
Dynamic Systems and Applications 18 (2009) 655-666

ABSOLUTE AND INPUT-TO-STATE STABILITIES OF

NONAUTONOMOUS SYSTEMS

WITH CAUSAL MAPPINGS

MICHAEL GIL’

Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653

Beer-Sheva 84105, Israel gilmi@cs.bgu.ac.il

ABSTRACT. We consider systems governed by the scalar equation

n
∑

k=0

ak(t)x(n−k)(t) = [Fx](t) (t ≥ 0),

where a0 ≡ 1; ak(t) (k = 1, . . . , n) are positive continuous functions and F is a causal mapping. We

also consider the case when F depends on the input. Such equations include differential, integro-

differential and other traditional equations. It is assumed that all the roots rk(t) (k = 1, . . . , n)

of the polynomial zn + a1(t)z
n−1 + · · · + an(t) are real and negative for all t ≥ 0. Exact explicit

conditions for the absolute and input-to-state stabilities of the considered systems are established.
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stability
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1. INTRODUCTION AND MAIN DEFINITIONS

We consider systems governed by the scalar equation

(1.1)

n
∑

k=0

ak(t)x
(n−k)(t) = [Fx](t) (t > 0)

where a0 ≡ 1; ak(t) (k = 1, . . . , n) are positive continuous functions bounded on [0,∞)

and F is a causal mapping. Below we recall the definition of the causal mapping and

present the relevant examples.

Equation (1.1) includes various differential, integro-differential and other tradi-

tional equations. For the details see the excellent book [2]. The stability theory of

nonlinear equations with causal mappings is at an early stage of development. The

basic method for the stability analysis is the direct Liapunov method. But finding the

Liapunov functionals for equations with causal mappings is a difficult mathematical

problem.
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In the present paper we establish exact explicit conditions for the absolute and

input-to-state stabilities of equation (1.1). To the best of our knowledge these sta-

bilities for equations with causal mappings and nonautonomous linear parts were not

explored in the available literature.

The literature on the absolute and input-to-state stabilities of continuous systems

is very rich, cf. [16, 20, 22] and references therein. The classical results were developed

in the interesting papers [12, 13, 14, 19, 24]. Mainly the systems with autonomous

and periodic linear parts were considered, cf. [23, 18].

A deep investigation of linear causal operators is presented in the book [15].

The papers [1, 4] also should be mentioned. In the paper [4], the existence and

uniqueness of local and global solutions to the Cauchy problem for equations with

causal operators in a Banach space are established. In the paper [1] it is proved that

the input-output stability of vector equations with causal operators is equivalent to

the causal invertibility of causal operators.

The approach suggested below enables us to consider various classes of systems

from a unified point of view.

Recall the definition of the causal mapping. To this end, for a positive T ≤ ∞,

let E be a Banach space of functions defined on [0, T ] with the unit operator I. For

all τ ∈ [0, T ) and w ∈ E, let the projections Pτ be defined by

(Pτw)(t) =

{

w(t) if 0 ≤ t ≤ τ,

0 if τ < t ≤ T
.

In addition, PT = I.

Definition 1.1. A mapping F : E → E satisfying the condition

(1.2) PτFPτ = PτF (τ ∈ [0, T ])

will be called a causal mapping (operator).

This definition was introduced in the excellent books [5, 21] (see also the papers

[10, 11]); it is somewhat different from the definition of the causal operator suggested

in [2].

Let us point an example of a causal mapping. Denote by B(0, T ) the set of scalar

measurable functions defined and bounded on [0, T ]. Consider in B(0, T ) the operator

(Fw)(t) = f̃(t, w(t)) +

∫ t

0

k(t, s, w(s))ds (w ∈ B(0, T ))

with a continuous kernel k, defined on [0, T ]2 × R and a continuous function f̃ :

[0, T ] × R → R. For each τ ∈ [0, T ), we have

(PτFw)(t) = fτ (t, w(t)) +

∫ t

0

kτ (t, s, w(s))ds
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where

kτ (t, s, w(s)) =

{

k(t, s, w(s)) if 0 ≤ t ≤ τ,

0 if τ < t ≤ T

(0 ≤ s ≤ t), and

fτ (t, w(t)) =

{

f̃(t, w(t)) if 0 ≤ t ≤ τ,

0 if τ < t ≤ T
.

Thus (1.2) holds and the considered mapping is causal. Note that, the integral oper-

ator

w →

∫ c

0

k(t, s, w(s))ds

with a fixed positive c ≤ T is not causal.

2. THE BASIC LEMMA

Put R+ = [0,∞]. Everywhere below, F is a continuous causal mapping acting in

B(R+). Consider the equation

(2.1) x(t) = f(t) +

∫ t

0

K(t, t1)(Fx)(t1)dt1 (t > 0),

where K : [0 ≤ s ≤ t < ∞) → R is a measurable kernel and f ∈ B(R+) is given.

A solution of (2.1) is a scalar function x defined on R+ which is bounded for any

finite τ > 0 and satisfies (2.1) a.e. on R+.

Introduce the sup-norm

‖v‖ = sup
t≥0

|v(t)| (v ∈ B(R+)).

It is assumed that there are constants q and l, such that

(2.2) ‖Fv‖ ≤ q ‖v‖ + l (v ∈ B(R+)).

In B(R+) introduce the operator VK by

(VKv)(t) =

∫ t

0

K(t, t1)v(t1)dt1 (t > 0; v ∈ B(R+))

assuming that VK is bounded in B(R+). The following lemma plays an essential role

below.

Lemma 2.1. Let VK be compact in B(0, τ) for each finite τ , and the conditions (2.2),

and

(2.3) q‖VK‖ < 1

hold. Then (2.1) has at least one solution. Moreover any solution x of (2.1) satisfies

the inequality

‖x‖ ≤
‖VK‖l + ‖f‖

1 − q‖VK‖
.
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To prove this lemma we need the following simple result.

Lemma 2.2. If condition (2.2) holds, then for all τ ≥ 0 and w ∈ B(0, τ), we have

‖Fw‖B(0,τ) ≤ q ‖w‖B(0,τ) + l

where

‖v‖B(0,τ) = sup
0≤t≤τ

|v(t)| (v ∈ B(0, τ)).

So ‖v‖B(0,∞) = ‖v‖.

Proof. From (1.2) and (2.2) it follows that

‖Fw‖B(0,τ) = ‖PτFw‖ = ‖PτFPτw‖ ≤ ‖FPτw‖ ≤ q‖Pτw‖ + l = q‖w‖B(0,τ) + l,

as claimed.

Proof of Lemma 2.1: On B(0, T ), T < ∞ let us define the mapping Φ by

(Φw)(t) = f(t) + (VKFw)(t) for a w ∈ B(0, T ). Hence, according to the previous

lemma, for any r > 0, large enough,

‖Φw‖B(0,T ) ≤ ‖w‖B(0,T ) + ‖VK‖B(0,T )(q‖w‖B(0,T ) + l) ≤ r (‖w‖B(0,T ) ≤ r).

So Φ maps a bounded set of B(0, T ) into itself. Now the existence of a solution x(t) is

due to the Schauder Fixed Point Theorem, since VK is compact. Furthermore, from

(2.1) it follows that

‖x‖B(0,T ) ≤ ‖f‖B(0,T ) + ‖VK‖B(0,T )(q‖x‖B(0,T ) + l).

Now (2.3) implies the required result. �

3. ABSOLUTE STABILITY

Consider equation (1.1) where F is a causal mapping acting in B(R+). Take the

initial conditions

(3.1) x(k)(0) = x0k (x0k ∈ R; k = 0, . . . , n − 1).

Rewrite (1.1) as

(3.2) x(t) = z(t) +

∫ t

0

G(t, s)[Fx](s)ds

where G(t, s) is the Green function of the Cauchy problem (the fundamental solution)

to the linear homogeneous equation

(3.3)
n

∑

k=0

ak(t)z
(n−k)(t) = 0 (t ≥ 0),
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and z(t) is a solution the problem (3.1), (3.3). A continuous solution of the integral

equation (3.2) will be called a mild solution of problem (1.1), (3.1). In this section it

is assumed that

(3.4) ‖Fw‖ ≤ q‖w‖ (w ∈ B(R+)).

We will say that equation (1.1) is absolutely stable in the class of nonlinearities (3.4),

if problem (1.1), (3.1) has at least one mild solution, and there is a positive constant

M which do not depend on a concrete form of F (but which depend on q), such that

‖x‖ ≤ M max
k=0,...,n

|xk0|

for any mild solution x(t) of (1.1), (3.1).

Introduce the polynomial

P (z, t) =

n
∑

k=0

ak(t)z
n−k (z ∈ C).

Let all the roots rk(t) (k = 1, . . . , n) of polynomial P (z, t) for each t ≥ 0 be real and

(3.5) rk(t) ≤ −β (t ≥ 0; k = 1, . . . , n)

with a constants β > 0. The aim of this paper is to prove the following theorem.

Theorem 3.1. Let all the roots of polynomial P (z, t) be real for each t ≥ 0 and the

conditions (3.5) and

(3.6) q < βn

hold. Then equation (1.1) is absolutely stable in the class of nonlinearities (3.4).

This theorem is proved in the next section.

Let us consider the is sharpness of Theorem 1.1. To this end let us consider the

equation

(3.7)

n
∑

k=0

ckCk
nx(n−k)(t) = qx(t) (t > 0)

with a constant c > 0. Here Ck
n are the binomial coefficients. The sufficient and

necessary stability conditions of this equation is the Hurwitzness of the polynomial

(z + c)n − q or the inequality

(3.8) cn > q.

But in the considered case β = c. Thus, in the case of equation (3.7) the conditions

of Theorem 3.1 are necessary.
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4. PROOF OF THEOREM 3.1

Let Lp(R+), p ≥ 1 be the space of real functions defined on R+ with the finite

norms

‖f‖p = [

∫ ∞

0

|f(t)|p]1/p (1 ≤ p < ∞),

and

‖f‖∞ = ess sup
t≥0

|f(t)|.

So if f is bounded, then ‖f‖∞ = ‖f‖. Consider the problem

(4.1)

n
∑

k=0

ak(t)D
n−kv(t) = f(t) (D :=

d

dt
; t > 0)

with a continuous function f ∈ Lp(R+) and the zero initial conditions

(4.2) v(k)(0) = 0 (k = 0, 1, . . . , n − 1).

For a fixed p ≥ 1 introduce the set

Dom (E) := {w ∈ Lp(R+) : w(j) ∈ Lp(R+) (j = 1, 2, . . . , n),

w(k)(0) = 0 (k = 0, 1, . . . , n − 1)}.

Lemma 4.1. Let a0 ≡ 1; ak(t) (k = 1, . . . , n) be positive continuous functions

bounded on [0,∞). Let condidion (3.5) hold and f be a continuous function from

Lp(R+). Then problem (4.1), (4.2) has a unique solution v ∈ Dom(E). Moreover,

‖v‖p ≤
‖f‖p

βn
.

Proof. Define on Dom (E) the operator E by

Eu(t) := P (t, D)u =

n
∑

k=0

ak(t)D
n−ku(t) (u ∈ Dom (E)).

So problem (4.1), (4.2) can be written as Ev = f . Since the coefficients of equation

(4.1) are bounded, the roots of P (z, t) are bounded on R+. Thus,

rk(t) ≥ −α (t ≥ 0; k = 1, 2, . . . , n)

for a finite positive number α. Define on Dom (E) also the operator E0 by

E0u(t) := (D + α)nu(t) = (
d

dt
+ α)nu(t).

Then the inverses to E and E0 satisfy the relations

(4.3) E−1 = E−1
0 E0E

−1 = E−1
0 (EE−1

0 )−1.

Below we check that the inverses really exist.
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By the Laplace transform for any bounded continuous function y defined on R+

we have

E−1
0 y(t) =

1

2πi

∫ i∞

−i∞

eλtỹ(λ)

(λ + α)n
dλ

where ỹ is the Laplace transform to y. Set h := EE−1
0 y. Then

h(t) =
1

2πi

∫ i∞

−i∞

eλtP (λ, t)ỹ(λ)dλ

(λ + α)n
.

Hence,

h(t) =
1

2πi

∫ i∞

−i∞

eλtỹ(λ)
n

∏

k=1

λ − rk(t)

λ + α
dλ.

Put

(4.4) F (t, ν) =
1

2πi

∫ i∞

−i∞

eλtỹ(λ)
n

∏

k=1

λ − rk(ν)

λ + α
dλ (t, ν ≥ 0).

Thus

F (t, t) = h(t).

We can write out

F (t, ν) =
1

2πi

∫ i∞

−i∞

eλtỹ(λ)
n

∏

k=1

(

1 −
α + rk(ν)

λ + α

)

dλ (t, ν ≥ 0).

Then by the convolution property,

(4.5) F (t, ν) = (K1(ν) ∗ K2(ν) ∗ · · · ∗ Kn(ν) ∗ y)(t)

where for a continuous u,

(Kj(ν) ∗ u)(t) = u(t) − (α + rj(ν))

∫ t

0

e−α(t−s)u(s)ds,

since e−αt is the Laplace original to (λ + α)−1. So

(Kj(t) ∗ u)(t) = u(t) − (α + rj(t))

∫ t

0

e−α(t−s)u(s)ds.

Therefore

(4.6) |(Kj(t) ∗ u)(t)| ≥ |u(t)| − (α − β)

∫ ∞

0

|u(s)|e−α(t−s)ds

since −rj(ν) > β (ν ≥ 0). From (4.5) it follows that

h(t) = F (t, t) = (K1(t) ∗ K2(t) ∗ · · · ∗ Kn(t) ∗ y)(t).

Put

yj(t) = (Kj+1(t) ∗ cdots ∗ Kn(t) ∗ y)(t) (j = 1, . . . , n − 1).

Then

h(t) = (K1(t) ∗ y1)(t) = y1(t) − (α − r1(t))

∫ t

0

e−α(t−s)y1(s)ds

and

yj(t) = (Kj+1(t) ∗ yj+1)(t) (j = 1, . . . , n − 1); yn = y.
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By (4.6) we have

‖yj‖p ≥ ‖yj+1‖p(1 − (α − β)

∫ ∞

0

e−αsds) = ‖yj+1‖p

(

1 +
β − α

α

)

= ‖yj+1‖p
β

α
.

Thus,

‖y‖p ≤ ‖yn−1‖p
α

β
≤ ‖yn−2‖p

α2

β2
≤ · · · ≤ ‖y1‖p

αn−1

βn−1
≤ ‖h‖p

αn

βn
.

This means that the operator T := EE−1
0 satisfies the inequality

(4.7) ‖Ty‖p
αn

βn
≥ ‖y‖p.

Let us prove that T is invertible. Indeed, from the (4.4), by the convolution property

it follows,

h(t) = F (t, t) = y(t) +

∫ t

0

W (t, t − s)y(s)ds

where

W (ν, t) = −
1

2πi

∫ i∞

−i∞

eλt (λ + α)n − P (λ, ν)

(λ + α)n
dλ (ν ≥ 0).

Furthermore, on the space Lp(0, τ) with a positive τ < ∞, introduce the Volterra

operator V by

(V w)(t) =

∫ t

0

W (t, t − s)w(s)ds.

Then y − V y = Ty = h. By the Neumann series,

T−1 = (I − V )−1h =
∞

∑

k=0

V k.

Here I is the unit operator. Note that the Neumann series of any Volterra operator

with a continuous kernel converges in the norm of Lp on each finite segment, since the

spectral radius of that operator is equal to zero. Taking into account that continuous

functions are dense in Lp, by (4.7) we get the inequality

(4.8) ‖T−1‖p = ‖(EE−1
0 )−1‖p ≤

αn

βn
.

Furthermore, take into account that for any continuous y ∈ Lp(R+),

E−1
0 y(t) =

1

2πi

∫ i∞

−i∞

eλtỹ(λ)

(λ + α)n
dλ =

∫ t

0

Q(t − s)y(s)ds (y)

where

Q(t) =
1

2πi

∫ i∞

−i∞

eλt

(λ + α)n
dλ.

By the Cauchy formula for derivatives, we have

Q(t) =
tn−1

(n − 1)!
e−αt (t ≥ 0).

Hence,

‖E−1
0 y‖p ≤ ‖y‖p sup

t≥0

∫ t

0

(t − s)n−1

(n − 1)!
e−α(t−s)ds = ‖y‖p

∫ ∞

0

sn−1

(n − 1)!
e−αsds = ‖y‖p

1

αn
.
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So

‖E−1
0 ‖p ≤

1

αn
.

Now (4.3) and (4.8) imply

‖E−1‖p ≤ ‖E−1
0 ‖p‖(EE−1

0 )−1‖p ≤
1

βn
.

This proves the required result.

Recall that ‖ · ‖ means the sup-norm on R+.

Lemma 4.2. Let all the roots of polynomial P (z, t) be real and the conditions (2.2),

(3.5) and (3.6) hold. Then problem (1.1), (3.1) has at least one mild solution. More-

over any mild solution x of (1.1), (3.1) satisfies the inequality

‖x‖ ≤ c2(l + max
k

|x0k|)

where the constant c2 does not depend on l and the initial conditions.

Proof. The well known Theorem III.5.1 [3] asserts that if a nonhomogeneous linear

differential equation has a bounded solution for any bounded right-hand part and the

zero initial conditions, then the corresponding homogeneous equation is exponentially

stable. So by Lemma 4.1, a solution z of the linear problem (3.1), (3.3) is subject to

the inequality

|z(t)| ≤ c1 max
k

|x0k|e
−ǫt (t ≥ 0, c1, ǫ = const > 0).

Moreover, according to (3.2) by Lemma 4.1 we have ‖VK‖ ≤ 1/βn. This and

Lemma 2.1 prove the required result.

The assertion of Theorem 3.1 follows from the previous lemma with l = 0.

5. EXPONENTIAL AND INPUT-TO-STATE STABILITIES

5.1. The general case. Equation (1.1) is said to be absolutely exponentially stable

in the class of nonlinearities (3.4) if there is are positive constants M and ν which do

not depend on a concrete form of F , such that

|x(t)| ≤ Me−νt max
k=0,...,n

|xk0|

for any mild solution x(t) of (1.1), (3.1) provided (3.4) holds.

Assume that the condition

(5.1) lim
ǫ→0

sup
t≥0

eǫt|[F (e−ǫtw)](t)| ≤ q‖w‖ (w ∈ C(R+))

holds. Substituting

(5.2) x(t) = y(t)e−ǫt
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in (1.1) with an ǫ > 0 we arrive at the equation

(5.3)

n
∑

k=0

aǫ,k(t)D
n−ky(t) = [Fǫy](t) (t > 0)

where aǫ,k(t) → ak(t) in the sup-norm as ǫ → 0 and

[Fǫy] = eǫt[Fe−ǫty].

According to (5.1) ‖Fǫy‖ ≤ ǫ1 + ‖y‖ where ǫ1 → 0 as ǫ → 0. Applying Theorem 3.1

to equation (5.3) with ǫ > 0 small enough, under conditions (3.5) and (3.6) we have

‖y‖ ≤ const max
k=0,...,n−1

|xk0|

Now (5.2) implies

Theorem 5.1. Let all the roots of polynomial P (z, t) be real and the conditions (3.5),

(3.6) and (5.1) hold. Then equation (1.1) is absolutely exponentially stable in the class

of nonlinearities (3.4).

Furthermore, let Ũ be a Banach space of functions defined on R+. For example,

Ũ = Lp(R+). Consider the equation

(5.4) P (D, t)x(t) = [F (u, x)](t).

Here x is the state, u ∈ Ũ is the input, F (u, ·) for each u ∈ Ũ is a causal mapping

acting in L2(R+).

Equation (5.4) is said to be globally bounded input-to-bounded state stable (globally

BIBS stable), if the zero initial conditions

x(k)(0) = 0 (k = 0, . . . , n − 1).

and u ∈ Ũ imply that (5.4) has at least one mild solution, and every mild solution is

bounded.

Suppose that there are constants q and qU , such that

(5.5) ‖F (u, w)‖ ≤ q‖w‖ + qU |u|Ũ (w ∈ C(R+); u ∈ Ũ)

where |u|Ũ is the norm of space Ũ . Now Lemma 4.2 implies

Corollary 5.2. For each u ∈ Ũ , let a mapping F (u, ·) : B(R+) → B(R+) be con-

tinuous causal. If, in addition, all the roots of polynomial P (z, t) be real and the

conditions (3.5), (3.6) and (5.5) hold, then equation (5.3) is globally BIBS-stable.
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5.2. Nonlinear differential equation. Consider the differential equation

(5.6)

n
∑

k=0

ak(t)D
n−kx(t) = F0(x, t) (t > 0)

where F0 : R × R+ → R is continuous and satisfies the condition

(5.7) |F0(v, t)| ≤ q|v| (v ∈ R; t ≥ 0).

Then, clearly,

lim
ǫ→0

sup
t≥0

eǫt|[F0(e
−ǫtw(t))| ≤ lim

ǫ→0
sup
t≥0

eǫtqe−ǫt|w(t)| = q‖w‖ (w ∈ C(R+)).

Thus, by Theorem 5.1, we get

Corollary 5.3. Under conditions (3.5) and (3.6), equation (5.6) is absolutely expo-

nentially stable in the class of nonlinearities (5.7).

Similarly the BIBS stability of ordinary differential equation can be considered.

Concluding Remarks. The paper proposes explicit conditions that provide the

absolute stability and input-to-state stability of equation (1.1). These conditions

enable us to avoid constructing the Liapunov functions (functionals). Our results are

exact: the suggested sufficient conditions became necessary in appropriate situations.

The notion of the causal operator allows us to consider various systems from the

unified point of view.

REFERENCES

[1] Bazhenova, L. S. (2002), The IO-stability of equations with operators causal with respect to a

cone. Mosc. Univ. Math. Bull., 57, No.3, 33–35 (2002); translation from Vestn. Mosk. Univ.,

Ser. I 2002, No.3, 54–57 .

[2] Corduneanu, C., Functional Equations with Causal Operators, Taylor and Francis, London,

2002.

[3] Daleckii, Yu L. and Krein, M. G. Stability of Solutions of Differential Equations in Banach

Space, Amer. Math. Soc., Providence, R. I., 1974.

[4] Drici, Z.; McRae, F. A.; Vasundhara Devi, J., Differential equations with causal operators in

a Banach space. Nonlinear Anal., Theory Methods Appl. 62, No. 2 (A), 301–313 (2005).

[5] Feintuch, A., Saeks, R. System Theory. A Hilbert Space Approach. Ac. Press, New York, 1982.

[6] Gil’, M. I. On absolute stability of systems, IEEE, Trans. Automatic Control 39, N 12, (1994),

pp. 2481–2484.

[7] Gil’, M. I. A class of absolutely stable multivariable systems. Int. J. Systems Sci. 25, 613–617

(1994).

[8] Gil’, M. I., Stability of Finite and Infinite Dimensional Systems, Kluwer, N. Y, 1998

[9] Gil’, M. I. Explicit Stability Conditions for Continuous Systems, Lectures Notes In Control

and Information Sci, Vol. 314, Springer Verlag, 2005.

[10] Gil’, M. I., Positive solutions of equations with nonlinear causal mappings Positivity, 11, N3,

(2007), 523-535



666 M. GIL

[11] Gil’, M. I., L2-stability of vector equations with nonlinear causal mappings, Dynamic Systems

and Appl. 17, 201–220 (2008)

[12] Guardabassi, G. O., Robust absolute stability of a class of s.i.s.o. control systems. Int. J.

Robust Nonlinear Control 14, No. 11, 999–1017 (2004).

[13] Impram, S. T.; Munro, N., Absolute stability of nonlinear systems with disc and norm-bounded

perturbations. Int. J. Robust Nonlinear Control 14, No. 1, 61–78 (2004).

[14] Krichman, M., Sontag, E. D.; Wang, Y. Input-output-to-state stability. SIAM J. Control

Optimization, 39, No.6, 1874–1928 (2000)

[15] Kurbatov, V., Functional differential operators and equations, Kluwer Academic Publishers,

Dordrecht, 1999.

[16] Liao, Xiao Xin, Absolute stability of nonlinear control systems, Kluwer, Dordrecht, 1993

[17] Liberzon, M. R., Essays on the absolute stability theory. Automation and Remote Control, 67,

No. 10, 1610–1644 (2006).

[18] Morozov, M.V., Equivalence of two definitions for absolute stability of nonlinear nonstationary

control systems with periodic linear components. Autom. Remote Control 53, No. 8, 1167–1173

(1992); translation from Avtom. Telemekh. 1992, No. 8, 46–53 (1992).

[19] Oliveira de , M. C.; Geromel, J. C.; Hsu, Liu, A new absolute stability test for systems with

state-dependent perturbations. Int. J. Robust Nonlinear Control 12, No. 14, 1209–1226 (2002).

[20] Sontag, E. D. Mathematical Control Theory: Deterministic Finite Dimensional Systems.

Springer-Verlag, New York, 1990.

[21] Vath, M. Volterra and Integral Equations of Vector Functions, Marcel Dekker, 2000.

[22] Vidyasagar, M., Nonlinear Systems Analysis, second edition. Prentice-Hall. Englewood Cliffs,

New Jersey, 1993.

[23] Yakubovich, V. A. The application of the theory of linear perodic Hamiltonian systems to

problems of absolute stability of nonlinear systems with a periodic nonstationary linear part.

Vestn. Leningr. Univ., Math. 20, No. 3, 59–65 (1987)

[24] Zevin, A. A. and Pinsky M. A., A new approach to the Lur’e problem in the theory of expo-

nential stability and bounds for solutions with bounded nonlinearities, IEEE Trans. Autom.

Control 48, No. 10, 1799–1804 , (2003).


