
Dynamic Systems and Applications 18 (2009) 677-686

ON INITIAL VALUE PROBLEMS FOR FIRST-ORDER IMPLICIT

IMPULSIVE FUZZY DIFFERENTIAL EQUATIONS

HENG-YOU LAN AND JUAN J. NIETO

Department of Mathematics, Sichuan University of Science & Engineering

Zigong, Sichuan 643000, P. R. China

hengyoulan@163.com
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ABSTRACT. In this paper, by using Banach contraction mapping principle theorem, we obtain

some new existence and uniqueness theorems of solutions for a new class of initial value problems of

first-order implicit impulsive fuzzy differential equations in the metric space of normal fuzzy convex

sets with distance given by maximum of the Hausdorff distance between level sets.
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1. INTRODUCTION

Let En be the set of real fuzzy numbers, J = [t0, t0 + a] ⊂ R = (−∞, +∞) be

a compact interval, f : J × En × En → En be continuous and Ik ∈ C[En, En] for

all k = 1, 2, . . . , m. For each fixed x0 ∈ En and any constant λ ≥ 0, we consider

the following initial value problem of first order implicit impulsive fuzzy differential

equation:

Find x : J → En such that

(1.1)



















x′(t) = f(t, x(t), λx′(t)), t 6= tk,

△x|t=tk = Ik(x(tk)), (k = 1, 2, . . . , m),

x(t0) = x0.

Some special cases of the problem (1.1) are as follows:
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(1) If λ = 1, then problem (1.1) reduces to finding x : J → En such that

(1.2)



















x′(t) = f(t, x(t), x′(t)), t 6= tk,

△x|t=tk = Ik(x(tk)), (k = 1, 2, . . . , m),

x(t0) = x0.

The problem (1.2) was introduced and studied by Huang and Lan [1] in real

Banach spaces.

(2) If λ = 0, then problem (1.1) becomes to finding x : J → En such that

(1.3)



















x′(t) = f(t, x(t)), t 6= tk,

△x|t=tk = Ik(x(tk)), (k = 1, 2, . . . , m),

x(t0) = x0,

The study of such types of problems is motivated by an increasing interest in

the differential equations with applications in Banach spaces and fuzzy differential

equations under various initial and boundary conditions. In 1972, Chang and Zadeh

[2] first introduced the concept of fuzzy derivative. Afterwards, the framework for the

study of fuzzy differential equations has also been developed and the basic properties

of solutions of fuzzy differential equations and applications are available (see, for

example, [3–15] and the references therein).

Recently, Nieto [11] proved a version of the classical Peano existence theorem

for initial value problems for a fuzzy differential equation in the metric space of

normal fuzzy convex sets with the distance given by the maximum of the Hausdorff

distance between level sets. The results of Nieto [11] complements the existence

and uniqueness result of Kaleva [8]. Very recently, Nieto and Rodŕıguez-López [12]

found sufficient conditions for the boundedness of every solution of first-order fuzzy

differential equations as well as certain fuzzy integral equations. Georgiou et al.

[16] considered nth-order fuzzy differential equations with initial value conditions

and proved the existence and uniqueness of solution for nonlinearities satisfying a

Lipschitz condition.

Further, by using Banach fixed point theorem, Lan and Huang [17] obtained some

new existence and uniqueness theorems of solutions for a class of initial value prob-

lems of nonlinear first order implicit fuzzy differential equations in the metric space

of normal fuzzy convex sets En with distance given by maximum of the Hausdorff

distance between level sets:






x′(t) = f(t, x(t), λx′(t)),

x(t0) = x0.

On the other hand, the theory of impulsive differential equations or implicit

impulsive integro-differential equations has been emerging as an important area of
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investigation in recent years and has been developed very rapidly due to the fact

that such equations find a wide range of applications modeling adequately many real

processes observed in physics, chemistry, biology and engineering (see, for example,

[1, 18] and the references therein). Correspondingly, applications of the theory of

impulsive differential equations to different areas were considered by many authors

and some basic results on impulsive differential equations have been obtained (see,

for example, [19–23], and, in particular [21] and the references therein). Furthermore,

some basic results on impulsive fuzzy differential equations have also been studied by

several authors, see [24, 25], but the theory still remains to be developed.

Motivated and inspired by the above works, in this paper, by using Banach fixed

point theorem, we obtain some new existence and uniqueness theorems of solutions

for the initial value problem (1.1) of nonlinear first order implicit impulsive fuzzy

differential equations in the metric space of normal fuzzy convex sets with distance

given by maximum of the Hausdorff distance between level sets.

2. PRELIMINARIES

Let Pk(R
n) denote the family of non-empty compact, convex subsets of Rn. If

α, β ∈ R and A, B ∈ Pk(R
n)

α(A + B) = αA + αB,

α(βA) = (αβ)A, 1 · A = A

and if α, β ≥ 0, then (α + β)A = αA + βA. For A, B ∈ Pk(R
n), the Hausdorff metric

is defined as

d(A, B) = max

{

sup
x∈A

inf
y∈B

‖x − y‖, sup
y∈B

inf
x∈A

‖x − y‖

}

.

A fuzzy set in Rn is a function with domain Rn and values in [0, 1], i.e., an element

of [0, 1]R
n

(see [26]). Let u, v ∈ [0, 1]R
n

. Then we have (see [26])

(a) u is contained in v denoted by u ≤ v if and only if u(x) ≤ v(x) for all x ∈ Rn;

(b) u ∧ v ∈ [0, 1]R
n

by (u ∧ v)(x) = min{u(x), v(x)} for all x ∈ Rn (intersection);

(c) u ∨ v ∈ [0, 1]R
n

by (u ∨ v)(x) = max{u(x), v(x)} for all x ∈ Rn (union);

(d) uc ∈ [0, 1]R
n

by uc(x) = 1 − u(x) for all x ∈ Rn.

Denote by En = {u : Rn → [0, 1] such that u satisfies (i) to (iv) mentioned below}:

(i) u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;

(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 ≤ ν ≤ 1,

u(νx + (1 − ν)y) ≥ min{u(x), u(y)};

(iii) u is upper semicontinuous;

(iv) [u]0 = {x ∈ Rn : u(x) > 0} is compact.
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Thus, if u ∈ En, then it follows from (i)-(iv) that, for each α ∈ (0, 1], the α-level set

[u]α = {x ∈ Rn : u(x) ≥ α}

is a nonempty compact convex subset of Rn, that is, [u]α ∈ Pk(R
n) for all 0 ≤ α ≤ 1.

Further, define D : En × En → [0, +∞) as

D(u, v) = sup{d([u]α, [v]α) : α ∈ [0, 1]}.

It is well known that D is a metric in En and (En, D) is a complete metric space (see

[27]). Moreover, if u, v, w ∈ En and λ > 0, then the addition and (positive) scalar

multiplication in En are defined in terms of the α-level sets by

[u + v]α = [u]α + [v]α, [λ · u]α = λ[u]α, ∀α ∈ [0, 1]

and D has a linear structure in the sense that

D(u + w, v + w) = D(u, v), D(λu, λv) = λD(u, v).

Note that (En, D) is not a vector space but it can be embedded isomorphically as a

cone in a Banach space (see [9]).

Let J = [t0, t0 + a] with a > 0 and x, y ∈ En. A mapping F : J → En is

differentiable at t ∈ J if there exists a F ′(t) ∈ En such that the limits

lim
h→0+

F (t + h) − F (t)

h

and

lim
h→0+

F (t) − F (t − h)

h

exist and are equal to F ′(t). Here the limits are taken in the metric space (En, D).

At the endpoints of J , we consider the one-sided derivatives.

Let F : J → En. Then the integral of F over J denoted by
∫

J
F (t)dt, is defined

levelwise by the equation

[

∫

J

F (t)dt]α =

∫

J

Fα(t)dt

=

{
∫

J

F (t)dt|F : J → Rnis a measurable selection for Fα

}

.

We say that a mapping F : J → En is strongly measurable if, for all α ∈ [0, 1], the

set-valued mapping Fα : J → Pk(R
n) is defined by Fα(t) = [F (t)]α. Moreover, the

following results (see [7]) will be useful in what follows.

Lemma 2.1. If F : J → En is continuous, then it is integrable and the function

G(t) =

∫ t

t0

F (s)ds, t ∈ J
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is differentiable and G′(t) = F (t). Furthermore,

F (t) − F (t0) =

∫ t

t0

F ′(s)ds.

3. MAIN RESULTS

In this section, we are in a position to prove our main results concerning with

the solutions of first order fuzzy differential equation problems (1.1)–(1.3).

Throughout this paper, let J = [t0, t0 + a] (where a > 0), t0 < t1 < · · · < tm <

t0 + a < +∞, J0 = [t0, t1], J1 = (t1, t2], . . . , Jk = (tk, tk+1], . . . , Jm = (tm, t0 + a] and

PC1(J, En) = {x : x is a map from J into En such that x(t) is

continuously differentiable on (tk, tk+1), left continuous at tk,

and x(t+k ), x′(t−k ), x′(t+k ) exists , k = 1, 2, . . . , m}.

where x(t+k ) represents the right limits of x(t) at t = tk, and x′(t−k ) and x′(t+k ) represent

the left and right derivatives of x(t) at t = tk, respectively. For x ∈ PC1(J, En), by

virtue of the mean value theorem

x(tk) − x(tk − h) ∈ hco{x′(t) : tk − h < t < tk} (h > 0),

it is easy to see that the left derivative x′
−(tk) exists and

x′
−(tk) = lim

h→0+
h−1[x(tk) − x(tk − h)] = x′(t−k ).

In the sequel, x′(tk) is understood as x′
−(tk). Further, we define H(x, y) by

H(x, y) = sup
t∈J

{D(x(t), y(t)) + D(x′(t), y′(t))}(3.1)

for all x, y ∈ PC1(J, En), where Γ > 0 is a constant. Then, by using the same method

as in [7], it is clear that (PC1(J, En), H) is a complete metric space.

By using Lemma 1 and Lemma 2.1 of [28], it is easy to prove the following lemma.

Lemma 3.1. Assume that f : J × En × En → En is continuous. Then a mapping

x : J → En is a solution of problem (1.1) in PC1(J, En) if and only if x satisfies the

following impulsive integral equation

x(t) = x0e
−M(t−t0) +

∫ t

t0

e−M(t−s)[f(s, x(s), λx′(s)) + Mx(s)]ds

+
∑

t0<tk<t

e−M(t−tk)Ik(x(tk)),

where M > 0 is a constant.



682 H-Y. LAN AND J. J. NIETO

Theorem 3.1. Suppose that f : J × En × En → En and g : J × En → En is

continuous. If for all xi, yi : J → En (i = 1, 2), there exist nonnegative constants ρ, ̺

and b such that for all t ∈ J ,

(3.2) D(f(t, x1(t), y1(t)), f(t, x2(t), y2(t))) ≤ ρD(x1(t), x2(t)) + ̺D(y1(t), y2(t)),

(3.3) D(Ik(x1(t)), Ik(x2(t))) ≤ bD(x1(t), x2(t)), ∀k = 1, 2, . . . , m.

Then problem (1.1) has a unique solution on J .

Proof. Let (τ1, x̄(t)) ∈ J × En be arbitrary and δ > 0 be a constant such that

σ = max{ρ+mb+h(ρ+M)+M(1−mb−h(ρ+M)), hλ̺+λ̺(1−hM)} < 1, where

h = eMδ−1
M

and λ > 0 is a constant. We will first show that the initial value problem

(3.4)



















x′(t) = f(t, x(t), λx′(t)), ∀t ∈ J1 and t 6= tk,

△x|t=tk = Ik(x(tk)), (k = 1, 2, . . . , m),

x(τ1) = x̄,

has a unique solution on J1 = [τ1, τ1 + δ]. For any x ∈ PC1(J, En), define Fx on J1

by the equation

F (x(t)) = x̄e−M(t−τ1) +

∫ t

τ1

e−M(t−s)[f(s, x(s), λx′(s)) + Mx(s)]ds

+
∑

τ1<tk<t

e−M(t−tk)Ik(x(tk)),(3.5)

In the sequel, we prove that F : PC1(J, En) → PC1(J, En) is a contraction

mapping. Indeed, for any given x ∈ PC1(J, En) and t 6= tk, k = 1, 2 . . . , m, it follows

from (3.5) that

(3.6) (Fx)′(t) = −MF (x(t)) + Mx(t) + f(t, x(t), λx′(t)),

and so Fx ∈ PC1(J, En), i.e., F is a mapping from PC1(J, En) into PC1(J, En). By

virtue of (3.2), (3.3) and (3.5), for any x1, x2 ∈ PC1(J, En),

D(F (x1(t)),F (x2(t)))

≤

∫ τ1+δ

τ1

e−M(t−s)[D(f(s, x1(s), λx′
1(s)), f(s, x2(s), λx′

2(s)))

+ MD(x1(s), x2(s))]ds +
∑

τ1<tk<t

e−M(t−tk)D(Ik(x1(tk)), Ik(x2(tk)))

= e−Mt

∫ τ1+δ

τ1

eMs[D(f(s, x1(s), λx′
1(s)), f(s, x2(s), λx′

2(s)))

+ MD(x1(s), x2(s))]ds +
∑

τ1<tk<t

e−M(t−tk)D(Ik(x1(tk)), Ik(x2(tk)))
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≤ e−Mt

∫ τ1+δ

τ1

eMs[(ρ + M)D(x1(s), x2(s))

+ λ̺D(x′
1(s), x

′
2(s))]ds +

∑

τ1<tk<t

e−M(t−tk)bD(x1(tk), x2(tk))

= e−Mt

∫ τ1+δ

τ1

eMs[(ρ + M)D(x1(s), x2(s)) + λ̺D(x′
1(s), x

′
2(s))]ds + B(t),(3.7)

where

B(t) =
∑

τ1<tk<t

be−M(t−tk)D(x1(tk), x2(tk)) ≤ bD(x1(t), x2(t))
∑

t0<tk<t

e−M(t−tk),

and so

sup
t∈J

e−ΓtB(t) ≤ bD(x1(t), x2(t)) max
1≤k≤m

{Ck},(3.8)

where

Ck = sup
t∈Jk

∑

t0<tj<t

e−M(t−tj ), ∀1 ≤ k ≤ m.

Since

Ck = sup
t∈Jk

[
k−1
∑

j=1

e−M(t−tj ) + e−M(t−tk)] ≤ sup
t∈Jk

k−1
∑

j=1

e−M(t−tj) + sup
t∈Jk

e−M(t−tk) = Dk + Ek

for all 1 ≤ k ≤ m, and

Dk = sup
t∈Jk

k−1
∑

j=1

e−M(t−tj ), Ek = sup
t∈Jk

e−M(t−tk).

For all 1 ≤ j ≤ k − 1, setting νj(t) = e−M(t−tj) and δ∗ = min{tk+1 − tk|1 ≤ k ≤ m},

we have

νj(t) ≤ e−Mδ∗ , ∀t ∈ Jk = (tk, tk+1],

and so

Dk ≤

k−1
∑

j=1

e−Mδ∗ ≤

m−1
∑

j=1

e−Mδ∗ = (m − 1)e−Mδ∗ < m − 1, ∀1 ≤ k ≤ m.

Now we consider Ek: take νk(t) = e−M(t−tk), t ∈ Jk. Since t − tk ≥ 0 and

−M(t − tk) ≤ 0, we know that νk(t) ≤ 1, i.e., Ek ≤ 1.

Hence, Ek ≤ 1 and Ck ≤ m for all 1 ≤ k ≤ m. It follows from (3.8) that

(3.9) sup
t∈J

B(t) ≤ mbD(x1(t), x2(t)).

It follows from (3.7) and (3.9) that

D(F (x1(t)),F (x2(t)))

≤ e−Mt

∫ τ1+δ

τ1

eMs[(ρ + M)D(x1(s), x2(s)) + λ̺D(x′
1(s), x

′
2(s))]ds
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+ mbD(x1(t), x2(t))

≤
e−M(t−τ1)

M
(eMδ − 1)[(ρ + M)D(x1(t), x2(t)) + λ̺D(x′

1(t), x
′
2(t))]

+ mbD(x1(t), x2(t))

≤ [mb + h(ρ + M)]D(x1(t), x2(t)) + hλ̺D(x′
1(t), x

′
2(t)),(3.10)

where h = eMδ−1
M

.

Further, by (3.6) and the above proof, now we know

D((Fx1)
′(t), (Fx2)

′(t)) = D(−MF (x1(t)) + Mx1(t) + f(t, x1(t), λx′
1(t)),

− MF (x2(t)) + Mx2(t) + f(t, x2(t), λx′
2(t)))

= −MD(F (x1(t)), F (x2(t)))

+ MD(x1(t), x2(t)) + D(f(t, x1(t), λx′
1(t)), f(t, x2(t), λx′

2(t)))

≤ −M{[mb + h(ρ + M)]D(x1(t), x2(t)) + hλ̺D(x′
1(t), x

′
2(t))}

+ MD(x1(t), x2(t)) + ρD(x1(t), x2(t)) + λ̺D(x′
1(t), x

′
2(t))

= [M(1 − mb − h(ρ + M)) + ρ]D(x1(t), x2(t))

+ λ̺(1 − hM)D(x′
1(t), x

′
2(t)).(3.11)

From (3.1), (3.10) and (3.11), we have

H(Fx1, Fx2) = sup
t∈J1

{D(F (x1(t)), F (x2(t))) + D((Fx1)
′(t), (Fx2)

′(t))}

≤ D(F (x1(t)), F (x2(t))) + D((Fx1)
′(t), (Fx2)

′(t))

≤ [mb + h(ρ + M)]D(x1(t), x2(t)) + hλ̺D(x′
1(t), x

′
2(t))

+ [M(1 − mb − h(ρ + M)) + ρ]D(x1(t), x2(t))

+ λ̺(1 − hM)D(x′
1(t), x

′
2(t))

≤ σH(x1, x2),

where σ = max{ρ + mb + h(ρ + M) + M(1 − mb − h(ρ + M)), hλ̺ + λ̺(1 − hM)}.

Therefore, by Banach fixed point theorem, F has a unique fixed point, which by

Lemma 2 is the desired solution to problem (3.4).

Express J as a union of a finite family of intervals Jk with the length of each

interval less than δ. The preceding paragraph guarantees the existence of a unique

solution to problem (1.1) on each interval Jk. Piecing these solutions together gives

us the unique solution on the whole interval J . This completes the proof.

Remark 3.1. If ̺ = 0 in (3.2), then we can obtain the corresponding result for

problem (1.1).
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Theorem 3.2. Let f : J × En × En → En be a continuous mapping. Assume that

for all xi, yi : J → En (i = 1, 2), there exist nonnegative constants ρ, ̺ and b such

that for all t ∈ J , α ∈ [0, 1] and k = 1, 2, . . . , m,

d([f(t, x1(t), y1(t))]
α, [f(t, x2(t), y2(t))]

α) ≤ ρd([x1(t)]
α, [x2(t)]

α)+̺d([y1(t)]
α, [y2(t)]

α)

and

d([Ik(x1(t))]
α, [Ik(x2(t))]

α) ≤ bd([x1(t)]
α, [x2(t)]

α).

Then problem (1.1) has a unique solution on J .

Proof. In fact, we have

D(f(t, x1(t), y1(t)), f(t, x2(t), y2(t)))

= sup{d([f(t, x1(t), y1(t))]
α, [f(t, x2(t), y2(t))]

α) : α ∈ [0, 1]}

≤ ρ sup{d([x1(t)]
α, [x2(t)]

α) : α ∈ [0, 1]} + ̺ sup{d([y1(t)]
α, [y2(t)]

α) : α ∈ [0, 1]}

= ρD(x1(t), x2(t)) + ̺D(y1(t), y2(t))

and

D(Ik(x1(t)), Ik(x2(t))) = sup{d([Ik(x1(t))]
α, [Ik(x2(t))]

α) : α ∈ [0, 1]}

≤ b sup{d([x1(t)]
α, [x2(t)]

α) : α ∈ [0, 1]}

= bD(x1(t), x2(t)).

Thus, by Theorem 3.1 we know that problem (1.1) has a unique solution on J .

Remark 3.2. Using the same method as Theorems 3.1–3.2, we can consider initial

value problems (1.2)–(1.3) and get the corresponding conclusions.
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