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ABSTRACT. By means of the generalized Riccati technique, we establish Kamenev-type and

interval oscillation theorems for the second-order nonlinear delay dynamic equation

(r(t)z ()™ + p(t) f(a(r(t)) =0

on an unbounded time scale T. Our results are extensions of those for second order ordinary
differential equations and provide new oscillation criteria for second order delay difference and g-

difference equations. Some examples are given to illustrate the significance of our main theorems.

AMS (MOS) Subject Classification. 34B10, 39A10. 34K11, 34C10

1. INTRODUCTION

In this paper, we consider the second order nonlinear delay dynamic equation

(1.1) (r(H)z%(1)> + p(t) f(2(7(t)) = 0

on an unbounded time scale T. In Eq. (1.1), we assume that r,p € C,4(T,R"),7 €
Cra(T,T), 7(t) < t, limy oo 7(t) = 00, uf(u) > 0 and |f(u)|] > Llu| for u # 0.
Define [tg, 00)t by [to, 00)r = [to,00) N T, and suppose that the functions r and f
are sufficiently smooth to ensure that every solution x(t) of Eq. (1.1) that under
consideration is continuable to the right and is nontrivial, i.e., z(¢) exists on some
half-line [T}, 00) and satisfies sup{|x(¢)| : t > T.} > 0 for any T, > t;. A solution z of
Eq. (1.1) is said to have a generalized zero at t* € T if x(¢t*)x(c(t*)) < 0. A function
x is an oscillatory solution of Eq. (1.1) if and only if z is a solution of Eq. (1.1) that
is neither eventually positive nor negative, otherwise it is nonoscillatory. Equation
(1.1) is said to be oscillatory if all solutions are oscillatory. Throughout this paper, a
knowledge and understanding of time scales and time-scale notation is assumed; for

an excellent introduction to the calculus on time scales, see [1, 3, 4].
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Equation (1.1) in its general form includes different types of delay differential and
difference equation depending on the choice of the time scale T. For example, when
T =R, then Eq. (1.1) becomes the delay differential equation

(1.2) (r@®)2'()) + p(t) f(x(7(t))) = 0.
If T=N, then Eq. (1.1) becomes the delay difference equation
(1.3) A(rpAzxy) + pof(z,,) =0,

where Az, = 1,1 — @, T =¢% :={t:t=¢q"ne€Nyq> 1}, then Eq. (1.1)

becomes the g-difference equation
(1.4) Ag(r(t)Agz(t)) +p(t) f(z(7(t)) = 0,
where Agz(t) = (z(qt) — 2(t))/((q — 1)t).

In recent years, there has been an increasing interest in obtaining sufficient condi-
tions for oscillation of solutions for different classes of second order dynamic equations
and delay dynamic equations. We refer to the recent papers [2-9, 12, 13, 15, 16, 17],
among those, for oscillation of second order delay dynamic equations, we would like
to mention that Erbe, Peterson, Saker’s results [9] are more general because the gen-
eralized Riccati technique was used. However, the conditions in [9] for oscillation is a
kind of requirement that the coefficient functions r, p must require information on the
whole set [tg,00)r. This has to be considered a disadvantage in applications, which

must be relaxed.

Very recently, Medico and Kong [12, 13] established Kamenev-type and interval

oscillation criteria for the self-adjoint second order dynamic equation

(1.5) (r(t)a () + p(t)z(o(t)) = 0.

It is clear that the results given in [12, 13] cannot be applied to Eq. (1.1). To develop
the qualitative theory of delay dynamic equations on time scales, in this paper, we
intend to use a generalized Riccati technique, following the ideas in Erbe, Peterson,
Saker [9], Kong [11] and Medico and Kong [12], to obtain several new Kamenev-type
oscillation criteria as well as interval criteria for Eq. (1.1). Under the restriction that
p(t) > 0 for Eq. (1.5), one can easily see that our results extend the main results
in [12] for Eq. (1.5) to Eq. (1.1). We will apply our results to the delay discrete
cases to get some oscillation criteria for delay discrete equation (1.3) and g¢-difference
equation (1.4). Finally, some examples are given to illustrate the significance of our

main results.

2. KAMENEV-TYPE CRITERIA

In this section, we employ the generalized Riccati substitution and establish

Kamenev-type oscillation criteria for Eq. (1.1).
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Following Philos [14], let D = {(t,s) € T? : t > s > t; > 0}. For any function
H(t,s): T2 — R, denote by H2® and H5 the partial derivatives of H with respect to
t and s, respectively. For E C R, denote by Lj..(E) the space of functions which are

integrable on any compact subset of F. Define
H* ={H(t,s) € C'(D,Rs) : (Hy (t,))*/H(t,") € Lioe([0, p(t)] N'T),
H(t,t) =0, H(t,s) >0 and Hy(t,s) <0fort>s>t},
and
H.={H(t,s) € C"(D,R,): (H2(-,8))%/H(-,8) € Lige([o(5),00) N'T),
H(t,t) =0, H(t,s) >0 and H{(t,s)>0fort>s>t}.
We now start with the following Lemma whose proof can be found in [9]

Lemma 2.1. Assume that

(2.1) [O f((tt)) ~ 5,
and
(2.2) /t T(t)p(t) At = 0,

and assume that Eq. (1.1) has a positive solution x on [ty,00) N'T. Then there exists
aT € [ty,00) N'T sufficiently large such that

(1) 22(t) > 0, x(t) > ta®(t) for [T,00) N'T;
(2) x(t) is strictly increasing and x(t)/t is strictly decreasing on [T, 00) N'T.
The first theorem gives oscillation conditions using functions in H*.

Theorem 2.2. Let (2.1) and (2.2) hold. Assume that there ezist functions H € H*,
a € C,q([to, 00)1,R) and § € CL,([to, 00)r, RT) such that for sufficiently large T,

liﬂi}pﬁ{ /T H(t, ()57 (s)(s) As
p(t)
(2.3) —i ; H(t,0(s))¢3(t, s)g(s)As — HP (t, p(t))n(p(t)) Xe—p(e) | = 00,
where 52
ots) = T s) i ()3 s)alore)
oo pe)(s) s sT(9)a’(s)
o(s) = D~ faopr(s) + T,
and
o) 57(s) 16%(s) . 2sa(s) H2(t,s) _J 0, t=0,
o1l ) = 505 (50(5) LTS >+H(t,a(s))’ X '_{ 1, te(0,00).

Then Eq. (1.1) is oscillatory.
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Proof. Suppose to the contrary that x(¢) is a nonoscillatory solution of Eq. (1.1).
Then there is a t; € [tg,00) N'T such that z(7(t)) # 0 on [t;,00) NT. We will only
consider the case where z(7(t)) > 0 for ¢t € (t1,00) N T as the proof in other case is

similar. In view of Lemma 2.1, there is some t5 > t; such that
z2(t) >0, (r(t)z®(t)) <0 fort >t

Define the generalized Riccati substitution w(t) by

A
(2.4) w(t) = §(t) % Fr(t)at)] for t > t,.
Hence,
A AVA (A2
w? = —w + 0% (ra)® + 6° z(re”?) r@?)
o xx®
opfowor o w at, 0% (A
2. < _goPIOTOT o, T (T y2 0
(25) LT o (T 4 S 5 (ra)
From the definition of w(t), we see that
5N 2 w 2 w2 wa
(2:6) (F) =G0 - (5) 25+

Also from Lemma 2.1, since z(t)/t is strictly decreasing, we have

o(rt)) 7)) gowl) ot

xo(t) — o(t) xo(t) ~ o(t)
Substituting the above into (2.5), and noting that (2.6), we obtain

zﬁ@s—awil%%93+fw<wwm LN
(

07 @)r(@) rr wt) N2 2a(w(t) )w(t)
ot [(r(t)é(t ) EOLON a*(t )]
. §9(t) (02(t) . 2ta(t) t5“ (t) )
<~ WP + 505 <5o(t) )“’ sormem
o 57 (t) A(t) 2ta
(2.7) = ~07(0(0) + ( O )w — W),
Multiplying (2.7), where t is replaced by s, by H(t,o(s )), and integrating it with

respect s, we get

/ H(t,0(s))0%(s)(s)As </ Hit )> (f;((j)) + 2j?§§)>w(s)As
(2.8) / H(t,o(s )As—/t2 ﬁH(t,a(s))wz(s)As.

Integrating by parts and using the fact H(¢,t) = 0, we get

(2.9) /t H(t,o(s)w™(s)As = —H(t, t5)w(ts) —/t H2t, s)w(s)As.
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Substituting (2.9) into (2.8), we have

t p(t)
/t H(t,0(5))07 (s)(s)As < H(t, ta)w(ts) —i—/t H(t,o(s))p1(t, s)w(s)As
p(t)

(2.10) + ,);) HA(E, s)w(s)As — /t ﬁH(t,a(s))wQ(s)As.

Noting that HS(t,s) <0 on D, H(t,t) = 0 and w(t) > §(t)r(t)a(t), we have
t

H3) (¢, s)w(s)As < H3 (t, p(t))w(p(t)) (1)) X—p(t

p(t)

(2.11) < HE (. p(0)1(p(1)) Xttt

Combining (2.11) and (2.10), and after completing the square, we get

/ H(t, 0/(5))07 () () As
p(t) 9
< H(t b)w(ts) — /t ﬁH(t,a(s))[u}(s) _ %g(s)gbl(t, $)]*As

p(t)
T HE (o)1) X1t +

1)/ H(t, 0(5))i(t, 5)g(s)As.

p(t)

< Ht () + 3 [ HEo()@( s)o(s)As

(2.12) + Ha (1, p(1))n(p()) Xe—p(r)

Hence,

p(t)
60WHM—1/JMJ@wmm@m

t2

—HE (1, p(0)(p(0) x| < w(tz) < o0,
which contradicts (2.3). This completes the proof. O
In the sequel, we define
(2.13) Ty ={seT:sisright-dense} and Ty={se T:s isright-scattered}.
The following corollary is from Theorem 2.2 where H(t,s) = (t — s)™, m > 1.

Corollary 2.3. Fort € T, let T,(t) = [0,t) N Ty and Ty(t) = [0,¢t) N Ty, and let
(2.1) and (2.2) hold. Assume that there exist a constant m > 1 and a function
§ € CL,([to, 00)T, RT) such that for sufficiently large T,

lim sup tim [/ (t —0(s))"07(s)y(s)As — (t = p(t))"91(t)

t—o0 T
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where
_ (p(®)r(p(t)o(p(t)3% (p(t)) _ r(®)a(t)a*()u(t)
) B A O
Then Eq. (1.1) is oscillatory.
Proof. Let
a(t)a2(1)

H(t,s)=(t—s)™ and a(t) =— 2007(1)

Then, H € H*, and

HA(L s) = { —mit =)™, seln
[(t—o(s))™ = (t —s)™] /u(s), s € Ta.

From the mean value theorem, for ¢t € Ty, there exists £(s) € [s, o(s)] such that
(2.15) 0> HE(t,s) = —m(t —&(s)™ 7 > —m(t — s)™ L.
Hence, for t € T in both cases, we have

H3: (£, p(t) i(p () Xe—piry = —(t = p(t)™

Substituting this into (2.3), we have

lim sup ﬁ[/}t1 (t—o(s))™07(s)(s)As — (t — p(t))"g1(¢)

t—o0
2 2 204 \2m—2
(2.16) - = (t — s)™ 21 (s)d(s)ds — — m{t = 5) g2(t)] = o0
4 T1(p(t)) 4 Ta(p(1)) (t—o(s))™

Notice that, for any ¢; € T, (2.16) is equivalent to (2.14), and the conclusion holds.

The next theorem gives oscillation conditions using functions in H,. Note that

this result does not apply to the case where all points in T are right-dense.

Theorem 2.4. Let H € H,., Ty, Ty be defined by (2.13), and let (2.1) and (2.2)
hold. Assume that there exist functions H € H*, a € C,q([to,0)r, RT) and § €
Cl,([to, 00), RT). Then Eq. (1.1) is oscillatory provided there exists {t,}°, C Ty,

t, — o0, such that for sufficient large t, € T, one of the following holds:

(i) Hm H(ty, ta)a(ty)r(ts)(t,) = oo, and

n—oo

. 1 tn )
limsup s [ [ H(o(5),1.)6° (s)1(s) As

(2.17) 1 / " H(o(s), ta)g(s)82(t, 5) As] = oo
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(i) limsup H(t,,to)a(t,)r(t,)d(t,) = oo, and

n—oo

i L HEO s

1

(2.18) - mH( o(s).1 ><>¢2<t,s>As]=oo;

(i) Hm H(t, to)alt,)r(t)d(t,) < 0o, and

n—oo

(2.19)
lim sup / H(o(5), £)67 (s)0b(s) As — H(o(s). ta) 31, 5)g(s)As] = oo,

n—oo 4 o(ta)

where

L 07(t) (02() | 2ta(?) HA(t, 5)
?20:5) = (60@) 0 )+H<a<t>,s>’

and ¥(t), g(t) are the same as Theorem 2.2.

Proof. Assume Eq. (1.1) is not oscillatory. Without loss of generality we may assume
that there exists t, € [tp,00) N'T such that z(¢) > 0 for ¢t € [t,,00) NT. Following
the proof of Theorem 2.1, we get (2.7) holds. Multiplying (2.7), where ¢ is replaced
by s, by H(o(s),t,), integrating it with respect to s from ¢, to ¢, and then using the

integration by parts formula, and noting that

/H JYwrAs = H /HAst s)As,

we obtain
t o(ta)
/tH(a(s),ta)éc’(s)w( )As < —H(t o) (/ /(t ){Hl (5, ta)w(s)
59(s) (62(s)  2sa(s) R N
e 45 (E 2 )H<a<s>,ta>w<s> o)t
Let
R(s,ta) =HA(s, t)w(s) + 5; ((83)) (‘;8 + 22_‘22?)}1(0—(3), t)w(s)
1 2
— @H(a(s),t(x)w (s).

Since H (t,t,) = 0, while o(t,) > t,, after completing the square,

o(ta)
/t R(s,10)As < 0(ta) 3t o) (1) H (0 (1), ).

when o(t,) = ta,

o(ta)
/ R(s,ty)As = 0.
ta
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So in both cases, we have

(2.21) /U(ta) R(s,ta)As < ma(ta),
where
)0, o(t) =t,
222) e = { OGO H (0,1, o) >,
and
t t 1 5
(2.23) /J(ta) R(s,tq)As < /U(ta) Zg(s)H(a(s),ta)%(t, s)As

Substituting (2.21) and (2.23) into (2.20), we have
/t H(o(s), £)57 (s)(s) As
(2.24) < —H(t,to)w(t) + na(ta) + i /t g(s)H(a(s),ta)p3(t, 5)As

Let t =t, in (2.24), we have

H(ty, to)a ( l/ H(o 87(s)(s)As

1 [t
_ Z/U(ta)g(S)H(a(S),ta)aﬁg(t, S)As} <14 : .

Taking the limsup as n — oo, we have

lim sup

P (o to)a ( U H(o 8% (s)(s)As

= /(t)g<s> (0(5). £a)) 630, )| < oo,

which contradicts (2.17). This completes the proof of (7).

The conclusion with conditions (i) and (iii) can be obtained easily. We omit the

details.

Corollary 2.5. Let Ty, Ty be defined by (2.13), and let (2.1) and (2.2) hold. Assume
that there exist functions H € H*, a € Cq([to,00)r, RT) and § € C!,([ty,00)r, RT)
with 62(t) > 0,t € [tg,00)r. Then Eq. (1.1) is oscillatory provided there exists
{tn}se, C Ty, t,, — 00, such that for sufficient large t, € T and a constant m > 1,

one of the following holds:
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(i) lm (¢,)™a(t,)r(t,)o(t,) = oo, and

n—oo

' ! ’ 6% (s)(s)As
hfln_)s;p ) 00 [/U(ta)(a(S) —ta)"07(5)Y(s)A
1 m, .2
4 /Mcr(ta),tn)(s ~ fa)" (s, fa)r(s)0(s)As
22)  —p X (00 - )"t T )] o

Ta(o(ta),tn)

(ii) limsup(t,)™a(t,)r(t,)o(t,) = oo, and

n—oo

lim [ /U :;)(U(s) )67 (5)d(s) As

T WAL (RANCLEL
41y (o ta) )

Z (o(s) — ta)m¢§(57 ta)%?j)@u(s) = 00;

T2 (o (ta),tn)

(2.26) -

RS

(iii) lm (t,)™a(t,)r(t,)o(t,) < oo, and

n—oo

i ! " ™6 (s)Y(s)As

B D i) r ()6 (6) Ua(t@)(“@ ~ )" ()9 ()A

—i /T o (3 L)
EEUINES 3 DI CCEIAEE YN L Lo B E] B

Ta(o(ta),tn)
where
() m _07(t) (62(t)  2talt) m

1(t, s) = 57 (0) +2a(t)+t_8 and @o(t, s) = 51) (60(15) + o) >+ o) =3

Proof. Let H(t,s) = (t —s)™. Then H € H*, and

m—1

HlA(S,ta): { m(s —ty)™ 1, s e Ty,
(0(s) —ta)™ = (s = ta)™)/1u(s), s € To.

Note from the mean value theorem that for ¢t € Ty there exists £(s) € [s,o(s)] such
that

0 < H (s, ta) = m(E(s) — ta)" ™" < m(o(s) —ta)" .

Therefore, the conclusion follows from Theorem 2.4. O
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3. INTERVAL CRITERIA

Now, we establish analogues of the interval criteria for oscillation of Eq. (1.5) in
[12] to the dynamic Eq. (1.1). Further conditions for oscillation of the Kamenev-type

are derived from them.

Lemma 3.1. Let H € H*, 6 € C!,([tg,00)r,RT). Assume (2.1) and (2.2) hold and
x(t) is a solution of Eq. (1.1) such that x(t) > 0 on a nonempty interval [c¢,b) N'T
with ¢,b € T. Let w(t) be defined by (2.4). Then

/ H(b,0(s))6 (s)¢(s)As <H (b, c)w(c) + H3 (b, p(b))n(p(D)) X (o))

p(b)
(3.1) = / 9(s)H (b, 0(5))d2(b, 5)As,

where Y (s) and g(s) are the same as in Theorem 2.1.

Proof. As in the proof of Theorem 2.1 we obtain inequality (2.12). Then (3.1) follows
directly from (2.12) with to = ¢ and ¢t = 0. O

Lemma 3.2. Let H € H., § € C! ([to,00)r,RT). Assume (2.1) and (2.2) hold, and
x(t) is a solution of Eq. (1.1) such that x(t) > 0 on a nonempty interval (d,c]NT
with d,c € T. Let w(t) be defined by (2.4). Then

/ch(a(s), d)o?(s)(s)As

1 C
32) 2 -HEdwE Fnd g [ goHE) e A
o(d)
where no(t) is defined by (2.22).
Proof. As in the proof of Theorem 2.2 we obtain inequality (2.24). Then (3.2) follows
directly from (2.24) with t, = d and t = c. O

In the rest of this paper, we use the notation R = H, N H*.

Theorem 3.3. Let d,b,c € T such that d < ¢ < b, and let (2.1) and (2.2) hold.
Assume that for some H € R and § € C!,([ty, 00)r, RT),

1 ¢ - 1 b i
o L B8 @688 + g [ HO. ) (0As
1 c

> T / RCLCOREERIS

p(b)
4Hé¢)/] 9(s)H(b,a(s))¢1(b, s)As

A
(3.3) +Hé®m@+ﬁ%%§&W@MWW>

+
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where Y (s) and g(s) are the same as in Theorem 2.2 and ny(t) is defined by (2.22).

Then every solution of Eq. (1.1) has at least one generalized zero in (d,b).

Proof. Suppose the contrary. Then without loss of generality we may assume there
exists a solution x(t) of Eq. (1.1) such that z(t) > 0 for ¢t € (d,b) with d > T. By
Lemma 3.1 and 3.2 we see both the inequalities (3.1) and (3.2) hold, by dividing (3.1)
and (3.2) by H(b,c) and H(c,d), respectively, and then adding, we have

1 c - o
m/d H(o(s), d)0° () () As + - — / H(b,0(s))0%(s)(s)As
(b)

1 ¢ p
= 4H (¢, d) /U(d)g(s)H( o(s), d)d3(c, s)As + 4H (b, C)/c g(s)H (b, 0(5))¢7(b, 5)As

1 H3 (b, p(b))

+ e d) ne(d) + WU(P@))XMP@))’

which contradicts (3.3). O

Theorem 3.4. Assume (2.1) and (2.2) hold. Eq. (1.1) is oscillatory provided that for
any T, > T, there exists H € R and d,b,c € R such that T, < d < ¢ < b and (3.3)
holds.

Proof. Pick a sequence T; C T such that T; — oo as i@ — oco. By the assumption,
for each i € N there exists d;, b;,¢; € R such that T; < d; < ¢; < b;, and (3.3) holds
where d, b, ¢ are replaced by d;, b;, ¢;, respectively. From Theorem 3.1 every solution
x(t) has at least one generalized zero t; € (d;, b;). Noting that t; > d; > T;, i € N,
we see that every solution has arbitrarily large generalized zeros. Thus Eq. (1.1) is

oscillatory. O

Corollary 3.5. Let (2.1) and (2.2) hold. Assume there ezxists H € R and § €
Cl,([to, 00)T, RT) such that for any | > T(e T),

(hggp / H(o(s). D5 (oas = | ;)g<s>H<a<s>,Z>¢§<t,s>As—nzm -0,
and

imsu [ [ 80 o()w0985 = § [ atom.oaiin s
(3.5) —H* (t, p(t))1(p() X oy | > 0.

Then Eq. (1.1) is oscillatory.
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Proof. For any T} > T', Let d = T3, in (3.4), we choose [ = d. Then there exists ¢ > d
such that

(3.6)
imsup | / H(o(s), d)5" () (s)s — | / S, )6ie, )85 —m@)] >0

In (3.5), we choose [ = ¢. Then there exists b > ¢ such that

lim sup {/ H(b,0(s))07 (s)ib(s)As — —/Cp(b)g(S)H(b,U(S))ﬁ(ba s)As

t—o0
(3.7) —H3 (b, p(b))n(p(b))xm(b»] > 0.
Combining (3.6) and (3.7) we obtain (3.3). The conclusion thus follows from Theo-
rem 3.4. O

Corollary 3.6. Let Ty, Ty be defined by (2.13), and for any l,t € T, let Ti(l,t) =
[1,t) N'Ty and To(l,t) = [I,t) N Ty. Assume (2.1) and (2.2) hold, and there exists a
constant m > 1 such that for any | > T(€ T),

lim sup [ /l (0(s) — 1)™8° (s)(s)As — & - )21 (5)3(s)ds
(3.5) = f(ﬂ ;)iggs)a<s>r<s>52<s>u<s> )] >0,
and
hgljgp {/l (t—o(s))™d7(s)v As— o/ o) )" 2r(5)8(s)ds
_m_2 (t = s)*m o(s)0?(s)r(s
o A
39) 2t o) S (o(1) ;p(g);f(;ggg”] >0

Then Eq. (1.1) is oscillatory.

Proof. Let
_ m __o(H)8%(t)
H(t,S) = (t—S) and a(t) = —To(t).
Then H € R, and H5(t, s) satisfies (2.15), and H{ (¢, s) is defined by

Al _ m(s—ta)m_l, s e 1T,
Hi (s, ta) { ((0(5) = ta)™ = (5 — ta)™)/1i(s), s €.

Noting from the mean value theorem that for s € [t,,00) N T there exists £(s) €
[s,0(s)] such that

0 < HA(s,ta) = m(&(s) — to))™ ! < m(o(s) — ta)™ ",
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and

H2 (¢, p(t) p(p()Xe-py = —(t — p(t))™

Therefore, conditions (3.8) and (3.9) are satisfied and hence the conclusion follows
from Corollary 3.1. O

4. APPLICATIONS TO DIFFERENCE EQUATIONS

Here, we apply the results in Section 2 and 3 to obtain the Kamenev-type and

interval oscillation criteria for the difference equations (1.3)—(1.4).

4.1. Oscillation for Eq. (1.3). The first one theorem is direct consequence of Corol-
lary 2.3.

Theorem 4.1. Let

(4.1) > % = o0,

and

(4.2) Z TaPn =

Assume that there exist a constant m > 1, a positive sequel 6,, and ny > t3 such that

n—1
1 L 1. (k+1)62 1(k+1)(02)?
limsup—m{E (n—k—l)mékH( kak+§[( + )k’l“k}A_‘__( + )(k)rk)
k=ng

n—oo N k ‘I‘ 1 k5k+1 4 kéz—l—l
—2 Jo)2m=2 A
(43) s Z: Tk marak T M g | <o

Then Eq. (1.3) is oscillatory.

The next theorem is derived from Corollary 3.6.

Theorem 4.2. Let (4.1) and (4.2) hold. Assume there exist a constant m > 1 and a

positive sequel ,, such that for every ng > ts,

n—1
hmsup{ kE+1—ng)™d, ( — + -
e k; ( o o1 7 T2 kb1 )"+ ko2, |
— — 19)2™ 2 (k +1)8? 1)7002,
(4.4) _m_ ( +1 no) (k+1) ko m?(no + 1)1, ] >0,
4 — 1) kk11 4no0ng41

k=ng+1



584 X. HUANG AND Z. XU

and
n—1
i Lpgme 1 (k+1)dprka 1 (k+1)(55)%ry
1 —k-=1)"0 Z -
lfln_)sogp L:Zn(n ) k+1(k+1 5 For + 1 k5§+1
9 n—2 —k 2m—2 k 1 52 5. - (SA
(45) _ﬁ (n ) ( + ) krk_ N0p—1Tn—-10,_1 < 0.
4 (n—k —1)"kdpi 2(n — 1)6,,

k=n

o

Then Eq. (1.3) is oscillatory.

Theorem 4.3. Let [,j € T, (4.1) and (4.2) hold. Assume that for any T > t3 there
exists T' < | < j such that

j—1

(4.6) S (n+1) [anl + %(%)A + 7471(:;1 5l>0

n=l

Then Eq. (1.3) is oscillatory.

Example 4.1. Consider the following equation

g
T2(t)
on the time scale t € [1,00) N'T, where § > 1/4 is a constant, r(t) = 1, 7(t) = p(¢)
and p = 3/72(t), f(u) = u. It is clear that (2.1) and (2.2) hold, and L = 1. Let

1
a’(t) = _2_t> 6(t) =, H(U(t)vt) = 07 H(O’(t),S) = 17
fort,s € [1,00) N'T,t > s. Then, the left side of (2.3) takes the form
t t

) BT(s) 1,1.a 1 ) / I} 1

1 T e As =1 — — —|As.

Hnsp /t1 U<8)[T2(s)a(s) i 2(3) - 450’(3)] 5T P 4 [T(S) 43} °
So, when T = [1,00) and § > 1/4, by Theorem 2.2, Eq. (4.7) is oscillation.

On the other hand, when T = N and # > 1/8, Eq. (4.7) is oscillation by Theo-

rem 4.1.

(4.7) A%z + z(7(t)) =0

Example 4.2. Consider the equation
(48) A(TnAIn) +pnf(x7n) = 0’
on the time scale T = |J,,[2n, 2n + 3/2], where

e 3", t€[2n,2n + 1], 3et=3" t € [2n,2n + 1],
’r’n = n =
S0, tePnt1,20+3/2, © >4, teln+1,2n+3/2,

n €N, 7(t) = p(t), § > 0 is a constant. We next show that Eq. (4.8) is oscillatory.

Indeed, note that (2.1) and (2.2) hold. Let d = 2n, ¢ =2n+1/2, b =2n+1, and
define

6(t)y=t, H(t,s)=1, H(o(t),t) =0, H(s,o(s)) =0,
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fort,s € 2n,2n+ 1], and H € A.
Obviously, o(s) = s, p(s) = s for s € (2n,2n+1). Then, by a direct computation,

we find that, for any n € N,

/d " H(o(s), 0(1)07 (s)(s)As — / e (3se5 - 6_3n>ds -0,

on 4s

(4.10) / bH(a(b),a(d)é”(s)@b(s)As - / " (3568—3" - 6_3n)ds >0,

2n+1/2 4s
and note that H{(t,s) = 0 and H2 (¢, s) = 0. Therefore, (4.9) and (4.10) imply that

(3.3) holds, Hence the conclusion follows from Theorem 3.2.

4.2. Oscillation for Eq. (1.4). The following two theorems can be easily got from
Corollaries 2.1 and 3.2 with the time scale T = ¢, ¢ > 1.

Theorem 4.4. Let

(4.11) “ 7)
and
(4.12) > uld")7(d")p(e*) = oo.

hold. Assume that there exist a constant m > 1, a positive sequel §(n) and ng > nq
such that

. 1 — n +1\ym +1 Lp(qk)T(qk> 1 q(SA(qk)r(qk> A
i | S =yt ) (R )
Lo 080 2) - m? K= (a7 — )% (g - DY) |,
+ EQT(Q )[5(qk+1)] ) - T Z (qn _ qk+1)m5(qk+1) T(q )

k=no
Al n—1

_ _5(qn—1)r(qn—1)qm(n—1)+l(q _ 1>m(S (q ):| = 0.

Then Eq. (1.4) is oscillatory.

Theorem 4.5. Let (4.11) and (4.12) hold. Assume that there exist a constant m > 1

such that for any ng > nq,

limsup [Z_:(qk—H no )m(s( k—l—l) k<q . 1)<Lp((é]2:;(q ) +

1 [qéA(q’“)r(q’“) 8

A m —1 k+1 ¢ )" 252 k+1(,
1 (qk)[é( ) 2)_I Z ) 5( )q (q 1>r(qk)

6(qk+1 - k+1)(q _ qno)m

oy —
45( no—l—l)

> 0,
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and
n—2 A A(gEVr(F
isup | 3 (" =)ol gt - 1) (AEEE) o LA
Lo 9od) p) m? o (" — ¢")2g" (g - 10%(¢") i
+ 14 (q )[5(qk+1)] ) 1 ];O (q" — ¢-+1)m(gh+1) (¢")

0%(g" ™)

5(g") > 0.

1 — m n— n—
—§qm(“ D (g —1)™5(¢" (")

Then Eq. (1.4) is oscillatory.

Theorem 4.6. Let l,j € N, (4.11) and (4.12) hold. Assume that, for any T > ¢™,
there exists T' < [ < j such that

(4.13) ]z_: [LpT + %q"“(r(qin))A + T(qn)] > 0.

n=l

Then Eq. (1.4) is oscillatory.

Example 4.3. Consider the equation
1
(4.14) Aq(gAqx(t)) + tx(r(t)) =0
where T = ¢, n € N, ¢ > 1, r(t) = 1/t and p(t) = t, 7(t) = p(t) for t € T. We then
show that Eq. (4.14) is oscillatory.
In fact, let m = 2, 6(t) =1, a(t) = 0. Here, L = 1, then
n—1

. 1 " ¢! S (@' = d)ald™ — )
hin e (q")? [ 2 (" a1 gkt @ =) =2 (q" — q"*1)%qk }

k=ng k=ng

=q(q— 1) limsup [ i (1— ") — i (q”g : Zk:—?zn>)2] = 0

o k=ng k=no
Hence the conclusion follows from Theorem 4.4.

Example 4.4. Consider the equation
(4.15) A (Agx(t)) + —=z(7(t)) =0

on the time scales t € ¢V, where 7(t) = p(t). We then claim that Eq (4.15) is
oscillatory.

Indeed, it is a clear that (4.11), (4.12) hold. For any ny > n;, there exists
q™ < d < c<b, by asimple computation, we get

s=b

Zq_l(ses—i)>0.

S
s=d

i.e., (4.13) holds. Hence the conclusion follows from Theorem 4.6.
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