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ABSTRACT. We study a family of stochastic additive functionals of Markov processes with locally

independent increments switched by jump Markov processes in an asymptotic split phase space.

Based on an average approximation, we obtain a large deviation result for this stochastic evolutionary

system using a weak convergence approach. Examples, including compound Poisson processes,

illustrate cases in which the rate function is calculated in an explicit form.
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1. INTRODUCTION

The main mathematical object of this paper is a family of coupled Markov pro-

cesses (ξ(t), x(t)), t ≥ 0 called the switched and switching processes, respectively. The

switched process describes the evolution of the system and it is a stochastic functional

of the process η(t; x), t ≥ 0, x ∈ E with locally independent increments [6] (they are

also called weakly differentiable [5] or piecewise deterministic [2] processes). In order

to reduce the complexity of the phase space, the switching processes that describe

the random changes in the evolution of the system, are jump Markov processes con-

sidered in a split space E = ∪N
k=1Ek, Ek ∩ Ek′ = ∅, k 6= k′ with non-communicating

components, and having the ergodic property on each class Ek. By introducing the

parameter ǫ > 0 one defines a jump Markov process on the split phase space with

small transition probabilities between the states of the system and further merges

the classes Ek, k = 1, 2, . . . , N into distinct states k, 1 ≤ k ≤ N . The average limit

theorem of the stochastic additive functional with fast time-scaling switching process

is obtained by using the martingale characterization [11] and a solution of the singu-

lar perturbation problem for reducible-invertible operators [7]. We are interested in

finding the large deviation principle for this sequence of stochastic additive function-

als. Using the weak convergence approach of Dupuis and Ellis [3], a large deviation

principle is derived for a sequence of random walks constructed such that they have
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the same distribution as the linear interpolation sequence of samples of stochastic

additive functionals.

2. PRELIMINARIES

Let (E, E) be a complete, separable metric space. We will use the following

notation and definitions throughout the paper.

D[0,∞) the space of right continuous functions having left hand side limits.

This embedded with Skorokhod metric becomes a complete, separable metric

space.

(C[0,∞), || · ||) with ||x|| = supt≥0 |x(t)|, x ∈ C[0,∞) is a complete, separable

metric space.

B the Banach space of all bounded measurable functions with norm, ||ϕ|| =

supx∈E |ϕ(x)|, ϕ ∈ B.

Stochastic space (Ω,F , (Ft)t≥0, IP) with the filtration (Ft)t≥0 satisfying the usual

conditions: it is right-continuous and complete.

The family of cadlag Markov processes η(t; x), t ≥ 0, x ∈ E, parameterized by x,

are such that η(t; x(t)) is measurable, are of locally independent increment processes

determined by their infinitesimal generators

(2.1) IΓ(x)ϕ(u) = a(u; x)ϕ′(u) +

∫

IRd

[ϕ(u + v) − ϕ(u) − vϕ′(u)]Γ(u, dv; x),

where the positive kernels Γ(u, dv; x), x ∈ E, are continuous and bounded on u ∈ IRd,

and uniformly continuous and bounded on x ∈ E, and the product aϕ′ stands for the

inner product 〈a,∇ϕ〉 in IRd.

The switching jump Markov process x(t), t ≥ 0 is defined by its infinitesimal

generator Q as

(2.2) Qϕ(x) = q(x)

∫

E

P (x, dy)[ϕ(y)− ϕ(x)],

where the kernel P (x, B) is the transition kernel of the embedded Markov chain, and

q(x), x ∈ E is the intensity of jumps function.

The Markov additive process (ξ(t), x(t)), t ≥ 0 is determined by the infinitesimal

generator

(2.3) ILϕ(u, x) = Qϕ(u, x) + IΓ(x)ϕ(u, x).

The general scheme of phase merging is realized by the family of time-homogeneous

cadlag Markov jump process xǫ(t), t ≥ 0, ǫ > 0 with the standard phase space (E, E),

on the split phase space

E =
N
⋃

k=1

Ek, Ek

⋂

Ek′ = ∅, k 6= k′
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given by the infinitesimal generator

(2.4) Qǫϕ(x) = q(x)

∫

E

P ǫ(x, dy)[ϕ(y)− ϕ(x)].

The phase merging algorithm is considered under the following assumptions:

A1. The stochastic kernel in (2.4) is represented in the following form

P ǫ(x, B) = P (x, B) + ǫP1(x, B)

where the stochastic kernel P (x, B) is coordinated with the splitting as follows:

P (x, Ek) = 1Ik(x) :=







1, x ∈ Ek,

0, x 6∈ Ek

A2. The Markov supporting process x(t), t ≥ 0, on the state space (E, E), deter-

mined by the generator Q given in (2.2) is supposed to be uniformly ergodic in

every class Ek, 1 ≤ k ≤ N , with the stationary distribution πk(dx), 1 ≤ k ≤ N ,

satisfying the following relations

πk(dx)q(x) = qkρk(dx), qk =

∫

Ek

πk(dx)q(x),

ρk(B) =

∫

Ek

ρk(dx)P (x, B), ρk(Ek) = 1.

The perturbing operator P1(x, B) is a signed kernel which satisfies the conser-

vative condition P1(x, E) = 0.

A3. The average exit probabilities satisfy the following condition

p̂k :=

∫

Ek

ρk(dx)P1(x, E\Ek) > 0, 1 ≤ k ≤ N.

Introduce the merging function m(x) = k, x ∈ Ek, 1 ≤ k ≤ N, and the merged

process

(2.5) x̂ǫ(t) := m(xǫ(t/ǫ)), t ≥ 0,

on the merged phase space Ê = {1, ..., N}.
The phase merging principle establishes the weak convergence of the above pro-

cess to the limit Markov process x̂(t).

Theorem 2.1 (Ergodic phase merging principle). Under the assumptions A1–A3,

the following weak convergence holds

x̂ǫ(t) ⇒ x̂(t), ǫ → 0.

The limit merged Markov process x̂(t), t ≥ 0, on the merged state space Ê is deter-

mined by the generator matrix

Q̂ = (q̂kr; 1 ≤ k, r ≤ N),



592 A. OPRISAN AND A. KORZENIOWSKI

with entries

(2.6) q̂kr = q̂kpkr, pkr =

∫

Ek

ρk(dx)P1(x, Er), 1 ≤ k, r ≤ N,

where ρk is the stationary distribution of the corresponding embedded Markov chain.

Theorem 2.2 (Average approximation [8]). Let the stochastic evolutionary system

ξǫ(t), t ≥ 0 be represented by

(2.7) ξǫ(t) = ξǫ(0) +

∫ t

0

ηǫ
(

ds; xǫ(
s

ǫ
)
)

, t ≥ 0, ǫ > 0.

Let the process ηǫ(t; x), t ≥ 0, ǫ > 0, x ∈ E be given by the infinitesimal generators

(2.8) IΓǫ(x)ϕ(u) = aǫ(u; x)ϕ′(u) + ǫ−1

∫

IRd

[ϕ(u + ǫv) − ϕ(u) − ǫvϕ′(u)]Γǫ(u, dv; x).

Let the switching Markov process xǫ(t), t ≥ 0 satisfies the phase merging condition of

Theorem 2.1. Let the following conditions be valid

C1. the drift velocity a(u; x) belongs to the Banach space B1, with

aǫ(u; x) = a(u; x) + θǫ(u; x)

where θǫ(u; x) → 0 as ǫ → 0 uniformly on (u; x) and Γǫ(u, dv; x) ≡ Γ(u, dv; x)

independent of ǫ.

C2. the operator γǫ(x)ϕ(u) = ǫ−1
∫

IRd [ϕ(u+ǫv)−ϕ(u)−ǫvϕ′(u)]Γ(u, dv; x) is negligible

on B1:

sup
ϕ∈C1(IRd)

||γǫ(x)ϕ|| → 0 as ǫ → 0

C3. the convergence in probability of the initial values of (ξǫ(t), m(xǫ( t
ǫ
)), t ≥ 0 holds,

that is

(ξǫ(0), m(xǫ(0)) → (ξ(0), x̂(0))

and there exists a constant c ∈ IR+ such that supǫ>0 IE|ξǫ(0)| ≤ c < ∞.

Then the stochastic evolutionary system ξǫ(t), t ≥ 0 defined by (2.7) converges weakly

to the averaged stochastic system ξ̂(t),

ξǫ(t) ⇒ ξ̂(t) as ǫ → 0.

The limit process ξ̂(t), t ≥ 0 is defined by a solution of the evolutionary equation

(2.9)
d

dt
ξ̂(t) = â(ξ̂(t); x̂(t)), ξ̂(0) = ξ(0),

where the averaged velocity is determined by

â(u; k) =

∫

Ek

πk(dx)a(u; x) 1 ≤ k ≤ N.

Note 2.3. The limit process ξ̂(t) is a random dynamical system evolving determin-

istically on random time intervals [τi, τi+1), where {τi}N(T )
i=1 are the transition times of

the stationary merged process x̂(t) and N(T ) the number of transitions on [0, T ].
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3. LARGE DEVIATION PRINCIPLE FOR

ERGODIC MARKOV PROCESSES

Let x(t), t ∈ IR+ be a time-homogeneous Markov process on a compact metric

space X, B(X) be the Borel σ-algebra in X and M(X) the space of probability

measures on B(X). Let introduce a random measure on B(X) by

νt(B) =
1

t

∫ t

0

1{x(s)∈B}ds, B ∈ B(X).

Theorem 3.1. Assume that the process x(t), t ∈ IR+ is an ergodic Markov process.

Then the following large deviation result holds

− inf
m∈Γ◦

I(m) ≤ lim inf
t→∞

1

t
log IP{νt ∈ Γ} ≤ lim sup

t→∞

1

t
log IP{νt ∈ Γ} ≤ − inf

m∈Γ̄
I(m)

where the rate function I : M(X) → [0, +∞] is defined by

I(m) = − inf{
∫

(φ(x))−1Qφ(x)m(dx) : φ ∈ D(Q), φ > 0}

and Γ ∈ B(M(X)) be the Borel σ-algebra in M(X).

Typically Γ = {ν ∈ M(X)|d(ν, m) > δ, I(m) = 0} where d is some metric on M(X).

The rate function I(m) verifies the following properties

(i) I(m) ≥ 0 for all m ∈ M(X), and I(m) = 0 if and only if m is the invariant

measure for the ergodic Markov process,

(ii) I(m) is a convex function, i.e.,

I(sm1 + (1 − s)m2) ≤ sI(m1) + (1 − s)I(m2), mi ∈ M(X), i = 1, 2, 0 < s < 1

(iii) I(m) is a lower semi-continuous function, i.e.,

lim inf
mn→m

I(mn) ≥ I(m)

(iv) For any b > 0 the set Cb(I) = {m : I(m) ≤ b} is compact, and the function

I(m) is continuous on this compact set.

For proofs and details see [9] and [10].

We illustrate the concept of the split phase space in the following example.

Example 3.2. Let us consider a four-state Markov process x(t), t ∈ IR+ on the split

phase space E = {1, 2, 3, 4} = E1 ∪ E2 , E1 = {1, 2}, E2 = {3, 4} generated by

Q =













−λ1 λ1 0 0

µ1 −µ1 0 0

0 0 −λ2 λ2

0 0 µ2 −µ2













One checks that the Markov process x(t) is ergodic in both E1 and E2 with stationary

distributions π1 = ( µ1

λ1+µ1

λ1

λ1+µ1
) and π2 = ( µ2

λ2+µ2

λ2

λ2+µ2
).
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Now we analyze singularly perturbed Markov processes by introducing a small

parameter ǫ > 0 which leads to a singular perturbed system involving two-time scales,

the actual time t and the stretched time t
ǫ
. Since the process x(t) is ergodic on E1,

E2, the system can be decomposed and the states of the Markov process can be

aggregated.

Let xǫ(t) be a Markov chain on E generated by Q + ǫQ1 with Q defined above

and Q1 given by

Q1 =













−λ1 0 λ1 0

0 −µ1 0 µ1

λ2 0 −λ2 0

0 µ2 0 −µ2













and xǫ( t
ǫ
) be a time-invariant Markov process with generator Qǫ = 1

ǫ
Q + Q1.

Note that for small ǫ, the Markov process xǫ( t
ǫ
) jumps more frequently within

each block and less frequently from one block to another. To further understanding

of the underlying process, we consider the merged process x̂ǫ(t) := m(xǫ( t
ǫ
)) obtained

by aggregating the states in the kth block by a single state k and study its asymptotic

behavior (for many asymptotic results see [12]).

Theorem 2.1 states that the limit process is a Markov process on the merged

space Ê = {1, 2} determined by generator matrix Q̂ = (q̂kr, 1 ≤ k, r ≤ 2) with q̂kr

verifying (2.6). For this example, q1 = 2λ1µ1

λ1+µ1
, q2 = 2λ2µ2

λ2+µ2
, p11 = −1, p12 = 1, p21 =

1, p22 = −1. Thus,

Q̂ =

(

− 2λ1µ1

λ1+µ1

2λ1µ1

λ1+µ1
2λ2µ2

λ2+µ2
− 2λ2µ2

λ2+µ2

)

:=

(

−λ λ

µ −µ

)

Note 3.3. The merged process x̂ǫ(t), unlike its limit x̂(t), is not time-homogeneous.

Let us consider now the occupational time of x̂(t) defined by

νt(B) =
1

t

∫ t

0

1I{x̂(t)∈B}(s)ds

for any B ∈ B(Ê). By ergodic theorem, the measure νt converges to the ergodic

distribution ρ as t goes to ∞. As an example, let M be the set of all probability

measures on {0, 1} identified with {(p, 1 − p), 0 ≤ p ≤ 1} and d(x, y) = |x| + |y|,
x, y ∈ IR2 . Then Theorem 3.1 implies that for ρ = (p0, 1 − p0) and Γ = {(p, 1 −
p) | d((p, 1− p), (p0, 1 − p0)) > δ}, IP(νt ∈ Γ) ∼ exp(−tI(p0 + δ, 1 − p0 − δ)) for large

t with

I(m) = − inf{
∫

Ê

(Q̂φ)(y)

φ(y)
m(dy) : φ ∈ D(Q̂), φ(y) > 0, ∀y ∈ {0, 1}} =

− inf{λp(
φ(2)

φ(1)
− 1) + µ(1 − p)(

φ(1)

φ(2)
− 1); φ(1), φ(2) > 0}
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for m = (p, 1 − p).

The infimum is attained at
√

µ
λ
(1

p
− 1) and I(m) = λp+µ(1−p)−2

√

λµp(1 − p).

4. LARGE DEVIATIONS FOR STOCHASTIC

ADDITIVE FUNCTIONALS

Let us consider the family of stochastic additive functionals ξǫ(t), t ≥ 0 repre-

sented by

ξǫ(t) = ξǫ(0) +

∫ t

0

ηǫ
(

ds; xǫ(
s

ǫ
)
)

, t ≥ 0, ǫ > 0.

The family of coupled Markov processes (ξǫ(t), xǫ( t
ǫ
)), t ≥ 0, ǫ > 0 on IRd × E has

infinitesimal generator ILǫ given by ILǫ = 1
ǫ
Q + Q1 + IΓǫ(x) with the domain D(ILǫ)

dense in C(IRd × E) and the limit process (ξ̂(t), x̂(t)), t ≥ 0 is a Markov process on

IRd × Ê.

Our goal is to show the large deviation principle for this family of stochastic

additive functionals with the rate function I stated as

(4.1) − inf
Γ◦

I ≤ lim inf
ǫ→0

ǫ log IP{ξǫ ∈ Γ} ≤ lim sup ǫ log IP{ξǫ ∈ Γ} ≤ − inf
Γ̄

I

where Γ◦ and Γ̄ represent the interior respectively the closure of the set Γ. In the

particular case in which we take Γ = {ξ(t) : ||ξ(t)−ξ̂(t)|| > δ} one gets the asymptotic

behavior of the IP(supt∈[0,T ] ||ξǫ(t) − ξ̂(t)|| > δ).

An important consequence of the large deviation principle is due to Varadhan

and it is called the Laplace principle [3] (Theorem 1.2.1).

Proposition 4.1. If the sequence ξǫ satisfies the large deviation principle on D([0, T ], IRd)

with rate function Iu(ϕ), then for all bounded continuous functions h : D([0, T ], IRd) →
IR

(4.2) lim
ǫ→0

ǫ log IE{exp [−1

ǫ
h(ξǫ)]} = −infϕ∈D([0,T ],IRd){h(ϕ) + Iu(ϕ)}

The Laplace principle implies the large deviation principle with the same rate

function [3, Theorem 1.2.3].

Proposition 4.2. If Iu is a rate function on D([0, T ], IRd) and the limit (4.2) is

valid for all bounded continuous functions h, then the sequence ξǫ satisfies the large

deviation principle on D([0, T ], IRd) with rate function I.

Lemma 4.3. Suppose that for each fixed k ∈ Ê, the family ξǫ
t := ξǫ

t (u; k), t ≥ 0, ǫ > 0

satisfies the large deviation principle with the rate function Iu,k(·). If x̂t is a station-

ary process on Ê then ξǫ
t (u; x̂(t)) satisfies the large deviation principle with the rate

function Iu(ϕ) = min{Iu,k(ϕ) : 1 ≤ k ≤ N}.
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Proof. Since for each fixed k ∈ Ê, the family ξǫ
t (u; k), t ≥ 0, ǫ > 0 satisfy the large

deviation principle with the rate function Iu,k, we have

ǫ log IP(ξǫ ∈ Γ|x̂ǫ = k) ∼ − inf
Γ

Iu,k.

Let’s denote bǫ
k := IP(ξǫ ∈ Γ|x̂ǫ = k), bk := infΓ Iu,k and pk = IP(x̂ǫ = k). Thus

ǫ log bǫ
k ∼ −bk and therefore bǫ

k = exp(−1
ǫ
bk + cǫ

k) with cǫ
k = o(1

ǫ
).

We want to prove that ǫ log IP(ξǫ ∈ Γ) ∼ −min{b1, . . . , bN}. We may assume

that b1 ≤ b2 ≤ · · · ≤ bN and 0 < pi < 1, 1 ≤ i ≤ N without loss of generality.

Since IP(ξǫ ∈ Γ) =
∑N

k=1 IP(ξǫ ∈ Γ|x̂ǫ = k)IP(x̂ǫ = k), it is enough to prove that

ǫ log(bǫ
1p1 + · · ·+ bǫ

NpN) ∼ −b1 which is equivalent to 1
bǫ
1p1+···+bǫ

N
pN

∼ 1
bǫ
1p1

. This is true

because
bǫ
i

bǫ
1

= exp(−1
ǫ
(bi − b1 + ǫ(cǫ

i − cǫ
1)) goes to 0 as ǫ goes to 0.

Theorem 4.4 (Main result). For absolutely continuous functions ϕ from D([0, T ], IRd),

with T > 0 arbitrary fixed, satisfying ϕ(0) = u, and for each fixed k ∈ Ê, define

(4.3) Iu,k(ϕ) :=

∫ T

0

L(ϕ(t), ϕ̇(t); k)dt,

where L is subsequently defined by (4.9). For all other functions in D([0, T ], IRd),

Iu,k(ϕ) := ∞. Then the family ξǫ(t), ǫ > 0 satisfies the Large deviation principle with

rate function

(4.4) Iu(ϕ) = min{Iu,k(ϕ) : 1 ≤ k ≤ N}

Proof. This will be carried out in several steps. For the sake of clarity, it became

necessary to state a number of known results, which we reformulated and adapted to

our situation.

Step 1: Consider the martingale problem for the generator ILǫ and its relationship

with the exponential martingale problem [11] by taking the transformation Hǫ

defined as

(4.5) Hǫf := ǫe−
1
ǫ
f ILǫe

1
ǫ
f

An important step is to prove the convergence of Hǫ for an appropriate collection

of sequences f ǫ to an operator H in the sense that if f ǫ converges to f as ǫ → 0 the

Hǫf ǫ converges to Hf [4].

Let us consider the test functions f ǫ(u, x) = f(u) + ǫ log ϕǫ(u, x) with ϕǫ(u, x) =

ϕ(u, m(x)) + ǫϕ1(u, x), where f, ϕǫ(u, x) are bounded, measurable, continuous differ-

entiable functions on u ∈ IRd, with bounded first derivative, and uniformly continuous

on E, convergent to the function f(u) Then, Hǫf ǫ converges to Hf ,

(4.6) Hf(u; x) := a(u; x)f ′(u) +

∫

IRd

(evf ′(u) − 1 − vf ′(u))Γ(u, dv; x).
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Applying the stationary projector Π : B(E) → Ê, defined by

Πϕ(x) :=
∫

E
ρ(dx)ϕ(y)1I(x) (where 1I(x) = 1 for all x ∈ E), we obtain

(4.7) Ĥf(u; k) = â(u; k)f ′(u) +

∫

IRd

(evf ′(u) − 1 − vf ′(u))Γ̂(u, dv; k)

where

â(u; k) =

∫

Ek

πk(dx)a(u; x) and Γ̂(u, dv; k) =

∫

Ek

πk(dx)Γ(u, dv; k).

A key role is played by the function in u and p in IRd defined by

(4.8) H(u, p; k) := â(u; k)p +

∫

IRd

(evp − 1 − vp)Γ̂(u, dv; k)

having the following properties:

(a) for each p ∈ IRd and each k ∈ Ê, supu∈IRd H(u, p; k) < ∞;

(b) for each k ∈ Ê, h(u, p; k) is a continuous function of (u, p) ∈ IRd × IRd.

For u and q in IRd we define the Legendre-Fenchel transform

(4.9) L(u, q; k) := sup
p∈IRd

{pq − H(u, p; k)}

Step 2: As in Lemma 6.2.3. [3] the following properties of the Legendre-Fenchel

function can be proved.

Lemma 4.5. The functions H(u, p; k) and L(u, q; k) defined by (4.8) and (4.9) re-

spectively, have the following properties

(a) For each u ∈ IRd, k ∈ Ê, H(u, p; k) is a finite convex function of p ∈ IRd which

is differentiable for all p. In addition, H(u, p; k) is a continuous function of

(u, p) ∈ IRd × IRd

(b) For each u ∈ IRd, k ∈ Ê, L(u, q; k) is a convex function of q ∈ IRd . In addition,

L(u, q; k) is a nonnegative, lower semi-continuous function of (u, q) ∈ IRd × IRd

(c) L(u, q; k) is uniformly superlinear in the sense:

lim
N→∞

inf
u∈IRd

inf
q∈IRd:||q||=N

1

||q||L(u, q; k) = ∞

(d) For each u ∈ IRd, k ∈ Ê, the relative interior ri(domL(u, ·; k)) = ri(convSµ(·|u,k));

in particular L(u, q; k) equals ∞ for u ∈ IRd and q ∈ (cl(convSµ(·|u,k)))
c. For any

q ∈ ri(domL(u, ·; k)) there exists v = v(u, q; k) ∈ IRd such that ∇vH(u, v(u, q; k); k) =

q. In addition,

L(u, q; k) = v(u, q; k)q − H(u, v(u, q; k); k)

(e) Suppose in addition that for a given u ∈ IRd, convSµ(·/u) has nonempty inte-

rior. Then H(u, v; k) is a strictly convex function of v ∈ IRd, int(domL(u, ·; k))

is nonempty, for each q ∈ int(domL(u, ·; k)) there exists a unique value of v such

that ∇vH(u, v(u, q; k); k) = q, and L(u, ·; k) is differentiable on int(domL(u, ·; k)).
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(f) For each u and q in IRd, k ∈ Ê,

L(u, q; k) = inf{R(ν(·)||µ(·|u, k) : ν ∈ P(IRd),

∫

IRd

vν(dv) = q}

and the infimum is always attained. If L(u, q; k) < ∞, then the infimum is

attained uniquely. R(·||·) is the relative entropy defined by R(ν||θ) :=
∫

(log dν
dθ

)dν

whenever ν is absolutely continuous with respect to θ. Otherwise R(ν||θ) := ∞.

(g) There is a stochastic kernel ν(dv|u, k) on IRd given IRd × Ê satisfying for u and

q in IRd,

R(ν(·|u, k)||µ(·|u, k)) = L(u, q; k) and

∫

IRd

vν(dv|u, k) = q

(h) If ν ∈ P(IRd) satisfies R(ν(·)||µ(·|u, k)) < ∞ for u ∈ IRd, k ∈ Ê then
∫

IRd ||v||ν(dv) <

∞ and

R(ν(·|u, k)||µ(·|u, k)) ≥ L(u,

∫

IRd

vν(dv); k).

Step 3: To prove Laplace principle for the sequence ξǫ it is sufficient to prove it for

a sequence of random walks Xn constructed below.

Let h be any bounded continuous function mapping D([0, T ], IRd) into IR. We

prove the Laplace limit (4.2) when ǫ → 0 along any sequence {ǫn, n ∈ IN} converging

to 0. Let’s fix such a sequence. By sampling the process ξǫn at a sequence of times

depending on ǫn, we define a sequence of piecewise linear processes {ζn, n ∈ IN} for

which we prove Laplace principle. Then we show that the sequence is superexponen-

tially closed to {ξǫn, n ∈ IN}.
Fix T > 0. For each n ∈ IN, let cn := [ T

ǫn
] ( where [x] represents the integer

part of x). Consider the sampled sequence ξǫn(Tj
cn

), j = 0, 1, . . . , cn − 1. Define

ζn := {ζn(t), t ∈ [0, T ]} by

ζn(t) = ξǫn(
Tj

cn
) + cn(t − Tj

cn
)

(

ξǫn(
T (j + 1)

cn
− ξǫn(

Tj

cn
)

)

for t ∈
[

Tj
cn

, T (j+1)
cn

]

, which is the linear interpolation of the sampled sequence ξǫn(Tj
cn

), j =

0, 1, . . . , cn − 1.

For each fixed k ∈ Ê, let {vn
j (u; k), u ∈ IRd, j ∈ IN0} be an i.i.d sequence of

random vector fields having the common distribution

(4.10) µn(dv|u, k) := IPu

(

cn

T
(ξǫn(

T

cn
) − u) ∈ dv

)

which is a stochastic kernel on IRd given IRd × Ê.

We construct the random walks corresponding to the sequence of stochastic ker-

nels µn(dv|u, k) as follows: for each u ∈ IRd, k ∈ Ê, n ∈ IN, consider the sequence of
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random variables {Xn
j , j = 0, 1, . . . , cn − 1} taking values in IRd with

Xn
j+1 := Xn

j +
T

cn
vn

j (Xn
j ; k), Xn

0 = u.

Suppose that the the sequence of random vectors Xn
j is interpolated into a piece-

wise linear continuous-time process Xn := {Xn(t), t ∈ [0, T ]} by

Xn(t) = Xn
j +

(

t − Tj

cn

)

vn
j (Xn

j ; k), t ∈
[

Tj

cn
,
T (j + 1)

cn

]

, j = 0, 1, . . . , cn − 1

Then the distribution of ζn is the same as the distribution of Xn. For each n ∈ IN

and u, p ∈ IRd, k ∈ Ê, define

(4.11) Hn(u, p; k) := log

∫

IRd

evpµn(dv|u, k)

Step 4: We will show that the function H(u, p; k) defined in (4.8) can be written

as the moment generating function of a stochastic kernel µ(dv|u, k).

Since the conditions of the Proposition 10.3.2 in [3] are fulfilled the next result

follow.

Proposition 4.6. For each k ∈ Ê, the following conclusions hold:

(a) there exists a superlinear function f : (0,∞) → IR ∪ {∞} such that for any

ǫ > 0, δ > 0, s ∈ [0, T ], t ∈ (s, T ]

sup
u∈IRd

IPu,k{ sup
s≤σ≤t

||ξǫ(σ) − ξǫ(s)|| ≥ δ} ≤ 2d exp

(

−t − s

ǫ
f(

δ√
d(t − s)

)

)

(b) for each p ∈ IRd, supn∈IN supu∈IRd Hn(u, p; k) < ∞
(c) for each p ∈ IRd and each compact subset K ⊂ IRd,

(4.12) lim
n→∞

sup
u∈K

|Hn(u, p; k) − H(u, p; k)| = 0

(d) for each u ∈ IRd, the sequence of probability measures µn(dv|u, k), n ∈ IN con-

verges weakly to a probability measure µ(dv|u, k) on IRd and for each p ∈ IRd,

H(u, p; k) = log

∫

IRd

epvµ(dv|u, k).

The family µ(dv|u, k), u ∈ IRd, k ∈ Ê defines a stochastic kernel on IRd given

IRd × Ê. In addition, the function mapping u ∈ IRd 7→ µ(·|u, k) ∈ P(IRd) is

continuous in the topology of weak convergence on P(IRd).

Step 5: In order to study the Laplace principle for the process Xn, we need to

verify the asymptotic behavior of

(4.13) W n(u) := − 1

cn

log IEu(exp(−cnh(Xn))),
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where IEu denotes the expectation with respect to IPu and h is any bounded

continuous function mapping C([0, T ], IRd) into IR. We will show that this is

equal to the minimal cost of function of an associated stochastic control problem.

We now specify the stochastic control problem whose minimal cost function gives

a representation for the function W n(u). The controlled process is a discrete-time pro-

cess X̄n
j , j = 0, 1, . . . , cn−1, and at each time t there will be a control νn

j giving the dis-

tributions of the controlled random variable that replaces this noise due to the incre-

ments. νn
j is a stochastic kernels on (IRd)j+1, denoted by νn

j (dv) = νn
j (dv|X̄n

0 , . . . , X̄n
j ).

A sequence of controls {νn
1,j , j = 0, 1, . . . , cn − 1} is called an admissible control se-

quence.

Then, as in [3] (Theorem 4.3.1) we get the variational representation of W n
u as

(4.14) W n(u) = inf
νn

j

ĪEu{
cn−1
∑

j=0

[

1

cn
R(νn

j (·)||µ(·|X̄n
j , k)

]

+ h(X̄n}

where the infimum is taken over all admissible control sequences {νn
j }. For n ∈ IN

and t ∈ [0, T ], define the stochastic kernel

νn(dv|t) :=







νn
j (dv), t ∈ [Tj

cn
, T (j+1)

cn
), j = 0, 1, . . . , cn − 2

νn
cn−1(dv), t ∈ [T (cn−1)

cn
, T ]

The following representation holds (similar as in [3] (Corollary 5.2.1))

(4.15) W n(u) = inf
νn

j

ĪEu{
∫ T

0

R(νn
1 (·|t)||µ(·|X̃n(t)) + h(X̄n)}

where X̃n = {X̃n(t), t ∈ [0, T ]} is the piecewise constant interpolation of the con-

trolled random variables {X̄n
j , j = 0, 1, . . . , cn − 1}.

Step 6: Laplace principle upper bound

Let Iu,k(ϕ) :=
∫ T

0
L(ϕ(t), ϕ̇(t), k)dt where L is the Legendre-Fenchel transform

defined in (4.9). Then Iu,k is a rate function and

(4.16) lim sup
n→∞

1

cn
log IEu(exp(−cnh(Xn))) ≤ − inf

ϕ∈C([0,T ],IRd)
(Iu,k(ϕ) + h(ϕ))

Indeed, first it can be shown that Iu,k has compact level sets in C([0, T ], IRd)

by using parts (b) and (c) of the Proposition 4.6, which implies that Iu,k is a rate

function. Then using part (h) of Proposition 4.5 we will get

lim inf
n→∞

W n(u) ≥ inf
ϕ∈C([0,T ],IRd)

(Iu,k(ϕ) + h(ϕ)).

Step 7: Laplace principle lower bound.



ERGODIC PROCESSES IN SPLIT SPACES 601

In order to prove the Laplace principle lower bound we need to characterize the

relative interior of the effective domain of L(u, ·; k) in terms of the stochastic kernel

µ(dv|u, k). This is done in part (d) of Proposition 4.5.

For A, B subsets of IRd define

A + B := {u ∈ IRd : u = a + b, a ∈ A, b ∈ B}.

A subset C of IRd is called a convex cone if it has the property that for c ∈ C,

λc ∈ C ∀λ ∈ [0,∞). Denote conC for the convex cone of C.

We can rewrite H(u, p; k) as

H(u, p; k) = b̂(u; k)p +

∫

IRd

(evp − 1)Γ̂(u, dv; k)

where

b̂(u; k) := â(u; k) −
∫

IRd

vΓ̂(u, dv; k)

Let SΓ̂(u,k)
be the support of Γ̂(u,k) and define T(u,k) := {b̂(u; k)} + conSΓ̂(u,k)

.

The relative interior ri(domL(u, ·; k)) = ri(T(u,k)) and the following properties

hold:

(a) The sets intT(u,k) are independent of (u, k) ∈ IRd × Ê

(b) 0 ∈ intT(u,k)

With similar arguments as in Theorem 6.5.1 [3] it can be proved that

lim sup
n→∞

W n(u, k) ≤ inf
ϕ∈C([0,T ],IRd)

(Iuk(ϕ) + h(ϕ)).

This gives the Laplace principle lower bound for Xn.

(4.17) lim inf
n→∞

1

cn

log IEu(exp(−cnh(Xn))) ≥ − inf
ϕ∈C([0,T ],IRd)

(Iuk(ϕ) + h(ϕ)).

Thus the Laplace principle is proved for the random walk Xn and therefore for

the process ζn.

Step 8: Laplace principle holds for the sequence ξǫn because ξǫn, ζn are superexpo-

nentially closed, i.e.

(4.18) lim sup
n→∞

sup
u∈IRd

ǫn log IPu(ρ(ξǫn, ζn) > δ) = −∞,

where ρ is Skorokhod metric on D([0, T ], IRd).

Thus, by Proposition 4.2 we obtain the large deviation principle for the sequence

of random variables ξǫ
t (u; k) with the rate function Iu,k(ϕ) =

∫ T

0
L(ϕ(t), ϕ̇(t); k)dt.

Using Lemma 4.3 we get the large deviation principle for the sequence of stochastic

additive functionals ξǫ with rate function Iu(ϕ) = min{Iu,k(ϕ) : 1 ≤ k ≤ N}.
This completes the proof of the theorem.
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This principle has many applications, for example finding the probability of exit

from a stable domain of the process. In some cases the infimum can be explicitly found

by using calculus of variations. The class of absolutely continuous functions on [0, T ]

can be identified with the Sobolev space H1,1[0, T ], and since the Legendre-Fenchel

function L(u, q; k) verifies the conditions of Tonelli’s existence theorem (Theorem 3.7

[1]), the existence of the minimizer will follow. If ϕ ∈ AC[0, T ] is a local minimizer

of the functional L(ϕ, ϕ′), then ϕ will satisfy the Euler-Lagrange equation which will

be further simplified to the Beltrami equation: L(ϕ, ϕ′)− ϕ′Lϕ′(ϕ, ϕ′) = C, where C

is a constant.

Example 4.7 (Compound Poisson process). Consider the compound Poisson process

ξǫ(t), t ≥ 0 switched by the jump Markov process x(t), t ≥ 0 defined in Example 3.2,

of the form

ξǫ(t) =

ν(t/ǫ;x(t/ǫ)
∑

k=1

ak(x(
t

ǫ
))

with the infinitesimal generator given by

IΓǫ(x)φ(u) =
Λ(x)

ǫ

∫

IRd

[φ(u + ǫv) − φ(u)]F (dv; x).

Here ν(t; x), t ≥ 0, x ∈ E = {1, 2, 3, 4} is a homogeneous Poisson process, with

intensity Λ(x) and ak(x), k ≥ 1, x ∈ E is a sequence of i.i.d. random variables,

independent of ν(t), t ≥ 0, with common distribution F (dv; x).

Using notation â(k) =
∫

Ek
πk(dx)a(x), this process converges weakly,

ξǫ(t) ⇒
∫ t

0

â(x̂(s))ds, as ǫ → 0.

Applying the operator Hǫf ǫ as in equation (4.5) we get the limitting operator

Hf as follows

Hf(u, x) = Λ(x)

∫

IRd

[evf ′(u) − 1]F (dv, x).

For tractability purposes, let’s suppose that F (dv; x) is independent of x. Then

the projected operator Ĥf is

Ĥf(u, k) = Λ̂(k)

∫

IRd

[evf ′(u) − 1]F (dv)

where Λ̂(k) =
∫

Ek
πk(dx)Λ(x). Hence, Λ̂(1) = 2λ1µ1

λ1+µ1
and Λ̂(2) = 2λ2µ2

λ2+µ2
. Assume that

the random variables ak(x) are distributed exponential with the parameter λ. Then

the function H(p; k), p ∈ IR, k ∈ Ê = {1, 2} defined in the relation 4.8 is

H(p; k) = Λ̂(k)
p

λ − p
, λ > p
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The Legendre-Fenchel transform L(q; k) = supp∈IR{pq − H(p; k)} becomes

L(q; k) = λq − 2

√

λqΛ̂(k) + Λ̂(k),

the supremum being attained for p = λ−
√

λΛ̂(k)
q

. Therefore, for T > 0 arbitrary fixed,

and for absolutely continuous functions ϕ ∈ D([0, T ], IR), with ϕ(0) = 0, the process

ξǫ satisfies the large deviation principle. Its rate function is I(ϕ) = mink=1,2 Ik(ϕ),

where Ik(ϕ) =
∫ T

0
L(ϕ′(t); k)dt and L(ϕ′(t)) = λϕ′(t) − 2

√

λϕ′(t)Λ̂(k) + Λ̂(k).
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