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We consider the following non-autonomous second order Hamiltonian system on time scales T

of the form 



u∆∆(ρ(t)) = ▽H(t, u(t)) ∆-a.e. t ∈ [0, T ]T,

u(0) − u(T ) = u∆(ρ(0)) − u∆(ρ(T )) = 0.

As is well known, it is very difficult to use the Hilger’s integral to consider the existence of periodic

solutions of some second order Hamiltonian systems on time scales since it is only concerned with

antiderivatives. Therefore, in this paper, we use a new integral on time scales T defined by Rynne (J.

Math. Anal. Appl. 328 (2007) 1217–1236), and establish a new existence result for periodic solutions

in H1

T
(T, Rn) space of the above-mentioned second order Hamiltonian system on time scales T by

applying variational methods and critical theory. As an application, an example is given to illustrate

the result.
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1. INTRODUCTION

In this paper, motivated by the references on continuous and discrete Hamil-

tonian systems [16, 28, 30], we consider the following non-autonomous second order

Hamiltonian system on time scales T of the form

(1.1)





u∆∆(ρ(t)) = ▽H(t, u(t)) ∆-a.e. t ∈ [0, T ]T,

u(0) − u(T ) = u∆(ρ(0)) − u∆(ρ(T )) = 0,

where 0, T ∈ T, ▽H(t, u) = DuH(t, u) and H : [0, T ]T × R
n → R, (t, x) → H(t, x)

satisfies the following assumption:
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(H0): H(t, x) is measurable in t for every x ∈ R
n and continuously differentiable

in x for ∆-a.e. t ∈ [0, T ]T, and there exist a ∈ C(R+,R+), b ∈ L1([0, T ]T,R
+)

satisfying |H(t, x)| ≤ a(|x|)b(t), |▽H(t, x)| ≤ a(|x|)b(t) for all x ∈ R
n and

∆-a.e. t ∈ [0, T ]T.

We say that a property holds for ∆-a.e. t ∈ A ⊂ T or ∆-a.e. on A ⊂ T, whenever

there exists a set E ⊂ A with null Lebesgue ∆-measure such that this property holds

for every t ∈ A\E. We refer the reader to [6, 10] for a broad introduction on Lebesgue

∆-measure.

Recently, some authors have obtained many results on the existence of positive

solutions of dynamic equations on time scales, for details, see [4, 14, 15, 19, 21, 22,

23, 24, 25, 26, 27] and the references therein. On the one hand, the above-mentioned

problems on time scale [4, 14, 15, 19, 21, 22, 23, 24, 25, 26, 27] have often been

considered in a set involving Banach spaces of continuous (rd-continuous) functions

on T, which motivate us to consider the existence of solutions for dynamic equations

on time scales in Hilbert spaces rather than Banach spaces. On the other hand, to

the best of our knowledge, there is only one paper [20] concerned with the existence

of periodic solutions of second order Hamiltonian systems on time scales. Moreover,

there is very little work [1, 2] on the existence of solutions of dynamic equations on

time scales by using the variational methods and critical theory. Now, it is natural

to consider the existence of periodic solutions of second order Hamiltonian systems

on time scales by using variational methods and critical theory.

We make the blanket assumption that 0, T are points in T, for an interval [0, T ]T,

we always mean [0, T ] ∩ T. Other type of intervals are defined similarly.

If the function u : Tκ → R
n is delta differential, u∆ and u∆∆ are both continuous

on ∆-a.e. T
κ∩Tκ, and u satisfies Hamiltonian system (1.1), then we say u is a solution

of Hamiltonian system (1.1).

Recently, Su and Li [20] considered the existence of periodic solutions for second

order Hamiltonian system on time scales

(1.2)




u∆∆(ρ(t)) + µb(t)|u(t)|µ−2u(t) + ▽H(t, u(t)) = 0 ∆-a.e. t ∈ [0, T ]T,

u(0) − u(T ) = u∆(ρ(0)) − u∆(ρ(T )) = 0.

Under µ > 2 and certain conditions, we obtain that the problem (1.2) has at least

one nonzero periodic solution. However, in [20], by using the generalized mountain

pass theorem [17], we only obtain the existence results of Hamiltonian system (1.2) for

µ > 2. That is, if continue to use the tools to solve the problems for (1.2) when µ ≤ 2,

the existence of periodic solutions of Hamiltonian system is not satisfied. However,

when µ = 0, the Hamiltonian system (1.2) reduces to the Hamiltonian system (1.1).

The existence of periodic solutions for Hamiltonian system (1.1) not only has it’s
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theoretical value but also has its practical value. Naturally, it is quite necessary

to consider the existence of periodic solutions of Hamiltonian system (1.1). Hence,

in this paper, by using the tools completely different from that of [20], we consider

the existence for periodic solutions of the non-autonomous second order Hamiltonian

system (1.1).

However, just as Ahlbrandt (MR1962542) reviewed for the reference [6], Hilger’s

integral is based solely on antiderivatives. The so-called “delta integral” and “nabla

integral” are defined by a sort of Darboux integral and as a limit of a modified Rie-

mann sum, respectively. The absence of these integrals has hindered the development

of time scales integral operator proofs of existence and uniqueness theorems, unified

variational theory and a possible Hilbert space spectral theorem for Jacobi operators

on time scales. Hence, it is very difficult in considering the existence of periodic so-

lutions of some second order Hamiltonian systems on time scales using the Hilger’s

integral. In this paper, we attempt to use a new integral on time scales T defined

by Rynne [18] to consider the existence of periodic solutions of non-autonomous sec-

ond order Hamiltonian system on time scales. By using variational methods and

critical theory, we establish a new existence theorem for periodic solutions of the

non-autonomous second order Hamiltonian system (1.1). Moreover, we prove some

lemmas, which will be very important in proving the existence of periodic solutions

in W 1,p
T (T,Rn) spaces for Hamiltonian systems on time scales. As an application, an

example is given to illustrate our result.

Firstly, we present some basic definitions which can be found in [5, 6, 7, 11, 13].

A time scale T is a nonempty closed subset of R. If T has a right-scattered

minimum m, define Tκ = T − {m}; otherwise, set Tκ = T. If T has a left-scattered

maximum M , define T
κ = T − {M}; otherwise, set T

κ = T. The forward graininess

is µ(t) := σ(t) − t. Similarly, the backward graininess is ν(t) := t− ρ(t).

If f : T → R is a function and t ∈ T
κ, then the delta derivative [7] of f at the point

t is defined by the number f∆(t) ( provided it exists ) with the property that for any

ǫ > 0, there is a neighborhood U ⊂ T of t such that
∣∣f(σ(t)) − f(s) − f∆(t)(σ(t) − s)

∣∣ ≤
ǫ |σ(t) − s| for all s ∈ U .

If f : T → R and t ∈ Tκ, then the nabla derivative of f at the point t is defined

by the number f∇(t) (provided it exists) with the property that for any ǫ > 0,

there is a neighborhood U ⊂ T of t such that
∣∣f(ρ(t)) − f(s) − f∇(t)(ρ(t) − s)

∣∣ ≤
ǫ |ρ(t) − s| for all s ∈ U .

Assume that f : T → R. Continuity of f is defined in the usual manner, while

f is said to be rd-continuous provided it is continuous at all right dense points in T

and has finite left-sided limits at all left dense points in T. Let Crd(T) denote the set
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of rd-continuous functions f : T → R, and let

|f |0,T := sup{|f | : t ∈ T} for f ∈ Crd(T).

With this norm these spaces are Banach spaces. If f is differentiable at every t ∈ T
κ,

then f is said to be differentiable. Let C1
rd(T) denote the set of functions f ∈ C(T)

which are differentiable and f∆ ∈ Crd(T
κ). The norm of the functions f are defined

by

|f |1,T := |f |0,T + |f∆|0,Tκ for f ∈ C1
rd(T).

These spaces are also Banach spaces.

Secondly, we refer the reader to [10] for measure on time scales. The definition

of absolutely continuous on time scales can be founded in [8].

Thirdly, we provide the definition in [18] and simply summarize the main points,

which are also described in [9].

Let a := inf{s : s ∈ T} and b := sup{s : s ∈ T}, define a function E : [a, b] → R

by

E(t) := sup{s ∈ T : s ≤ t} for t ∈ [a, b].

Now, suppose that f : T
κ → R is arbitrary function on T

κ, if f ◦E is measurable and

integrable on the real interval [a, b) in the usual Lebesgue sense, respectively, then

we say f is measurable and integrable, respectively. Let L1(T) denote the set of such

integrable functions on T. Furthermore, for any f ∈ L1(T), we define the integral of

f as

(1.3)

∫ t

s

f∆ :=

∫ t

s

f ◦ Edτ for s, t ∈ T,

with the norm defined by ‖f‖L1(T) =
∫ b

a
|f |∆ for f ∈ L1(T).

We use the notation
∫ t

s
f∆ to denote the Lebesgue integral of a function f between

s, t ∈ T (when it is defined). That is, we use the same notation for the Lebesgue-type

integral defined in [18] as it is also used in the time scale literature for a Riemann-type

integral defined in terms of anti-derivative. A detailed discussion of the Lebesgue-

type integral and its relationship with the usual time scale integral is given in [9, 18].

With the Lebesgue integral defined, let

Lp(T) := {f ∈ L1(T) : |f |p ∈ L1(T)},

and the corresponding norm ‖f‖Lp(T) =
(∫ b

a
|f |p∆

) 1

p

. It is shown that in [9] Lp(T) is

completed with respect to the norm ‖f‖Lp(T).

In terms of Lp(T) spaces, one can easily define Sobolev-type spaces as,

W 1,p(T) = {u : T → R | u is absolutely continuous, u∆ ∈ Lp(Tκ)},
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with the norm defined by

‖u‖W 1,p(T) =

(∫ b

a

|u|p∆ +

∫ b

a

|u∆|p∆

) 1

p

for u ∈W 1,p(T).

The Sobolev-type spaces W 1,p(T) is a time scale analogue of the usual Sobolev-type

spaces W 1,p(I) on a real interval I [9].

Finally, we refer the reader to [3] for another introduction on basic properties

of Sobolev’s spaces on bounded time scales. In addition, we list two Lemmas in [3]

which will be used in our proof. Let a, b ∈ T, J = [a, b]T and J0 = [a, b)T.

Lemma 1.1 ([3]). Let p ∈ R ≡ [−∞,+∞] be such that p ≥ 1. Then, for every

q ∈ [1,+∞), the immersion W
1,p
∆ (J) →֒ L

q
∆(J0) is compact.

Lemma 1.2 ([3]). Let p ∈ R be such that p ≥ 1, let {um}m∈N ⊂ W
1,p
∆ (J), and let

u ∈W
1,p
∆ (J). If {um}m∈N converges weakly in W

1,p
∆ (J) to u, then {um}m∈N converges

strongly in C(J) to u.

From [3], we also have the following relation.

(1.4) V
1,p
∆ (J) = {u : J → R | u is absolutely continuous, u∆ ∈ L

p
∆(J0)} ⊂W

1,p
∆ (J).

The rest of the paper is organized as follows. In Section 2, we list some lemmas,

which are important in proving the existence of periodic solutions. By applying these

lemmas, we establish a new existence result for periodic solutions of problem (1.1) in

Section 3. In final Section, an example is given to illustrate our main result.

2. SOME LEMMAS

In this section, to represent Hamiltonian systems on time scales in a functional-

analytic set, we introduce some spaces and some lemmas, which will be used in the

rest of the paper and be very important in proving the existence of periodic solutions

in W 1,p
T (T,Rn) spaces on second order Hamiltonian systems on time scales.

Similar to [18], let a1 := inf{s : s ∈ T} and b1 := sup{s : s ∈ T}, define a function

E : [a1, b1] → R
n by

E(t) := sup{s ∈ T : s ≤ t} for t ∈ [a1, b1].

Then, suppose that u : T
κ → R

n is arbitrary function on T
κ, if u ◦ E is measurable

and integrable on the real interval [a1, b1) in the usual Lebesgue senses, respectively,

then we say u is measurable and integrable, respectively. We let L1(T,Rn) denotes

the set of such integrable functions on T. Furthermore, for any u ∈ L1(T,Rn), we

define the integral of u as
∫ t

s

u∆ :=

∫ t

s

u ◦Edτ for s, t ∈ T,
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with the norm defined by ‖u‖L1(T,Rn) =
∫ b1

a1

|u|∆ for u ∈ L1(T,Rn). Moreover, let

Lp (T,Rn) = {u : T → R
n, u ∈ L1 (T,Rn) , |u|p ∈ L1 (T,Rn)}

with the norm defined by

‖u‖Lp(T,Rn) =

(∫ b1

a1

|u|p∆

) 1

p

and ‖u‖∞,Rn = sup
t∈[a1,b1]T

|u|.

One can easily define Sobolev-type spaces as,

W 1,p(T,Rn) = {u : T → R
n | u is absolutely continuous, u∆ ∈ Lp(Tκ,Rn)},

with the norm defined by

‖u‖W 1,p(T,Rn) =

(∫ b1

a1

|u|p∆ +

∫ b1

a1

|u∆|p∆

) 1

p

for u ∈W 1,p(T,Rn).

If we replace u : T → R with u : T → R
n, then, by using the similar way

to Lemma 1.1 and Lemma 1.2, respectively, and then using the relation 1.4 for u :

T → R
n, we can obtain the following two Lemmas, respectively. Let a1, b1 ∈ T,

J1 = [a1, b1]T and J0
1 = [a1, b1)T.

Lemma 2.1. Let p ∈ R be such that p ≥ 1. Then, for every q ∈ [1,+∞), the

immersion W 1,p(J1,R
n) →֒ Lq(J0

1 ,R
n) is compact.

Lemma 2.2. Let p ∈ R be such that p ≥ 1, let {um}m∈N ⊂ W 1,p(J1,R
n), and let

u ∈ W 1,p(J1,R
n). If {um}m∈N converges weakly in W 1,p(J1,R

n) to u, then {um}m∈N

converges strongly in [a1, b1]T to u.

Now, let W 1,p
T (T,Rn) be the Sobolev space given by

W
1,p
T (T,Rn) = {u : [0, T ]T → R

n | u is absolutely continuous,

u(0) = u(T ), i u∆ ∈ L
p
T ([0, T ]Tκ,Rn)},

and the norm is defined by

‖u‖
W

1,p

T
(T,Rn) =

(∫ T

0

|u|p∆ +

∫ T

0

|u∆|p∆

) 1

p

for u ∈W
1,p
T (T,Rn) ,

where

L
p
T ([0, T ]Tκ,Rn) =

{
u : [0, T ]Tκ → R

n, u ∈ L1 ([0, T ]Tκ,Rn) , |u|p ∈ L1 ([0, T ]Tκ,Rn)
}
.

It is obvious that

L
p
T ([0, T ]T,R

n) =
{
u : [0, T ]T → R

n, u ∈ L1 ([0, T ]T,R
n) , |u|p ∈ L1 ([0, T ]T,R

n)
}
,

with the norm defined by

‖u‖L
p

T
(T,Rn) =

(∫ T

0

|u|p∆

) 1

p

and ‖u‖∞ = sup
t∈[0,T ]T

|u|.
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We also denote the Hilbert spaceH1
T (T,Rn) = W

1,2
T (T,Rn) with the inner product

(u, v) =

∫ T

0

[u · v + u∆ · v∆]∆,

here u, v are vector-valued and the dot indicates a dot product. Hence, the corre-

sponding norm ‖u‖ = ‖u‖
W

1,2

T
(T,Rn) = ‖u‖H1

T
(T,Rn).

Motivated by reference [16], we obtain the following two Lemmas which are very

important in proving our result.

Lemma 2.3. There exist c1, c2 > 0 such that, if u(t) ∈W
1,p
T (T,Rn), then

(2.1) ‖u(t)‖∞ ≤ c1‖u(t)‖W
1,p

T
(T,Rn).

Moreover, if
∫ T

0
u(t)∆ = 0, then

(2.2) ‖u(t)‖∞ ≤ c2‖u
∆(t)‖L

p
T

(T,Rn).

Proof. Going to the components of u(t), we can assume that n = 1. If u(t) ∈

W
1,p
T (T,Rn), then there exists a τ ∈ [0, T ]T such that u(τ) = inft∈[0,T ]T u(t), it follows

that

1

T

∫ T

0

u(s)∆ ≥
1

T

∫ T

0

u(τ)∆ = u(τ),

thus, there exists constant c3 > 0 such that |u(τ)| ≤ c3

∣∣∣
∫ T

0
u(s)∆

∣∣∣. Hence, for

t ∈ [0, T ]T, according to the Hölder inequality on time scales [7], one can get

|u(t)| =

∣∣∣∣u(τ) +

∫ t

τ

u∆(s)∆

∣∣∣∣ ≤ |u(τ)| +

∣∣∣∣
∫ t

τ

u∆(s)∆

∣∣∣∣

≤ c3

∣∣∣∣
∫ T

0

u(s)∆

∣∣∣∣+ T
1

q

(∫ T

0

|u∆(s)|p∆

) 1

p

= c3

∣∣∣∣
∫ T

0

u(s)∆

∣∣∣∣+ T
1

q ‖u∆(t)‖Lp(T).

If
∫ T

0
u(s)∆ = 0, then (2.2) holds. In the general case, according to Hölder inequality

on time scales again, one has

|u(t)| ≤ c3

∣∣∣∣
∫ T

0

u(s)∆

∣∣∣∣+ T
1

q

(∫ T

0

|u∆(s)|p∆

) 1

p

≤ c3T
1

q ‖u‖L
p

T
(T,Rn) + T

1

q ‖u∆(s)‖L
p

T
(T,Rn) ≤

(
c3T

1

q + T
1

q

)
‖u‖W

1,p
T

(T,Rn),

which implies (2.1) holds.

Lemma 2.4. Let L : [0, T ]T×R
n×R

n → R, (t, x, y) → L(t, x, y) be measurable in t for

each [x, y] ∈ R
n×R

n and continuously differentiable in [x, y] for ∆-a.e. t ∈ [0, T ]T. If

there exists a ∈ C(R+,R+), b ∈ L1
T ([0, T ]T,R

+) and c ∈ L
q
T ([0, T ]T,R

+), 1 < q <∞,
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such that, for ∆-a.e. t ∈ [0, T ]T and each [x, y] ∈ R
n × R

n, one has

(2.3)





|L(t, x, y)| ≤ a(|x|)(b(t) + |y|p),

|DxL(t, x, y)| ≤ a(|x|)(b(t) + |y|p),

|DyL(t, x, y)| ≤ a(|x|)(c(t) + |y|p−1),

where 1
p

+ 1
q

= 1, then the functional ϕ defined by ϕ(u) =
∫ T

0
L(t, u(t), u∆(t))∆ is a

continuously differential on W
1,p
T (T,Rn) and

(2.4) 〈ϕ′(u), v〉 =

∫ T

0

[
DxL(t, u(t), u∆(t)) · v(t) +DyL(t, u(t), u∆(t)) · v∆(t)

]
∆.

Proof. It suffices to prove that ϕ has a directional derivative ϕ′(u) ∈
(
W

1,p
T (T,Rn)

)∗

given by (2.4) at every point u and that the mapping

ϕ′ : W 1,p
T (T,Rn) →

(
W

1,p
T (T,Rn)

)∗
, u→ ϕ′(u)

is continuous.

(i) It follows easily from (2.3) that ϕ is everywhere finite on W
1,p
T (T,Rn). For u

and v fixed in W 1,p
T (T,Rn), we define

F (λ, t) = L(t, u(t) + λv(t), u∆(t) + λv∆(t)) for t ∈ [0, T ]T and λ ∈ [−1, 1],

ψ(λ) = ϕ(u+ λv) =

∫ T

0

F (λ, t)∆.

In the following, we shall apply the Leibniz formula of differentiation under inte-

gral sign to ψ. By assumption (2.3), one obtains

|DλF (λ,E) | =
∣∣DxL

(
E, u+ λv, u∆ + λv∆

)
· v +DyL

(
E, u+ λv, u∆ + λv∆

)
· v∆

∣∣

≤ a (|u+ λv|)
[(
b+ |u∆ + λv∆|p

)
|v| +

(
c+ |u∆ + λv∆|p−1

)
|v∆|

]

≤ a0

[(
b+ (|u∆| + |v∆|)p]

)
|v| +

(
c+

(
|u∆| + |v∆|

)p−1
)
|v∆|

]
,

where a0 = max(λ,t)∈[−1,1]×[0,T ] a (|u(E) + λv(E)|).

Since b ◦ E ∈ L1 ([0, T ],R+), (|u∆| + |v∆|)p ◦ E ∈ L1 ([0, T ],R+), c ◦ E ∈

Lq ([0, T ],R+), v∆ ◦ E ∈ Lp ([0, T ],R+) and v ◦ E ∈ L1 ([0, T ],R+), we have

|DλF (λ,E(t)) | ≤ d(E(t)) ∈ L1([0, T ],R+).

Hence, it follows from the Leibniz formula that

ψ′(0) = 〈ϕ′(u), v〉 =

∫ T

0

DλF (0, E(t))dt

=

∫ T

0

DxL
(
E(t), u(E(t)), u∆(E(t))

)
· v(E(t))dt

+

∫ T

0

DyL
(
E(t), u(E(t)), u∆(E(t))

)
· v∆(E(t))dt
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=

∫ T

0

[
DxL

(
t, u(t), u∆(t)

)
· v(t) +DyL

(
t, u(t), u∆(t)

)
· v∆(t)

]
∆.

Moreover

|DxL(t, u, u∆)| ≤ a(|u|)(b(t) + |u∆|p) ∈ L1
T ([0, T ]T,R

+)

|DyL(t, u, u∆)| ≤ a(|u|)(c(t) + |u∆|p−1) ∈ L
q
T ([0, T ]T,R

+).

Thus, by Lemma 2.3,
∫ T

0

DλF [λ, t)∆ =

∫ T

0

[
DxL(t, u, u∆) · v +DyL

(
t, u, u∆

)
· v∆

]
∆

≤ c1‖v‖∞ + c2‖v
∆‖Lp(T) ≤ c3‖v‖W

1,p

T
(T),

and ϕ has a directional derivative ϕ′(u) ∈
(
W

1,p
T (T,Rn)

)∗
at u given by (2.4).

(ii) By Krasnosel’skii’s theorem[12], (2.3) implies that the mapping fromW
1,p
T (T,Rn)

into L1
T ([0, T ]T,R

+)×Lq
T ([0, T ]T,R

+) defined by u→
(
DxL

(
t, u, u∆

)
, DyL

(
t, u, u∆

))

is continuous, so that ϕ′ is continuous from W
1,p
T (T,Rn) into

(
W

1,p
T (T,Rn)

)∗
, and the

proof is complete.

We also need the following lemma, which is presented by Rabinowitz [17].

Lemma 2.5 ([17]). Let E = V ⊕ X, where X is a real Banach space and V 6= {0}

and is finite dimensional. Suppose I ∈ C1(E,R), satisfies (P.S.) condition, and

(I1) there is a constant α and a bounded neighborhood D of 0 in V such that I|∂D ≤ α;

(I2) there is a constant β > α such that I|X ≥ β.

Then I possesses a critical value c∗ ≥ β. Moreover c∗ can be characterized as

c∗ = inf
h∈Γ

max
u∈D

I(h(u)),

where Γ = {h ∈ C(D,E)|h = id on ∂D}.

3. EXISTENCE RESULTS

In this section, by using the variational methods and critical theory, we obtain a

new existence theorem for periodic solutions of the second order Hamiltonian system

(1.1) on time scales.

If we let

L(t, x, y) = L(t, u(t), u∆(t)) =
1

2
|u∆(t)|2 +H(t, u(t)),

then by Lemma 2.4, the functional ϕ given by

(3.1) ϕ(u) =
1

2

∫ T

0

|u∆(t)|2∆ +

∫ T

0

H(t, u(t))∆
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is continuously differentiable on H1
T (T,Rn). Hence, we obtain

(3.2)

〈ϕ′(u), v〉 =

∫ T

0

u∆(t) · v∆(t)∆ +

∫ T

0

▽H(t, u(t)) · v(t)∆ for all u, v ∈ H1
T (T,Rn).

That is, for all u, v ∈ H1
T (T,Rn), one has

〈ϕ′(u), v〉 = −

∫ T

0

u∆∆(ρ(t)) · v(t)∆ +

∫ T

0

▽H(t, u(t)) · v(t)∆

=

∫ T

0

(
−u∆∆(ρ(t)) + ▽H(t, u(t)

)
· v(t)∆.

Consequently, u ∈ H1
T (T,Rn) is a solution of problem (1.1) if and only if u is a critical

point of ϕ.

If un ⇀ u0 in H1
T (T,Rn), then by Lemma 2.2, un → u0 on [0, T ]T, this implies

that un is bounded in [0, T ]T. The mean value theorem on time scales [6] implies that

there exist τ ∗1 , τ
∗
2 ∈ [0, T )

T
satisfying

(3.3) u∆
n (τ ∗1 ) ≤

un(T ) − un (0)

T
≤ u∆

n (τ ∗2 ).

From (1.1) and (3.3), we have

|u∆
n (t)| ≤ |u∆

n (τ ∗1 ))| +

∣∣∣∣∣

∫ σ(t)

σ(τ∗
1
)

▽H(t, u(t))∆

∣∣∣∣∣

≤

∣∣∣∣
un(T ) − un (0)

T

∣∣∣∣+
∫ T

σ(τ∗
1
)

a(x)b(t)∆ for t ∈ [0, T ]
T
,

and

|u∆
n (t)| ≥ |u∆

n (τ ∗2 )| −

∣∣∣∣∣

∫ σ(t)

σ(τ∗
2
)

▽H(t, u(t))∆

∣∣∣∣∣

≥

∣∣∣∣
un(T ) − un (0)

T

∣∣∣∣−
∣∣∣∣∣

∫ T

σ(τ∗
2
)

a(x)b(t)∆

∣∣∣∣∣ for t ∈ [0, T ]
T
.

It follows from Lebesgue dominated convergence theorem on time scales [5] that

lim inf
n→∞

ϕ(un) = lim inf
n→∞

(
1

2

∫ T

0

|u∆
n (t)|2∆ +

∫ T

0

H(t, un(t))∆

)
= ϕ(u0).

Hence, ϕ is weakly lower semi-continuous on H1
T (T,Rn).

In order to prove the main result, for u ∈ H1
T (T,Rn), we let

u(t) =
1

T

∫ T

0

u(t)∆, ũ(t) = u(t) − u(t),

and H̃1
T (T,Rn) is the subspace of H1

T (T) given by

H̃1
T (T,Rn) = {u ∈ H1

T (T,Rn)|u(t) = 0}.
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In the following, we shall prove a lemma, which will be used in the proof of the

main result.

Lemma 3.1. If a sequence {un(t)} ⊂ H1
T (T,Rn) be such that ϕ′(un(t)) → 0 and

{un(t)} is bounded in H1
T (T,Rn), then {un(t)} has a convergent subsequence in H1

T (T,Rn).

Proof. From Lemma 2.1, we have

H1
T (T,Rn) →֒ L2

T ([0, T ]T,R
n)

is compact. Hence, there exists a subsequence (still denoted by {un(t)}) and we

assume that there is a point u0 ∈ H1
T (T,Rn) such that un ⇀ u0 in H1

T (T,Rn) and

un → u0 in L2
T ([0, T ]T,R

n). By Lemma 2.2, we have un converges uniformly to u0 on

[0, T ]T also.

Hence, there is a M > 0 such that max0≤t≤T |un(t)| ≤M , n = 1, 2, . . ..

Since

〈ϕ′(un(t)) − ϕ′(um(t)), un(t) − um(t)〉

=

∫ T

0

(
u∆

n (t) − u∆
m(t)

)
.
(
u∆

n (t) − u∆
m(t)

)
∆

−

∫ T

0

(
▽H(t, un(t)) −▽H(t, um(t))

)
. (un(t) − um(t))∆,

It follows from (H0) that

∫ T

0

|u∆
n (t) − u∆

m(t)|2∆ ≤ ‖ϕ′(un(t)) − ϕ′(um(t))‖‖un(t) − um(t)‖

+ 2aM‖un(t) − um(t)‖∞

∫ T

0

b(t)∆ → 0 as n,m→ ∞.

Consequently

‖un(t)− um(t)‖2 =

∫ T

0

|u∆
n (t)− u∆

m(t)|2∆ +

∫ T

0

|un(t)− um(t)|2∆ → 0 as n,m→ ∞,

which implies that {un} is a Cauchy sequence in H1
T (T,Rn). By the completeness of

H1
T (T,Rn), we know {un} is a convergent sequence in H1

T (T,Rn).

Now, we list and prove our main result.

Theorem 3.2. Assume that the following conditions hold:

(H1) there exists a bounded measurable function g : [0, T ]T → R such that

g(t) ≤ lim inf
|x|→∞

▽H(t, x).x

|x|
for all x ∈ R

n and ∆-a.e. t ∈ [0, T ]T;
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(H2) If {un} ⊂ H1
T (T,Rn) is such that ‖un‖ → ∞ and

|un|
√

T

‖un‖ → 1, then

lim inf
n→∞

∫ T

0

▽H(t, un(t)).
un

‖un‖
∆ < 0.

Then the problem (1.1) has at least one solution in H1
T (T,Rn).

Proof. Firstly, we show that ϕ satisfies the (P.S.) condition.

By (H1), there exist λ < 0 and M > 0 such that

▽H(t, x).x ≥ λ|x| for all x ∈ R
n with |x| > M and ∆-a.e. t ∈ [0, T ]T.

Moreover, let aM = max|x|≤M a(|x|). Then, it follows from (H0) that

▽H(t, x) · x ≥ −aMb(t)|x| for all x ∈ R
n with |x| ≤ M and ∆-a.e. t ∈ [0, T ]T.

Hence

▽H(t, x).x ≥ −aMb(t)|x| + λ|x| for all x ∈ R
n and ∆-a.e. t ∈ [0, T ]T.

Consequently

H(t, x) = H(t, x) −H(t, 0) +H(t, 0)(3.4)

=

∫ 1

0

▽H(t, sx).xds+H(t, 0) ≥ −aMb(t)|x| + λ|x| +H(t, 0).

If a sequence {un} ⊂ H1
T (T,Rn) is such that ϕ′(un) → 0 and there exists a

constant c such that ϕ(un) ≤ c, n = 1, 2, . . ., then {un} is bounded in H1
T (T,Rn).

Otherwise, there exists a subsequence (still denoted by {un(t)}), we may assume

that ‖un‖ → ∞. Let vn = un

‖un‖ . Since H1
T (T,Rn) is Hilbert space and H1

T (T) →֒

L2([0, T ]T,R
n) is compact, there exist a point v0 ∈ H1

T (T,Rn) and a subsequence of

{vn} (we still note by {vn}) such that

vn(t) ⇀ v0(t) on H1
T (T,Rn),

vn(t) → v0(t) on L2
T ([0, T ]T,R

n) ,

vn(t) → v0(t)on t ∈ [0, T ]T,

and there exists a function ω ∈ L2
T ([0, T ]T,R

n) such that |vn(t)| ≤ ω(t) for ∆-a.e.

t ∈ [0, T ]T.

In view of Lemma 2.3, (3.4) and Lebesgue dominated convergence theorem on

time scales [5], one has

c

‖un‖2
≥
ϕ(un)

‖un‖2
=

1

2

∫ T

0

|v∆
n (t)|2∆ +

1

‖un‖2

∫ T

0

H(t, un(t))∆

≥
1

2

∫ T

0

|v∆
n (t)|2∆ +

1

‖un‖2

∫ T

0

[−aMb(t)|un(t)| + λ|un(t)| +H(t, 0)]∆
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=
1

2

∫ T

0

|v∆
n (t)|2∆ −

aM

‖un‖

∫ T

0

b(t)|vn(t)|∆

+
λ

‖un‖

∫ T

0

|vn(t)|∆ +
1

‖un‖2

∫ T

0

H(t, 0)∆

=
1

2

[
1 −

∫ T

0

|vn(t)|2∆

]
−

aM

‖un‖

∫ T

0

b(t)|vn(t)|∆

+
λ

‖un‖

∫ T

0

|vn(t)|∆ +
1

‖un‖2

∫ T

0

H(t, 0)∆,

which implies
∫ T

0
|v0(t)|

2∆ ≥ 1.

On the one hand, in terms of the weak lower semi-continuity of the norm, we

obtain
[∫ T

0

|v0(t)|
2∆ +

∫ T

0

|v∆
0 (t)|2∆

] 1

2

= ‖v0(t)‖

≤ lim inf ‖vn(t)‖ = 1 for ∆-a.e t ∈ [0, T ]T,

which means v∆
0 (t) = 0 for ∆-a.e t ∈ [0, T ]T. Hence

|v0(t)| = constant for t ∈ [0, T ]T,

which implies |v0(t)|
2 = 1

T
. Consequently, |un|2

‖un‖2 → 1
T
, then

lim inf
n→∞

∫ T

0

▽H(t, un(t)).
un

‖un‖
∆ < 0.

On the other hand, it follows from (3.2) that
∫ T

0

▽H(t, un(t)) ·
un(t)

‖un(t)‖
∆ =

〈
ϕ′(un),

un(t)

‖un(t)‖

〉
→ 0 as n→ ∞.

This is a contradiction.

Hence {un} is bounded in H1
T (T,Rn). By Lemma 3.1, {un} has a convergent

subsequence in H1
T (T,Rn). Thus, ϕ satisfies the (P.S.) condition.

Secondly, we shall show that ϕ is anti-coercive on R
n. That is ,

(3.5) ϕ(x) → −∞ as |x| → ∞ for x ∈ R
n,

which implies that the condition (I1) of Lemma 2.5 holds.

In order to obtain (3.5), we first verify that there exist δ1 > 0, ρ1 > 0 such that

(3.6)

∫ T

0

▽H(t, x).x∆ ≤ −δ1|x| for all x ∈ R
n with |x| ≥ ρ1.

If not, there is a sequence {xn} ⊂ R
n with |xn| → ∞ and

∫ T

0

▽H(t, xn) ·
xn

|xn|
∆ > −

1

n
for n ≥ 1,

this contradicts (H2). Hence, (3.6) is true.
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For all x ∈ R
n with |x| > ρ1, one has

ϕ(x) =
1

2

∫ T

0

|x∆|2∆ +

∫ T

0

H(t, x)∆

=

∫ T

0

H(t, x)∆ =

∫ T

0

∫ 1

0

▽H(t, sx).xds∆ +

∫ T

0

H(t, 0)∆(3.7)

=

∫ T

0

(∫ ρ1

|x|

0

▽H(t, sx).xds+

∫ 1

ρ1

|x|

▽H(t, sx) · xds

)
∆ + c6,

where c6 =
∫ T

0
H(t, 0)∆.

According to (H0), we get

(3.8) |

∫ T

0

∫ ρ1

|x|

0

▽H(t, sx).xds∆| ≤

∫ T

0

∫ ρ1

|x|

0

|▽H(t, sx)||x|ds∆ ≤

∫ T

0

ρ1aρ1
b(t)∆,

where aρ1
= max|x|≤ρ1

a(|x|).

It follows from (3.6) that
∫ T

0

∫ 1

ρ1

|x|

▽H(t, sx) · x ds∆ =

∫ T

0

∫ 1

ρ1

|x|

▽H(E(t), sx) · x ds dt

=

∫ 1

ρ1

|x|

(∫ T

0

▽H(E(t), sx).x

)
dt ds(3.9)

=

∫ 1

ρ1

|x|

(∫ T

0

▽H(t, sx) · x

)
∆ ds ≤ −δ1|x|

(
1 −

ρ1

|x|

)
= −δ1|x| + δ1ρ1.

(3.7), (3.8) and (3.9) imply that (3.5) is satisfied. Consequently, ϕ is anti-coercive on

R
n.

Finally, we shall prove that ϕ is coercive on H̃1
T (T,Rn), which implies that the

condition (I2) of Lemma 2.5 holds.

If there are a constant c∗ and a sequence {un} ⊂ H̃1
T (T,Rn) such that ‖un‖ → ∞

and ϕ(un) ≤ c∗, n = 1, 2, . . ., then, according to Lemma 2.3, (3.4), λ < 0 and the

Hölder inequality on time scales [7], we have

c∗ ≥ ϕ(un) =
1

2

∫ T

0

|u∆
n (t)|2∆ +

∫ T

0

H(t, un(t))∆

≥
1

2

∫ T

0

|u∆
n (t)|2∆ +

∫ T

0

[−aMb(t)|un(t)| + λ|un(t)| +H(t, 0)]∆

=
1

2
‖un‖

2 −
1

2

∫ T

0

|un(t)|
2∆ +

∫ T

0

[−aMb(t)|un(t)| + λ|un(t)| +H(t, 0)]∆

≥
1

2
‖un‖

2 −
1

2
‖un(t)‖∞

∫ T

0

|un(t)|∆ +

∫ T

0

[−aMb(t)|un(t)| + λ|un(t)| +H(t, 0)]∆

=
1

2
‖un‖

2 −

(
1

2
‖un(t)‖∞ + aMB − λ

)∫ T

0

|un(t)|∆ +

∫ T

0

H(t, 0)∆
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≥
1

2
‖un‖

2 − T
1

2

(
1

2
‖un(t)‖∞ + aMB − λ

)(∫ T

0

|un(t)|
2∆

) 1

2

+

∫ T

0

H(t, 0)∆

> c3‖un‖
2 − c4‖un‖ − c5,

where c3, c4, c5 are positive constants and B = supt∈[0,T ]T
u(t). This contradicts to

‖un‖ → ∞. Consequently, ϕ is coercive on H̃1
T (T,Rn).

Now, it is easy to see that all conditions of Lemma 2.5 are satisfied. Hence, the

problem (1.1) has at least one solution in H1
T (T,Rn).

4. AN EXAMPLE

In this section, we present a simple example to illustrate our result.

Let

T =

{
1

4n

}
∪ {0, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65} ∪ [0.7, 1] and T = 1,

here n ∈ N.

Consider the following second order Hamiltonian systems on time scales T of the

form

(4.1)





u∆∆(ρ(t)) = ▽H(t, u(t)) ∆-a.e. t ∈ [0, 1)T,

u(0) − u(1) = u∆(0) − u∆(1) = 0,

where H(t, u) = −t2u(t). It is easy to verify that (H0) and all conditions of Theo-

rem 3.2 are satisfied. By Theorem 3.2 we see that the problem (4.1) has at least one

solution.
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Boston, 2003.

[7] M. Bohner and A. Peterson, Dynamic Equation on Time Scales: An Introduction with Appli-
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