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1. INTRODUCTION

The applicable fixed point theory is a core part of the subject of nonlinear func-

tional analysis and has its origin in the works of Schauder [20, page 56], Banas [20,

page 17] and Tarski [20, page 506]. See Granas and Dugundji [15], Deimling [6],

Zeidler [20] and the references therein. A fixed point theorem useful for applications

to other areas of mathematics such as theory of differential and integral equations,

approximation and optimization theory, control theory, economics and game theory

etc., is classified as applicable fixed point theorem and the collection of such applica-

ble fixed point theorems is the applicable fixed point theory. The theory of functional

differential equations is not escaped from the use of fixed point theorems in which the

fixed point theorems have been used in variety of ways to prove the existence results

for various types of nonlinear functional differential equations.

Most of applications of the fixed point theorems to nonlinear problems of any

dynamical systems are existential in nature. However, now it is clear that the fixed

point theory is also useful in obtaining the different characterizations of the solutions.

See Heikkilä and Lakshmikantham [17], Burton and Zhang [4], Banas and Dhage [2],

Dhage [8, 9, 10] and the references given therein. The method of applications of

fixed point theorems to functional differential equations consists of following main

steps. Since integrals are easier to handle than differentials, first the given functional

differential equation is converted into an equivalent integral equation via theory of
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differential and integral calculus and then so obtained integral equation is written in

the form of operator equation in a suitable function space. Finally, depending upon

the nature of nonlinearities involved in a differential equation, a fixed point theorem

is used to prove the existence of solutions for the so obtained equivalent operator

equation which thereby implies the existence results for the functional differential

equations in question.

In this article, we characterize the solutions of some nonlinear functional differ-

ential equations via applicable classical and hybrid fixed point theorems in abstract

spaces. The nonlinearities involved in the equations are not assumed to be con-

tinuous and the characterizations of the solutions are obtained under Carathéodory

conditions. We claim that our results are new to the theory of nonlinear functional

differential equations on unbounded intervals.

2. FUNCTIONAL DIFFERENTIAL EQUATIONS

The differential equations in which the solutions depend upon the past or future

states are called functional differential equations. The former are called the functional

differential equations of delay type and the later are called the functional differential

equations of advanced type. The common nomenclature for both type of functional

differential equations is differential equations with deviating arguments. The differ-

ential equations in which the solutions depend upon the past velocity or derivatives

are called functional differential equations of neutral type. It is needless to say the

importance of study of functional differential equations since they arise in several dy-

namical systems of natural and physical phenomena of the universe. The exhaustive

treatment of this topic appear in a monograph of Hale [16]. In this article, we discuss

three types of nonlinear functional differential equations on unbounded intervals of

real line for existence as well as for some characterizations of the solutions via classical

fixed point theorems in Banach spaces.

Let R be the real line and let R+ be the set of nonnegative real numbers. Let

I0 = [−δ, 0] be a closed and bounded interval in R for some real number δ > 0 and

let J = I0 ∪ R+. Let C denote the Banach space of continuous real-valued functions

φ on I0 with the supremum norm ‖ · ‖C defined by

‖φ‖C = sup
t∈I0
|φ(t)|.

Clearly, C is a Banach space with this supremum norm. For a fixed t ∈ R+, let xt

denote the element of C defined by

xt(θ) = x(t+ θ), θ ∈ [−δ, 0].

The space C is called the history space of the past interval I0 for the functional

differential equations to describing the past history of the problems in question.
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Let CRB(R+) denote the class of functions a : R+ → R − {0} satisfying the

following properties:

(i) a is continuous,

(ii) lim
t→∞

a(t) = ±∞, and

(iii) a(0) = 1.

There do exist functions satisfying the above conditions. In fact, if a1(t) = t + 1,

a2(t) = et, then a1, a2 ∈ CRB(R+). Again, the class of continuous and strictly

monotone functions a : R+ → R− {0} with a(0) = 1 satisfy the above criteria. Note

that if a ∈ CRB(R+), then the reciprocal function a : R+ → R defined by a(t) = 1
a(t)

is continuous and lim
t→∞

a(t) = 0.

Given a function φ ∈ C, we consider the following functional differential equation,

viz.,

(2.1)

d

dt

[
a(t)x(t)

]
= g(t, x(t), xt) a.e. t ∈ R+

x0 = φ


where, a ∈ CRB(R+) and g : R+ × R × C → R. Next, we consider the following

perturbed functional differential equation,

(2.2)

d

dt

[
a(t)x(t)− f(t, x(t))

]
= g(t, x(t), xt) a.e. t ∈ R+

x0 = φ,


where a ∈ CRB(R+), f : R+ × R→ R and g : R+ × R× C → R.

Finally, we consider the following quadratic functional differential equation,

(2.3)

d

dt

[
a(t)x(t)

f(t, x(t))

]
= g(t, x(t), xt) a.e. t ∈ R+

x0 = φ,


where a ∈ CRB(R+), f : R+ × R→ R \ {0} and g : R+ × R× C → R.

It is clear that the functional differential equations (in short FDEs) (2.1), (2.2)

and (2.3) are respectively the scalar, linear and quadratic perturbations of second

kind for the following nonlinear first order FDE on unbounded interval,

(2.4)
x′(t) = g(t, x(t), xt) a.e. t ∈ R+

x0 = φ.


A good deal of the discussion on different types of perturbations for the nonlinear

differential equations appears in a recent paper of Dhage [13]. Therefore, we claim

that the functional differential equations (2.1), (2.2) and (2.3) are new to the theory

of nonlinear differential equations and some special cases of these FDEs with a ≡ 1
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have already been studied in the literature on closed and bounded intervals for var-

ious aspects of the solutions. See Hale [16], Ntouyas [19], Dhage et al. [14] and the

references given therein. However, to the best of author’s knowledge, the FDEs (2.1),

(2.2) and (2.3) are not discussed so far in the literature on closed but unbounded

intervals of real line. In this article, we discuss the above mentioned functional differ-

ential equations for existence as well as for different characterizations of the solutions

such as attractivity, asymptotic attractivity and ultimate positivity of the solutions.

Since the FDEs in question are perturbed, we have to take resort of the hybrid fixed

point theory in appropriate functional spaces in order to discuss these problems for

different aspects of the solutions. Therefore, the hybrid fixed point theoretic approach

is used while formulating the most of our results for FDEs (2.1), (2.2) and (2.3) of

this paper. We claim that almost all the results of this article are new to the theory

of functional nonlinear ddifferential equations on unbounded intervals of real line..

3. APPLICABLE FIXED POINT THEORY

Let X be a non-empty set and let T : X → X. An invariant point under T

in X is called a fixed point of T , that is, the fixed points are the solutions of the

functional equation Tx = x. Any statement asserting the existence of fixed point of

the mapping T is called a fixed point theorem for the mapping T in X. The fixed

point theorems are obtained by imposing the conditions on T or on X or on both

T and X. By experience, better the mapping T or X, we have better fixed point

principles. As we go on adding richer structure to the non-empty set X, we derive

richer fixed point theorems useful for applications to different areas of mathematics

and particularly to nonlinear differential and integral equations. Below we give some

fixed point theorems useful in establishing the attractivity and ultimate positivity of

the solutions for FDEs (2.1), (2.2) and (2.3) on unbounded intervals. Before stating

these results we give some preliminaries.

let X be an infinite dimensional Banach space with the norm ‖ · ‖. A mapping

Q : X → X is called D-Lipschitz if there is a continuous and nondecreasing function

φ : R+ → R+ satisfying

‖Qx−Qy‖ ≤ φ(‖x− y‖)

for all x, y ∈ X, where φ(0) = 0. If φ(r) = k r, k > 0, then Q is called Lipschitz

with the Lipschitz constant k. In particular, if k < 1, then Q is called a contraction

on X with the contraction constant k. Further, if φ(r) < r for r > 0, then Q is

called nonlinear D-contraction and the function φ is called D-function of Q on X.

There do exist D-functions and the commonly used D-functions are φ(r) = k r and

φ(r) =
r

1 + r
, etc. (see Banas and Dhage [2] and the references therein).
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Definition 3.1. An operator Q on a Banach space X into itself is called compact if

for any bounded subset S of X, Q(S) is a relatively compact subset of X. If Q is

continuous and compact, then it is called completely continuous on X.

Our first fixed point theorem is

Theorem 3.2 (Granas and Dugundji [15]). Let S be a non-empty, closed, convex

and bounded subset of the Banach space X and let Q : S → S be a continuous and

compact operator. Then the operator equation

(3.1) Qx = x

has a solution in S.

We employ the following variant of a fixed point theorem of Burton [3] which is a

special case of a hybrid fixed point theorem due to the present author [11] in Banach

spaces.

Theorem 3.3 (Dhage [7]). Let S be a closed, convex and bounded subset of the

Banach space X and let A : X → X and B : S → X be two operators such that

(a) A is nonlinear D-contraction,

(b) B is completely continuous, and

(c) x = Ax+By =⇒ x ∈ S for all y ∈ S.

Then the operator equation

(3.2) Ax+Bx = x

has a solution in S.

Theorem 3.4 (Dhage [11]). Let S be a non-empty, closed convex and bounded subset

of the Banach algebra X and let A : X → X and B : S → X be two operators such

that

(a) A is D-Lipschitz with D-function ψ,

(b) B is completely continuous,

(c) x = AxBy =⇒ x ∈ S for all y ∈ S, and

(d) M ψ(r) < r,where M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}.

Then the operator equation

(3.3) AxBx = x

has a solution in S.

A collection of a good number of applicable fixed point theorems may be found

in the monographs of Granas and Dugundji [15], Deimling [6], Zeidler [20] and the

references therein. In the following section we give different types of characterizations
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of the solutions for nonlinear functional differential equations on unbounded intervals

of real line.

4. CHARACTERIZATIONS OF SOLUTIONS

We seek the solutions of the FDEs (2.1), (2.2) and (2.3) in the space BC(I0 ∪
R+,R) of continuous and bounded real-valued functions defined on I0 ∪R+. Define a

standard supremum norm ‖ · ‖ and a multiplication “ · ” in BC(I0 ∪ R+,R) by

‖x‖ = sup
t∈I0∪R+

|x(t)| and (xy)(t) = x(t)y(t), t ∈ R+.

Clearly, BC(I0 ∪ R+,R) becomes a Banach algebra with respect to the above norm

and the multiplication in it. By L1(R+,R) we denote the space of Lebesgue integrable

functions on R+ and the norm ‖ · ‖L1 in L1(R+,R) is defined by

‖x‖L1 =

∫ ∞
0

|x(t)| ds.

In order to introduce further concepts used in this paper, let us assume that E =

BC(I0∪R+,R) and let Ω be a non-empty subset of X. Let Q : E → E be a operator

and consider the following operator equation in E,

(4.1) Qx(t) = x(t)

for all t ∈ I0 ∪ R+. Below we give different characterizations of the solutions for the

operator equation (4.1) in the space BC(I0 ∪ R+,R).

Definition 4.1. We say that solutions of the operator equation (4.1) are locally

attractive if there exists a closed ball Br(x0) in the space BC(I0 ∪ R+,R) for some

x0 ∈ BC(I0 ∪ R+,R) such that for arbitrary solutions x = x(t) and y = y(t) of

equation (4.1) belonging to Br(x0) we have that

(4.2) lim
t→∞

(x(t)− y(t)) = 0.

In the case when the limit (4.2) is uniform with respect to the set Br(x0), i.e., when

for each ε > 0 there exists T > 0 such that

(4.3) |x(t)− y(t)| ≤ ε

for all x, y ∈ Br(x0) being solutions of (4.1) and for t ≥ T , we will say that solutions

of equation (4.1) are uniformly locally attractive on I0 ∪ R+.

Definition 4.2. A solution x = x(t) of equation (4.1) is said to be globally at-

tractive if (4.2) holds for each solution y = y(t) of (4.1) in BC(I0 ∪ R+,R). In

other words, we may say that solutions of the equation (4.1) are globally attractive

if for arbitrary solutions x(t) and y(t) of (4.1) in BC(I0 ∪R+,R), the condition (4.2)

is satisfied. In the case when the condition (4.2) is satisfied uniformly with respect

to the space BC(I0 ∪ R+,R), i.e., if for every ε > 0 there exists T > 0 such that
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the inequality (4.2) is satisfied for all x, y ∈ BC(I0 ∪ R+,R) being the solutions of

(4.1) and for t ≥ T , we will say that solutions of the equation (4.1) are uniformly

globally attractive on I0 ∪ R+.

Remark 4.3. Let us mention that the concept of global attractivity of solutions is

recently introduced in Hu and Yan [18] while the concepts of uniform local and global

attractivity (in the above sense) were introduced in Banas and Rzepka [1].

Now we introduce the new concept of local and global ultimate positivity of the

solutions for the operator equation (4.1) in the space BC(I0 ∪ R+,R).

Definition 4.4 (Dhage [12]). A solution x of the equation (4.1) is called locally

ultimately positive if there exists a closed ball Br(x0) in the space BC(I0 ∪R+,R)

for some x0 ∈ BC(I0 ∪ R+,R) such that x ∈ Br(0) and

(4.4) lim
t→∞

[
|x(t)| − x(t)

]
= 0.

In the case when the limit (4.4) is uniform with respect to the solution set of the

operator equation (4.1) in BC(I0 ∪ R+,R), i.e., when for each ε > 0 there exists

T > 0 such that

(4.5) ||x(t)| − x(t)| ≤ ε

for all x being solutions of (4.1) in BC(I0 ∪ R+,R) and for t ≥ T , we will say that

solutions of equation (4.1) are uniformly locally ultimately positive on R+.

Definition 4.5 (Dhage [12]). A solution x ∈ BC(I0 ∪ R+,R) of the equation (4.1)

is called globally ultimately positive if (4.4) is satisfied. In the case when the

limit (4.5) is uniform with respect to the solution set of the operator equation (4.1)

in BC(I0 ∪ R+,R), i.e., when for each ε > 0 there exists T > 0 such that (4.5) is

satisfied for all x being solutions of (4.1) in in BC(I0 ∪R+,R) and for t ≥ T , we will

say that solutions of equation (4.1) are uniformly globally ultimately positive

on I0 ∪ R+.

Remark 4.6. We note that global attractivity implies the local attractivity and

uniform global attractivity implies the uniform local attractivity of the solutions for

the operator equation (4.1) on I0 ∪ R+. Similarly, global ultimate positivity implies

local ultimate positivity of the solutions for the operator equation (4.1) on unbounded

intervals. However, the converse of the above two statements may not be true.

5. ATTRACTIVITY AND POSITIVITY RESULTS

In this section, we prove the global attractivity and positivity results for the FDEs

(2.1), (2.2) and (2.3) on I0 ∪ R+ under some suitable conditions. In what follows,

we frequently use the class of almost everywhere differentiable functions to define the
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solutions for above mentioned functional differential equations. So, before going to

the main results, we discuss in brief the class of such functions on closed intervals of

real line. Let I be a closed interval in R and let AC(I,R) be the space of functions

which are defined and absolutely continuous on I. As every absolutely continuous

functions is continuous on I, we have that AC(I,R) ⊂ C(I,R). However, converse

implication may not hold. It is also known that if x ∈ AC(I,R), then it is almost

everywhere differentiable on I. In the following, first we prove the global attractivity

and ultimate positivity results for the FDE (2.1) on I0 ∪ R+.

5.1. Ordinary Functional Differential Equations. First we discuss the FDE

(2.1) for attractivity characterization of the solutions on unbounded interval I0 ∪R+.

We need the following definitions in the sequel.

Definition 5.1. By a solution for the functional differential equation (2.1) we mean

a function x ∈ BC(I0 ∪ R+,R) ∩ AC(R+,R) such that

(i) The function t 7→ a(t)x(t) is absolutely continuous on R+, and

(ii) x satisfies the equations in (2.1),

where AC(R+,R) is the space of absolutely continuous real-valued functions on right

half real axis R+.

Definition 5.2. A function g : R+ × R× C → R is called Carathéodory if

(i) t 7→ g(t, x, y) is measurable for all x ∈ R and y ∈ C, and

(ii) (x, y) 7→ g(t, x, y) is continuous for all t ∈ R+.

We need the following hypotheses in the sequel.

(H1) There exists a continuous function h : R+ → R+ such that

|g(t, x, y)| ≤ h(t) a.e. t ∈ R+

for all x ∈ R and y ∈ C. Moreover, we assume that lim
t→∞

|a(t)|
∫ t

0

h(s) ds = 0.

(H2) φ(0) ≥ 0.

Remark 5.3. If the hypothesis (H1) holds and a ∈ CRB(R+), then a ∈ BC(R+,R)

and the function w : R+ → R defined by the expression w(t) = |a(t)|
∫ t

0

h(s) ds

is continuous on R+. Therefore, the number W = supt≥0w(t) exists. Note that

limt→∞w(t) = 0 may not always hold. There do exist functions h involved in w such

that limt→∞w(t) 6= 0. Indeed, if h(t) = et on R+, then limt→∞
1
t+1

∫ t

0

es ds 6= 0, even

though the function a(t) = t+ 1, t ∈ R+, is a member of CRB(R+).

Theorem 5.4. Assume that the hypotheses (H1) holds. Then the FDE (2.1) has a

solution and solutions are uniformly globally attractive on I0 ∪ R+.
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Proof. Set X = BC(I0 ∪ R+,R). Define an operator Q on X by

(5.1) Qx(t) =

 φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds, if t ∈ R+,

φ(t), if t ∈ I0.

We show that Q defines a mapping Q : X → X. Let x ∈ X be arbitrary. Obviously,

Qx is a continuous function on I0 ∪ R+. We show that Qx is bounded on I0 ∪ R+.

Thus, if t ∈ R+, then we obtain:

|Qx(t)| ≤ |φ(0)| |a(t)|+ |a(t)|
∫ t

0

|g(s, x(s), xs)| ds ≤ |φ(0)| ‖a‖+ |a(t)|
∫ t

0

h(s) ds.

Since limt→∞ |a(t)|
∫ t

0

h(s) ds = 0, and the function w : R+ → R defined by w(t) =

|a(t)|
∫ t

0

h(s) ds is continuous, there is a constant W > 0 such that

sup
t≥0

w(t) = sup
t≥0
|a(t)|

∫ t

0

h(s) ds ≤ W.

Therefore,

|Qx(t)| ≤ |φ(0)|‖a‖+W ≤ ‖a‖ ‖φ‖+W

for all t ∈ R+. Similarly, if t ∈ I0, then |Qx(t)| ≤ ‖φ‖. As a result, we have that

(5.2) ‖Qx‖ ≤ (‖a‖+ 1)‖φ‖+W

for all x ∈ X and therefore, Q maps X into X itself. Define a closed ball Br(0)

centered at origin of radius r, where r = (‖a‖ + 1)‖φ‖ + W . Clearly Q defines a

mapping Q : X → Br(0) and in particular Q : Br(0) → Br(0). We show that Q

satisfies all the conditions of Theorem 3.2. First, we show that Q is continuous on

Br(0). To do this, let us fix arbitrarily ε > 0 and let {xn} be a sequence of points in

Br(0) converging to a point x ∈ Br(0). Then we get:

|(Qxn)(t)− (Qx)(t)| ≤ |a(t)|
∫ t

0

|g(s, xn(s), xn(θ + s))− g(s, x(s), x(θ + s))|ds

≤ |a(t)|
∫ t

0

[|g(s, xn(s), xn(θ + s))|+ |g(s, x(s), x(θ + s))|]ds

≤ 2|a(t)|
∫ t

0

h(s) ds

≤ 2w(t)(5.3)

Hence, by virtue of hypothesis (H1), we infer that there exists a T > 0 such that

w(t) ≤ ε for t ≥ T . Thus, for t ≥ T from the estimate (5.2) we derive that

|(Qxn)(t)− (Qx)(t)| ≤ 2ε as n→∞.
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Furthermore, let us assume that t ∈ [0, T ]. Then, following arguments similar

to those given in Dhage [7] and Ntouyas [19], by Lebesgue dominated convergence

theorem, we obtain the estimate:

lim
n→∞

Qxn(t) = lim
n→∞

[
φ(0)a(t) + a(t)

∫ t

0

g(s, xn(s), xn(θ + s)) ds

]
= φ(0)a(t) + a(t)

∫ t

0

[
lim
n→∞

g(s, xn(s), xn(θ + s))
]
ds

= Qx(t)(5.4)

for all t ∈ [0, T ]. Similarly, if t ∈ I0, then

lim
n→∞

Qxn(t) = φ(t) = Qx(t).

Thus, Qxn → Qx as n→∞ uniformly on R+ and hence Q is a continuous operator

on Br(0) into Br(0).

Next, we show that B is compact operator on Br(0). To finish this, it is enough

to show that every sequence {Qxn} in Q(Br(0)) has a Cauchy subsequence. Now, by

hypotheses (B2) and (B3),

|Qxn(t)| ≤ |φ(0)||a(t)|+ |a(t)|
∫ t

0

|g(s, xn(s), xn(θ + s))| ds

≤ (‖a‖+ 1)|φ(0)|+ w(t)

≤ (‖a‖+ 1)‖φ‖+ w(t)(5.5)

for all t ∈ R+. Taking supremum over t, we obtain

‖Qxn‖ ≤ (‖a‖+ 1)‖φ‖+W

for all n ∈ N. This shows that {Qxn} is a uniformly bounded sequence in Q(Br(0)).

Next, we show that Q(Br(0)) is also an equicontinuous set in X. Let ε > 0 be

given. Since limt→∞w(t) = 0, there is a real number T1 > 0 such that |w(t)| < ε
8

for

all t ≥ T1. Similarly, since lim
t→∞

a(t) = 0, for above ε > 0, there is a real number T2 > 0

such that |a(t)| < ε
8|φ(0)| for all t ≥ T2. Thus, if T = max{T1, T2}, then |w(t)| < ε

8

and |a(t)| < ε
8|φ(0)| for all t ≥ T . Let t, τ ∈ I0 ∪ R+ be arbitrary. If t, τ ∈ I0, then

by uniform continuity of φ on I0, for above ε we have a δ1 > 0 which is a function of

only ε such that

|t− τ | < δ1 =⇒ |Qxn(t)−Qxn(τ)| = |φ(t)− φ(τ)| < ε

4
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for all n ∈ N. If t, τ ∈ [0, T ], then we have

|Qxn(t)−Qxn(τ)| ≤ |φ(0)| |a(t)− a(τ)|

+
∣∣∣|a(t)|

∫ t

0

g(s, xn(s), xn(θ + s)) ds− a(τ)

∫ τ

0

g(s, xn(s), xn(θ + s)) ds
∣∣∣

≤ |φ(0)| |a(t)− a(τ)|

+
∣∣∣a(t)

∫ t

0

g(s, xn(s), xn(θ + s)) ds− a(τ)

∫ t

0

g(s, xn(s), xn(θ + s)) ds
∣∣∣

+
∣∣∣a(τ)

∫ t

0

g(s, xn(s), xn(θ + s)) ds− a(τ)

∫ τ

0

g(s, xn(s), xn(θ + s)) ds
∣∣∣

≤ |φ(0)| |a(t)− a(τ)|+ |a(t)− a(τ)|
∣∣∣∫ t

0

g(s, xn(s), xn(θ + s)) ds
∣∣∣

+ |a(τ)|
∣∣∣∫ t

0

g(s, xn(s), xn(θ + s)) ds
∣∣∣

≤ |φ(0)| |a(t)− a(τ)|+ |a(t)− a(τ)|
∫ T

0

h(s) ds+ ‖a‖
∣∣∣∫ t

τ

h(s) ds
∣∣∣

≤ |φ(0)| |a(t)− a(τ)|+ |a(t)− a(τ)|
∫ T

0

h(s) ds+ ‖a‖ |p(t)− p(τ)|

≤
[
|φ(0)|+ ‖h‖L1

]
|a(t)− a(τ)|+ ‖a‖ |p(t)− p(τ)|

where, p(t) =

∫ t

0

h(s) ds and ‖h‖L1 =

∫ ∞
0

h(s) ds.

By the uniform continuity of the functions a and p on [0, T ], for above ε we have

the real numbers δ2 > 0 and δ3 > 0 which are the functions of only ε such that

|t− τ | < δ2 =⇒ |a(t)− a(τ)| < ε

8
[
|φ(0)|+ ‖h‖L1

]
and

|t− τ | < δ3 =⇒ |p(t)− p(τ)| < ε

8‖a‖
.

Let δ4 = min{δ2, δ3}. Then

|t− τ | < δ4 =⇒ |Qxn(t)−Qxn(τ)| < ε

4

for all n ∈ N. Similarly, if t ∈ I0 and τ ∈ [0, T ], then

|Qxn(t)−Qxn(τ)| ≤ |Qxn(t)−Qxn(0)|+ |Qxn(0)−Qxn(τ)|.

Take δ5 = min{δ1, δ4} > 0 which is again a function of only ε. Hence by above

estimated facts it follows that

|t− τ | < δ5 =⇒ |Qxn(t)−Qxn(τ)| < ε

2

for all n ∈ N.
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Again, if t, τ > T , then we have a real number δ6 > 0 which is a function of only

ε such that

|Qxn(t)−Qxn(τ)| ≤ |φ(0)| |a(t)− a(τ)|

+

∣∣∣∣a(t)

∫ t

0

g(s, xn(s), xn(θ + s)) ds− a(t)

∫ τ

0

g(s, xn(s), xn(θ + s)) ds

∣∣∣∣
≤ |φ(0)| |a(t)|+ |φ(0)| |a(τ)|+ w(t) + w(τ)

<
ε

4
+
ε

4

for all n ∈ N, whenever t− τ | < δ6. Similarly, if t, τ ∈ I0 ∪ R+ with t < T < τ , then

we have

|Qxn(t)−Qxn(τ)| ≤ |Qxn(t)−Qxn(T )|+ |Qxn(T )−Qxn(τ)|.

Take δ = min{δ5, δ6} > 0 which is again a function of only ε. Therefore, from the

above obtained estimates, it follows that

|Qxn(t)−Qxn(T )| < ε

2
and |Qxn(T )−Qxn(τ)| < ε

2

for all n ∈ N, whenever t − τ | < δ. As a result, |Qxn(t) − Qxn(τ)| < ε for all

t, τ ∈ I0 ∪ R+ and for all n ∈ N, whenever t − τ | < δ. This shows that {Qxn} is a

equicontinuous sequence in X. Now an application of Arzela-Ascoli theorem yields

that {Qxn} has a uniformly convergent subsequence on the compact subset I0∪ [0, T ]

of I0 ∪ R. Without loss of generality, call the subsequence to be the sequence itself.

We show that {Qxn} is Cauchy in X. Now |Qxn(t) − Qx(t)| → 0 as n → ∞ for all

t ∈ I0 ∪ [0, T ]. Then for given ε > 0 there exits an n0 ∈ N such that

sup
−δ≤p≤T

|a(p)|
∫ p

0

|g(s, xn(s), xn(θ + s))− g(s, xn(s), xn(θ + s))| ds < ε

2

for all m,n ≥ n0. Therefore, if m,n ≥ n0, then we have

‖Qxm −Qxn‖ = sup
−δ≤t<∞

∣∣∣∣|a(t)|
∫ t

0

|g(s, xn(s), xn(θ + s))− g(s, xn(s), xn(θ + s))| ds
∣∣∣∣

≤ sup
−δ≤p≤T

∣∣∣∣|a(p)|
∫ p

0

|g(s, xn(s), xn(θ + s))− g(s, xn(s), xn(θ + s))| ds
∣∣∣∣

+ sup
p≥T
|a(p)|

∫ p

0

[
|g(s, xn(s), xn(θ + s))|+ |g(s, xn(s), xn(θ + s))|] ds

< ε.

This shows that {Qxn} ⊂ Q(Br(0)) ⊂ X is Cauchy. Since X is complete, {Qxn}
converges to a point in X. As Q(Br(0)) is closed {Qxn} converges to a point in

Q(Br(0)). Hence Q(Br(0)) is relatively compact and consequently Q is a continuous

and compact operator on Br(0) into itself. Now an application of Theorem 3.2 to the

operator Q on Br(0) yields that Q has a fixed point in Br(0) which further implies

that the FDE (2.1) has a solution defined on I0 ∪ R+.
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Finally, we show that the solutions are uniformly attractive on I0 ∪ R+. Let

x, y ∈ Br(0) be any two solutions the FDE (4.1) defined on I0 ∪ R+. Then,

|x(t)− y(t)| ≤
∣∣∣∣a(t)

∫ t

0

g(s, x(s), xs) ds− a(t)

∫ t

0

g(s, y(s), ys) ds

∣∣∣∣
≤ |a(t)|

∫ t

0

|g(s, x(s), xs)| ds+ |a(t)|
∫ t

0

|g(s, y(s), ys)| ds

≤ 2w(t)(5.6)

for all t ∈ I0 ∪ R+. Since limt→∞w(t) = 0, there is a real number T > 0 such that

w(t) < ε
2

for all t ≥ T . Therefore, |x(t) − y(t)| ≤ ε for all t ≥ T , and so all the

solutions of the FDE (2.1) are uniformly globally attractive on I0 ∪ R+.

Theorem 5.5. Assume that the hypotheses (H1)-(H2) hold. Then the FDE (2.1) has

a solution and solutions are uniformly globally attractive and ultimately positive on

I0 ∪ R+.

Proof. By Theorem 5.4, the FDE (2.1) has a solution in Br(0), where r = ‖φ‖ + W

and the solutions are uniformly globally attractive on I0 ∪R+. We know that for any

x, y ∈ R, one has the inequality,

|x|+ |y| ≥ |x+ y| ≥ x+ y,

and, therefore,

(5.7)
∣∣|x+ y| − (x+ y)

∣∣ ≤ ∣∣ |x|+ |y| − (x+ y)
∣∣ ≤ ∣∣|x| − x∣∣+

∣∣|y| − y∣∣
for all x, y ∈ R. Now for any solution x ∈ Br(0), one has

∣∣|x(t)| − x(t)
∣∣ =

∣∣∣∣∣∣∣φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds
∣∣∣

−
(
φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds
)∣∣∣∣

≤
∣∣|φ(0)| − φ(0)

∣∣ |a(t)|+ |a(t)|
∫ t

0

|g(s, x(s), xs)| ds

+ |a(t)|
∫ t

0

|g(s, x(s), xs)| ds

≤ 2w(t).

Since lim
t→∞

w(t) = 0, there is a real number T > 0 such that | |x(t)| − x(t)| ≤ ε for

all t ≥ T . Hence solutions of the FDE (2.1) are also uniformly globally ultimately

positive on I0 ∪ R+. This completes the proof.
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Example 5.6. Let I0 = [−π/2, 0] be a closed and bounded interval in R and define

a function φ : I0 → R by φ(t) = cos t. Consider the following FDE,

(5.8)

(
etx(t)

)′
= e−t

(x(t) + xt)

|x(t)|+ ‖xt‖C
a.e. t ∈ R+

x0 = φ,


where, e−t ∈ C(R+,R) ⊂ L1(R+,R) and lim

t→∞
e−t
∫ t

0

e−s ds = 0.

Here, a(t) = et which is positive and increasing on R+ and so a ∈ CRB(R+) and

‖a‖ = sup
t≥0

a(t) = sup
t≥0

e−t ≤ 1.

Again, g(t, x, y) =
e−t(x+ y)

|x|+ ‖y‖C
for t ∈ R+, x ∈ R and y ∈ C. Clearly, the function g

satisfies the hypothesis (H1) with growth function h(t) = e−t on R+ so that lim
t→∞

w(t) =

lim
t→∞

e−t
∫ t

0

e−s ds = 0. Now we apply Theorem 5.4 to FDE (2.1) to conclude that

it has a solution and solutions are uniformly globally attractive on I0 ∪ R+. As

φ(0) = 1 ≥ 0, the hypothesis (H2) of Theorem 5.5 is satisfied. Hence, solutions of the

FDE (5.6) are also uniformly globally ultimately positive on I0 ∪ R+.

5.2. Perturbed Functional Differential Equations. Next, we establish the at-

tractivity and positivity results for the FDE (2.2) on unbounded interval I0 ∪ R+.

The following definition is useful in the sequel.

Definition 5.7. By a solution for the functional differential equation (2.2) we mean

a function x ∈ BC(I0 ∪ R+,R) ∩ AC(R+,R) such that

(i) the function t 7→ [a(t)x(t)− f(t, x(t))] is absolutely continuous on R+, and

(ii) x satisfies the equations in (2.2),

where AC(R+,R) is the space of absolutely continuous real-valued functions on right

half real axis R+.

We need the following hypotheses in the sequel.

(H3) The function t → f(t, 0, 0) is bounded on R+ with F0 = sup{|f(t, 0, 0)| : t ∈
R+}.

(H4) The function f : R+ × R → R is continuous and there exists a function

` ∈ BC(R+,R) and a real number K > 0 such that

|f(t, x)− f(t, y)| ≤ `(t)
|x− y|

K + |x− y|
for all t ∈ R+ and x, y ∈ R. Moreover, we assume supt≥0 `(t) = L.

(H5) lim
t→∞

[
|f(t, x)| − f(t, x)

]
= 0 for all x ∈ R.

(H6) f(0, φ(0)) ≥ 0.
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Remark 5.8. Hypothesis (H4) is more general than that existing in the literature.

Indeed, if L < K, then it reduces to the usual Lipschitz condition of the function f

on R+ × R.

Theorem 5.9. Assume that the hypotheses (H1), (H3) and (H4) hold. Further if

L‖a‖ ≤ K, then the FDE (2.2) has a solution and solutions are uniformly globally

attractive defined on I0 ∪ R+.

Proof. Now the FDE (2.2) is equivalent to the functional integral equation,

(5.9) x(t) =


[φ(0)− f(0, φ(0))]a(t) + a(t)f(t, x(t))

+a(t)

∫ t

0

g(s, x(s), xs) ds, if t ∈ R+

φ(t), if t ∈ I0.

Set X = BC(I0∪R+,R) and define the closed ball Br(0) in X, where the real number

r is defined by r = ‖a‖
[
‖φ‖+ |f(0, φ(0))|+L+ F0 +W

]
. Define the operators A on

X and B on Br(0) by

(5.10) Ax(t) =

 −f(0, φ(0))a(t) + a(t)f(t, x(t)), if t ∈ R+,

0, if t ∈ I0.

for all t ∈ R+ and x ∈ R, and

(5.11) Bx(t) =

 φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds, if t ∈ R+,

φ(t), if t ∈ I0.

Then the FIE (5.9) is transformed into the operator equation as

(5.12) Ax(t) +Bx(t) = x(t), t ∈ I0 ∪ R+.

We show that A and B satisfy all the conditions of Theorem 3.3 on BC(I0 ∪R+,R).

First we we show that the operators A and B define the mappings A : X → X and

B : Br(0)→ X. Let x ∈ X be arbitrary. Obviously, Ax is a continuous function on

I0 ∪ R+. We show that Ax is bounded on I0 ∪ R+. Thus, if t ∈ R+, then we obtain:

|Ax(t)| = |f(0, φ(0))|‖a‖+ ‖a‖|f(t, x(t))|

≤ ‖a‖[|f(0, φ(0))|+ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|]

≤ ‖a‖
[
f(0, φ(0))|+ `(t)

|x(t)|
K + |x(t)|

+ F0

]
≤ ‖a‖ [|f(0, φ(0))|+ L+ F0] .

Taking supremum over t, ‖Ax‖ ≤ ‖a‖ [|f(0, φ(0))|+ L+ F0] . Thus Ax is continuous

and bounded on I0 ∪R+. As a result Ax ∈ X. Similarly, as in the proof of Theorem

5.4 above , it can be shown that B : X → X and in particular, B : Br(0) → X for
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all x ∈ X. We show that A is a contraction on X. Let x, y ∈ X be arbitrary. Then

by hypothesis (H3),

‖Ax− Ay‖ = sup
t∈I0∪R+

|Ax(t)− Ay(t)|

≤ max

{
sup
t∈I0
|Ax(t)− Ay(t)|, sup

t∈R+

|Ax(t)− Ay(t)|
}

≤ max

{
0 , sup

t∈R+

a(t)
`(t)|x(t)− y(t)|
K + |x(t)− y(t)|

}
≤ L‖a‖‖x− y‖
K + ‖x− y‖

for all x, y ∈ X. This shows that A is a nonlinear D-contraction on X with the

D-function ψ defined by ψ(r) =
L‖a‖r
K + r

. Next, it can be shown as in the proof of

Theorem 5.4 that B is a compact and continuous operator on X and in particular on

Br(0).

Next, let x, y ∈ X be arbitrary. Then,

|x(t)| ≤ |Ax(t)|+ |By(t)|

≤ |a(t)||φ(0)|+ |f(0, φ(0))||a(t)|+ |a(t)||f(t, x(t))|+ a(t)

∫ t

0

|g(s, y(s), ys)| ds

≤ ‖a‖
[
|φ(0)|+ |f(0, φ(0))|+ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|

]
+ |a(t)(t)|

∫ t

0

h(s) ds

≤ ‖a‖
[
|φ(0)|+ |f(0, φ(0))|

]
+ ‖a‖ `(t)|x(t)|

K + |x(t)|
+ F0‖a‖+ w(t)

≤ ‖a‖
[
‖φ‖+ |f(0, φ(0))|+ L+ F0

]
+W

= r

for all t ∈ I0 ∪ R+. This shows that x ∈ Br(0) and hypothesis (c) of Theorem 3.3 is

satisfied. Hence an application of it yields that the operator equation Ax + Bx = x

has a global solution in Br(0).

Finally, let x, y ∈ Br(0) be any two solutions of the FDE (2.2) on I0 ∪R+. Then,

|x(t)− y(t)| ≤ |a(t)||f(t, x(t))− f(t, y(t))|

+

∣∣∣∣a(t)

∫ t

0

g(s, x(s), xs) ds− a(t)

∫ t

0

g(s, y(s), ys) ds

∣∣∣∣
≤ |a(t)| `(t)|x(t)− y(t)|

K + |x(t)− y(t)|
+ 2|a(t)|

∫ t

0

h(s) ds

≤ L‖a‖ |x(t)− y(t)|
K + |x(t)− y(t)|

+ 2w(t)
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Taking the limit superior as t→∞ in the above inequality yields,

lim
t→∞
|x(t)− y(t)| = 0.

Therefore, there is a real number T > 0 such that |x(t) − y(t)| < ε for all t ≥ T .

Consequently, the solutions of FDE (2.2) are globally uniformly attractive defined on

I0 ∪ R+. This completes the proof.

Theorem 5.10. Assume that the hypotheses (H1)-(H6) hold. Then the FDE (2.2)

has a solution and solutions are uniformly globally attractive and ultimately positive

on I0 ∪ R+.

Proof. By Theorem 5.9, the FDE (2.2) has a solution in Br(0), where r = ‖a‖ [‖φ‖+

|f(0, φ(0))|+L+F0] +W and solutions are uniformly globally attractive on I0 ∪R+.

Now for any solution x ∈ Br(0), by inequality (5.7), one has∣∣|x(t)| − x(t)
∣∣ =

∣∣∣∣∣∣φ(0)a(t) + f(0, φ(0))a(t) + a(t)f(t, x(t))

+ a(t)

∫ t

0

g(s, x(s), xs) ds
∣∣∣

−
(
φ(0)a(t) + f(0, φ(0))a(t) + a(t)f(t, x(t))

+a(t)

∫ t

0

g(s, x(s), xs) ds
)∣∣∣∣

≤
∣∣|φ(0)| − φ(0)

∣∣|a(t)|+
∣∣|f(0, φ(0))| − f(0, φ(0))

∣∣a(t)

+ |a(t)|
∣∣|f(t, x(t))| − f(t, x(t))

∣∣
+ |a(t)|

∫ t

0

|g(s, x(s), xs)| ds+ |a(t)|
∫ t

0

|g(s, x(s), xs)| ds

≤ |a(t)|
∣∣|f(t, x(t))| − f(t, x(t))

∣∣+ 2|a(t)|
∫ t

0

h(s) ds

≤ ‖a‖
∣∣|f(t, x(t))| − f(t, x(t))

∣∣+ 2w(t).

Since (H3) holds, taking limit superior as t → ∞ on both sides of above inequality

yields that lim
t→∞

∣∣|x(t)| − x(t)
∣∣ = 0. Therefore, there is a real number T > 0 such that

| |x(t)| − x(t)| ≤ ε for all t ≥ T . Hence solutions of the FDE (2.2) are also uniformly

globally ultimately positive defined on I0 ∪ R+. This completes the proof.

Example 5.11. Let I0 = [−π/2, 0] and define a function φ : I0 → R by φ(t) = cos t.

Consider the FDE

(5.13)

d

dt

[
(t+ 1)x(t)− |x(t)|

1 + |x(t)|

]
= e−t

x(t) + xt
|x(t)|+ ‖xt‖C

a.e. t ∈ R+

x0 = φ.





718 BAPURAO C. DHAGE

Here, a(t) = t + 1 which is positive and increasing on R+ and so a ∈ CRB(R+)

and ‖a‖ = sup
t≥0

a(t) = sup
t≥0

1

t+ 1
≤ 1. Again,

f(t, x) =
|x|

1 + |x|
and g(t, x, y) = e−t

x+ y

|x|+ ‖y‖C
for all t ∈ R+, x ∈ R and y ∈ C. First, we show that the function f satisfies hypothesis

(H3) on R+ × R. Let (t, x), (t, y) ∈ R+ × R be arbitrary. Then,

|f(t, x)− f(t, y)| ≤
∣∣∣∣ |x|1 + |x|

− |y|
1 + |y|

∣∣∣∣
=

∣∣ |x| − |y| ∣∣
1 +

∣∣ |x| − |y| ∣∣
≤ |x− y|

1 + |x− y|
.

Therefore, here `(t) = 1 for all t ∈ R+ and ‖a‖ = L = 1 = K and hence L‖a‖ ≤
K. Further g is Carathéodory and |g(t, x, y)| ≤ e−t for (t, x) ∈ R+ × R. Clearly,

lim
t→∞

1

(t+ 1)

∫ t

0

e−s ds = 0. Now we apply Theorem 5.9 to the FDE (2.2) and conclude

that it has a solution and solutions are uniformly globally attractive on I0 ∪ R+.

Moreover, hypotheses (H2), (H5) and (H6) are also satisfied by the functions φ and f .

Hence by Theorem 5.10, the solutions of the FDE (2.2) are also uniformly globally

ultimately positive defined on I0 ∪ R+.

5.3. Quadratic Functional Differential Equations. Now, finally we discuss the

attractivity results for the quadratic perturbations of the first order ordinary differ-

ential equation (2.3) on I0 ∪ R+.

Definition 5.12. By a solution for the functional differential equation (2.3) we mean

a function x ∈ BC(I0 ∪ R+,R) ∩ AC(R+,R) such that

(i) the function t 7→ a(t)x(t)

f(t, x(t))
is absolutely continuous on R+, and

(ii) x satisfies the equations in (2.3) on I0 ∪ R+,

where AC(R+,R) is the space of absolutely continuous real-valued functions on right

half real axis R+.

We need the following hypothesis in the sequel.

(H7) f(0, φ(0)) = 1.

(H8) The function x 7→ x

f(0, x)
is injective in R.

Theorem 5.13. Assume that the hypotheses (H1), (H3), (H4), (H7) and (H8) hold.

Further, assume that

(5.14) Lmax
{
‖φ‖ , |φ(0)| ‖a‖+W

}
≤ K.
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Then the FDE (2.3) has a solution and solutions are uniformly globally attractive on

I0 ∪ R+.

Proof. Now, using hypotheses (H7) and (H8) it can be shown that the FDE (2.3) is

equivalent to the functional integral equation

(5.15) x(t) =


[
f(t, x(t))

](
φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds

)
, if t ∈ R+

φ(t), if t ∈ I0.

Set X = BC(I0 ∪ R+,R) and define a closed ball Br(0) in X centered at origin of

radius r given by

r = max{1, L+ F0}max
{
‖φ‖ , |φ(0)| ‖a‖+W

}
.

Define the operators A on X and B on Br(0) by

(5.16) Ax(t) =

 f(t, x(t)), if t ∈ R+

1, if t ∈ I0.

and

(5.17) Bx(t) =


φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds, if t ∈ R+

φ(t), if t ∈ I0.

Then the FIE (5.15) is transformed into the operator equation as

(5.18) Ax(t)Bx(t) = x(t), t ∈ I0 ∪ R+.

We show that A and B satisfy all the conditions of Theorem 3.4 on BC(I0 ∪R+,R).

First we we show that the operators A and B define the mappings A : X → X and

B : Br(0)→ X. Let x ∈ X be arbitrary. Obviously, Ax is a continuous function on

I0 ∪ R+. We show that Ax is bounded on I0 ∪ R+. Thus, if t ∈ R+, then we obtain:

|Ax(t)| = |f(t, x(t))| ≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|

≤ `(t)
|x(t)|

K + |x(t)|
+ F0 ≤ L+ F0.

Similarly, |Ax(t)| ≤ 1 for all t ∈ I0. Therefore, taking the supremum over t,

‖Ax‖ ≤ max{1, L+ F0} = N.

Thus Ax is continuous and bounded on I0 ∪ R+. As a result Ax ∈ X. Similarly, as

in the proof of Theorem 5.4 above , it can be shown that Bx ∈ X and in particular,
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A : X → X and B : Br(0)→ X. We show that A is a Lipschitz on X. Let x, y ∈ X
be arbitrary. Then, by hypothesis (H3),

‖Ax− Ay‖ = sup
t∈I0∪R+

|Ax(t)− Ay(t)|

≤ max

{
sup
t∈I0
|Ax(t)− Ay(t)|, sup

t∈R+

|Ax(t)− Ay(t)|
}

≤ max

{
0 , sup

t∈R+

`(t)
|x(t)− y(t)|

K + |x(t)− y(t)|

}
≤ L‖x− y‖
K + ‖x− y‖

for all x, y ∈ X. This shows that A is aD-Lipschitz onX withD-function ψ(r) = Lr
K+r

.

Next, it can be shown as in the proof of Theorem 5.4 that B is a compact and

continuous operator on X and in particular on Br(0).

Next, we estimate the value of the constant M . By definition of M , one has

‖B(Br(0))‖ = sup{‖Bx‖ : x ∈ Br(0)}

= sup

{
sup

t∈I0∪R+

|Bx(t)| : x ∈ Br(0)

}
≤ sup

{
max

{
sup
t∈I0
|Bx(t)|, sup

t∈R+

|Bx(t)|
}

: x ∈ Br(0)

}
≤ sup

x∈Br(0)

{
max

{
‖φ‖ , |φ(0)||a(t)|

+ sup
t∈R+

|a(t)|
∫ t

0

|g(s, x(s), xs)| ds
}}

≤ max
{
‖φ‖, |φ(0)| ‖a‖+W

}
.

Thus,

‖Bx‖ ≤ max
{
‖φ‖, |φ(0)| ‖a‖+W

}
= M

for all x ∈ Br(0). Next, let x, y ∈ X be arbitrary. Then,

|x(t)| ≤ |Ax(t)| |By(t)|

≤ ‖Ax‖ ‖By‖

≤ ‖A(X)‖ ‖B(Br(0))‖

≤ max{1, L+ F0}M

≤ max{1, L+ F0}max
{
‖φ‖, |φ(0)| ‖a‖+W

}
= r

for all t ∈ I0 ∪ R+. Therefore, we have:

‖x‖ ≤ max{1, L+ F0}max
{
‖φ‖, |φ(0)| ‖a‖+W

}
= r.
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This shows that x ∈ Br(0) and hypothesis (c) of Theorem 3.4 is satisfied. Again,

Mφ(r) ≤
Lmax

{
‖φ‖, |φ(0)| ‖a‖+W

}
r

K + r
< r

for r > 0, because

Lmax
{
‖φ‖, |φ(0)| ‖a‖+W

}
≤ K.

Therefore, hypothesis (d) of Theorem 3.4 is satisfied. Now we apply Theorem 3.4

to the operator equation AxBx = x to yield that the FDE (2.3) has a solution on

I0 ∪R+. Moreover, the solutions of the FDE (2.3) are in Br(0). Hence, solutions are

global in nature.

Finally, let x, y ∈ Br(0) be any two solutions of the FDE (2.3) on I0 ∪R+. Then

|x(t)− y(t)| ≤
∣∣∣∣[f(t, x(t))]

(
φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds

)
− [f(t, y(t))]

(
φ(0)a(t) + a(t)

∫ t

0

g(s, y(s), ys) ds

)∣∣∣∣
≤
∣∣∣∣[f(t, x(t))− f(t, y(t))

](
φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds

)∣∣∣∣
+

∣∣∣∣f(t, y(t))
(
a(t)

∫ t

0

g(s, x(s), xs) ds− g(s, y(s), ys) ds
)∣∣∣∣

≤ |f(t, x(t))− f(t, y(t))|
(
|φ(0)||a(t)|+ |a(t)|

∫ t

0

h(s) ds

)
+ 2
[
|f(t, x(t))− f(t, 0)|+ |f(t, 0)|

]
w(t)

≤ `(t)
|x(t)− y(t)|

K + |x(t)− y(t)|
(|φ(0)| ‖a‖+W )

+ 2

[
`(t)|y(t)|
K + |y(t)|

+ F0

]
w(t)

≤ L (|φ(0)| ‖a‖+W ) |x(t)− y(t)|
K + |x(t)− y(t)|

+ 2(L+ F0)w(t)(5.19)

Taking the limit superior as t→∞ in the above inequality yields,

lim
t→∞
|x(t)− y(t)| = 0.

Therefore, there is a real number T > 0 such that |x(t) − y(t)| < ε for all t ≥ T .

Consequently, the solutions of FDE (2.3) are uniformly globally attractive on I0∪R+.

This completes the proof.

Theorem 5.14. Assume that the hypotheses (H1)-(H6) hold. Then the FDE (2.1)

has a solution and solutions are uniformly globally attractive and ultimately positive

defined on I0 ∪ R+.

Proof. By Theorem 5.13, the FDE (2.3) has a global solution in the closed ball Br(0),

where the radius r is given as in the proof of Theorem 5.13, and the solutions are
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uniformly globally attractive on I0 ∪R+. We know that for any x, y ∈ R, one has the

inequality,

|x| |y| = |xy| ≥ xy,

and therefore,

(5.20)
∣∣|xy| − (xy)

∣∣ ≤ |x|∣∣|y| − y∣∣+
∣∣|x| − x∣∣ |y|

for all x, y ∈ R. Now for any solution x ∈ Br(0), one has

∣∣|x(t)| − x(t)
∣∣ =

∣∣∣∣|[f(t, x(t))
](

φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds

)
|

−
([
f(t, x(t))

](
φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds

))∣∣∣∣
≤ |
[
f(t, x(t))

]
| (|φ(0)| − φ(0)|) |a(t)|

+ |
[
f(t, x(t))

] ∣∣∣∣|a(t)

∫ t

0

g(s, x(s), xs) ds| − a(t)

∫ t

0

g(s, x(s), xs) ds

∣∣∣∣
+ |
∣∣f(t, x(t))

∣∣− f(t, x(t))|
∣∣∣∣φ(0)a(t) + a(t)

∫ t

0

g(s, x(s), xs) ds

∣∣∣∣
≤ |
∣∣f(t, x(t))

∣∣− f(t, x(t))| (|φ(0)| ‖a‖+W ) + 2[L+ F0]w(t).(5.21)

Taking the limit superior as t → ∞ in the above inequality (5.21), we obtain

lim
t→∞

∣∣|x(t)| − x(t)
∣∣ = 0. Therefore, there is a real number T > 0 such that | |x(t)| −

x(t)| ≤ ε for all t ≥ T . Hence, solutions of the FDE (2.3) are uniformly globally

attractive as well as ultimately positive defined on I0 ∪ R+. This completes the

proof.

Example 5.15. Let I0 = [−π/2, 0] be a closed and bounded interval in R and define

a function φ : I0 → R by φ(t) = cos t. Consider the quadratic FDE,

(5.22)

d

dt

[
etx(t)

1 + (π+4)t
2(π+6)(t+1)

tan−1(|x(t)|)

]
= e−t

x(t) + xt
|x(t)|+ ‖xt‖C

a.e. t ∈ R+

x0 = φ.


Here, a(t) = et for t ∈ R+. As in example 5.1, a ∈ CRB(R+) and ‖a‖ ≤ 1. Again,

here, we have:

f(t, x) = 1 +
(π + 4)t

2(π + 6)(t+ 1)
tan−1(|x|) and g(t, x, y) = e−t

x+ y

|x|+ ‖y‖C
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for all t ∈ R+, x ∈ R and y ∈ C. First, we show that the function f satisfies hypothesis

(H3) on R+ × R. Let (t, x), (t, y) ∈ R+ × R be arbitrary. Then,

|f(t, x)− f(t, y)| ≤
∣∣∣∣ (π + 4)t

2(π + 6)(t+ 1)
tan−1(|x|)− (π + 4)t

2(π + 6)(t+ 1)
tan−1(|y|)

∣∣∣∣
≤ (π + 4)t

2(π + 6)(t+ 1)
·
∣∣ |x| − |y| ∣∣

1 +
∣∣ |x| − |y| ∣∣

≤ (π + 4)t

2(π + 6)(t+ 1)
· |x− y|

1 + |x− y|
.

Therefore, here `(t) =
(π + 4)t

2(π + 6)(t+ 1)
for all t ∈ R+ so that L =

1

2
. Furthermore, the

function g is Carathéodory and |g(t, x, y)| ≤ e−t for (t, x, y) ∈ R+ × R × C. Clearly,

lim
t→∞

e−t
∫ t

0

e−s ds = 0. Finally,

Lmax
{
‖φ‖, |φ(0)| ‖a‖+W

}
≤ 1 = K.

Now, we apply Theorem 5.13 to the FDE (5.19) and conclude that it has a solution

on I0 ∪ R+. Moreover, the solutions are uniformly globally attractive on I0 ∪ R+.

Further,

|f(t, x)| = 1 +
(π + 4)t

2(π + 6)(t+ 1)
tan−1(|x|) = f(t, x)

for all t ∈ R+ and x ∈ R and hence solutions of the quadratic FDE (5.19) are also

uniformly globally ultimately positive on I0 ∪ R+.

6. THE CONCLUSION

From foregoing discussion, it is clear that the fixed point theorems are useful for

proving the existence theorems as well as for characterizing the solutions of different

types of functional differential equations on unbounded intervals of real line. The

choice of the fixed point theorems depends upon the situations and the circumstances

of the nonlinearities involved in the problems. The clever selection of the fixed point

theorems yields very powerful existence results as well as different characterizations

of the nonlinear functional differential equations. In this article, we have been able

to prove the existence as well as global attractivity and ultimate positivity of the

solutions for three types of nonlinear functional differential equations unbounded in-

tervals. However, other nonlinear functional differential equations can be treated in

the similar way for these and some other characterizations such as monotonic global

attractivity, monotonic asymptotic attractivity and monotonic ultimate positivity of

the solutions for such equations on unbounded intervals of real line. In a forthcom-

ing paper, it is planed to discuss the global asymptotic and monotonic attractivity

of solutions for nonlinear functional differential equations via classical and hybrid

applicable fixed point theory.
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