

(t− s)β−1 Λ1 ds ≤ Λ1 + Λ2K(β)Λ1b
β := L∗,

where

Λ1 =
1

1 −Kbd1

[

d1(Mb + J̃ϕ)‖ϕ‖B + d2 +
bβ‖p‖∞
Γ(β + 1)

+
bβ‖q‖∞
Γ(β + 1)

(Mb + J̃ϕ)‖ϕ‖B

]

,

Λ1 =
Kb

1 −Kbd1

‖q‖∞
Γ(β)

.

Set

U1 = {y ∈ Y : ‖y‖∞ < L∗ + 1}.

From the choice of U there is no y ∈ ∂U1 such that y = λN1(y) for λ ∈ (0, 1). As a

consequence of the nonlinear alternative of Leray-Schauder type [11], we deduce that

N1 has a fixed point y in U1. Then N1 has a fixed point, which is a solution of the

IVP (1.3)–(1.4).
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