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ABSTRACT. We study the nonlinear initial value problem consisting of the equation −[p(t)φ(y′)]′+

q(t)φ(y) = w(t)f(y) with φ(y) = |y|r−1y for r > 0 and the initial conditions y(t0) = y0, (p1/ry′)(t0) =

z0. By establishing nonlinear integral inequalities and applying a generalized energy function and a

generalized Prüfer transformation, we prove that the solution of this initial value problem exists on

the whole domain and is unique. This paper provides a foundation for a forthcoming paper on the

existence of nodal solutioins of second order nonlinear boundary value problems with p-Laplacian.
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1. INTRODUCTION AND MAIN RESULT

Research on differential equations with p-Laplacian has been active in recent

years. In this paper, we study the global existence and uniqueness of solutions of the

initial value problems (IVPs) consisting of the equation with p-Laplacian

(1.1) −[p(t)φ(y′)]′ + q(t)φ(y) = w(t)f(y) on [a, b],

where φ(y) = |y|r−1y for r > 0, and the initial conditions

(1.2) y(t0) = y0, (p
1

r y′)(t0) = z0,

where t0 ∈ [a, b], and y0, z0 ∈ R.

When r > 0 and r 6= 1, if f(y) = φ(y), then Eq. (1.1) is a half-linear equation in

the sense that y(t) is a solution implies that cy(t) is also a solution for any c ∈

R. However, it is impossible for Eq. (1.1) to be linear or to be transformed to

a linear equation in any situation. Therefore, many tools used for the case when

r = 1 can not be applied to the general problems with p-Laplacian. For instance,

the fundamental solution set, the classical Prüfer transformation and the Gronwall

inequality are among such tools.

It is well-known that even for the case when r = 1, the solution of IVP (1.1), (1.2),

if exists, may not be unique and may not be extended to the whole interval [a, b], see

Wong [4] for details. Kong [2] proved that under some smoothness assumptions, IVP
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(1.1), (1.2) with r = 1 has a unique solution which exists on the whole interval [a, b].

Due to the p-Laplacian form, the establishment of the global existence and uniqueness

of the general IVP (1.1), (1.2) is much harder than the case with r = 1. This is because

the first order system transformed from Eq. (1.1) is of more complicated structure.

Recently, Naito and Tanaka [3] proved an existence and uniqueness theorem for the

special case of IVP (1.1), (1.2) where p(t) ≡ 1 and q(t) ≡ 0. However, the work in

[3] cannot be simply extended to the IVP (1.1), (1.2). In fact, the energy function

and the Gronwall-inequality used in their proofs fail to work especially for the case

when q(t) 6≡ 0. Here, by using a generalized energy function and a generalized Prüfer

transformation and by deriving some nonlinear inequalities, we are able to prove that

the solution of IVP (1.1), (1.2) exists on the whole interval [a, b] and is unique.

Initial value problems are closely related to boundary value problems. For in-

stance, shooting method is one of the fundamental methods which can be used to

investigate the existence of solutions of the boundary value problems consisting of

Eq. (1.1) and the boundary condition

a11y(a) − a12(p
1

r y′)(a) = 0,(1.3)

a21y(b) − a22(p
1

r y′)(b) = 0,

where aij ∈ R and a2
i1 + a2

i2 6= 0 for i, j = 1, 2.

To implement the shooting method, we may begin with a solution of Eq. (1.1)

satisfying an initial condition generated from the first boundary condition of (1.3)

and containing a parameter. Then adjust the value of the parameter to meet the

second boundary condition of (1.3). Such an approach requires that solutions to IVP

associated with Eq. (1.1) exist uniquely on the whole interval [a, b] and hence depend

on the parameter in a continous way.

This paper provides a foundation for a forthcoming paper on the existence of

nodal solutions of boundary value problem (1.1), (1.3).

Throughout this papter, we make the following assumptions:

(H1) p, q, w ∈ C1[a, b] with p, w > 0 on [a, b];

(H2) f ∈ C(R) such that yf(y) > 0 for y 6= 0 and f is locally Lipschitz continuous

on R\{0};

(H3) There exist limits f0 and f∞ such that 0 ≤ f0, f∞ ≤ ∞, where

f0 = lim
y→0

f(y)

φ(y)
and f∞ = lim

y→±∞

f(y)

φ(y)
.

The following is our main result.

Theorem 1.1. For any t0 ∈ [a, b] and y0, z0 ∈ R, IVP (1.1), (1.2) has a solution

which exists uniquely on the whole interval [a, b].
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2. PRELIMINARIES FOR THE PROOF

2.1. Generalized Trignometric Functions. We will use the generalized Prüfer

transformation introduced by Elbert [1] in the proof of the main theorem, so we first

introduce some basic knowledge on the generalized trigonometric functions.

Let S = S(θ) be the unique solution of the half-linear differential equation

d

dθ
(φ(

dS

dθ
)) + rφ(S) = 0

satisfying the initial condition

S(0) = 0,
dS(θ)

dθ
|θ=0 = 1.

Then S = S(θ) is called the generalized sine function. It is easy to see that S = S(θ)

is periodic with period 2πr, where

πr =
2π

(r + 1)
/ sin

π

r + 1
.

For k ∈ Z, S(kπr) = 0, S(θ) > 0 for θ ∈ (2kπr, (2k+1)πr) and S(θ) < 0 for θ ∈ ((2k+

1)πr, (2k+2)πr). The generalized cosine function C(θ) is defined by C(θ) = dS(θ)/dθ.

C(θ) is even and periodic with period 2πr. For k ∈ Z, C((k + 1/2)πr) = 0, C(θ) > 0

for θ ∈ ((2k−1/2)πr, (2k+1/2)πr) and C(θ) < 0 for θ ∈ ((2k+1/2)πr, (2k+3/2)πr).

The functions S(θ) and C(θ) satisfy the relation that

|S(θ)|r+1 + |C(θ)|r+1 = 1 for θ ∈ R.

The generalized tangent function T (θ) is defined by

T (θ) =
S(θ)

C(θ)
for θ 6= (k + 1/2)πr, k ∈ Z.

Hence it is a periodic function of period πr and satisfies

T ′(θ) = 1 + |T (θ)|r+1 for θ 6= (k + 1/2)πr, k ∈ Z.

For k ∈ Z, T (θ) is strictly increasing for θ ∈ ((k − 1/2)πr, (k + 1/2)πr). The inverse

of T (·) on (−πr/2, πr/2) is denoted by T−1(·).

2.2. Integral Inequalities. We need the following lemma to prove our main theo-

rem.

Lemma 2.1. Let x(t) ≥ 0 be a continuous solution of the inequality

x(t) ≤ C +

∫ t

t0

φ−1

(

D + K

∫ s

t0

φ(x(τ))dτ

)

ds, t ∈ [t0, t0 + T ),

where 0 < T < ∞, C, D, K ∈ R such that C, D ≥ 0 and K > 0. Then

(a) x(t) is bounded on [t0, t0 + T ) if D > 0;

(b) x(t) ≡ 0 on [t0, t0 + T ) if C = D = 0.
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Proof. Let

r(t) = C +

∫ t

t0

φ−1

(

D + K

∫ s

t0

φ(x(τ))dτ

)

ds.

Then x(t) ≤ r(t) for t ∈ [t0, t0 + T ), and

r′(t) = φ−1

(

D + K

∫ t

t0

φ(x(s))ds

)

≤ φ−1

(

D + K

∫ t

t0

φ(r(s))ds

)

≤ φ−1 (D + KTφ(r(t))) .(2.1)

(i) Assume D > 0. Then for t ∈ [t0, t0 + T )

dr(t)

φ−1(D + KTφ(r(t))
≤ dt.

Integrating both sides from t0 to t and making the substitution u = r(t), we have

that for t ∈ [t0, t0 + T )

(2.2)

∫ r(t)

r(t0)

du

φ−1(D + KTφ(u))
≤ t − t0 < T.

Assume x(t) is unbounded on [t0, t0 + T ). Then lim supt→(t0+T )− x(t) = ∞, so

limt→(t0+T )− r(t) = ∞. Therefore

lim
t→(t0+T )−

∫ r(t)

r(t0)

du

φ−1(D + KTφ(u))
=

∫

∞

r(t0)

du

φ−1(D + KTφ(u))

≥

∫

∞

r∗(t0)

du

φ−1 ((D + KT )φ(u))
=

∫

∞

r∗(t0)

du

φ−1(D + KT )u
= ∞,

where r∗(t0) = max{r(t0), 1}. This contradicts (2.2). Therefore, x(t) is bounded on

[t0, t0 + T ).

(ii) Assume C = D = 0. From (2.1) we have that for t ∈ [t0, t0 + T )

r′(t) ≤ φ−1 (KTφ(r(t))) = φ−1(KT )r(t).

Hence

r′(t) − φ−1(KT )r(t) ≤ 0.

By multiplying both sides of the inequality by e−φ−1(KT )t, we have that for t ∈ [t0, t0+

T )

[e−φ−1(KT )tr(t)]′ ≤ 0,

so

e−φ−1(KT )tr(t) ≤ e−φ−1(KT )t0r(t0) = 0.

This implies r(t) ≤ 0, and hence x(t) ≤ r(t) ≤ 0. Note that x(t) ≥ 0. Therefore,

x(t) ≡ 0.
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3. PROOF OF THE MAIN RESULT

Notice that, if we let τ(t) =
∫ t

a
1/p1/r(s)ds, t = t(τ) the inverse function, and

u(τ) = y(t(τ)), then IVP (1.1), (1.2) can be transformed to an IVP for the unknown

function u(τ) consisting of the equation

−
d

dτ
(φ(

du

dτ
)) + Q(τ)φ(u) = W (τ)f(u) on

[

0,

∫ b

a

1/p1/r(s)ds

]

and the initial condition

u(τ0) = y0,
du

dτ
|τ=τ0 = z0,

where Q(τ) = p1/r(t(τ))q(t(τ)), W (τ) = p1/r(t(τ))w(t(τ)), and τ0 = τ(t0). Thus for

simplicity, we will only prove the case when p(t) ≡ 1, i.e., the IVP consisting of the

equation

(3.1) −[φ(y′)]′ + q(t)φ(y) = w(t)f(y) on [a, b]

and the initial conditions

(3.2) y(t0) = y0, y′(t0) = z0.

Let z = φ(y′). Then IVP (3.1), (3.2) can be written as the IVP consisting of the

equation

(3.3)

(

y

z

)′

=

(

φ−1(z)

−w(t)f(y) + q(t)φ(y)

)

and the initial condition

(3.4) y(t0) = y0, z(t0) = φ(z0).

Let θ(t) and ρ(t) be the generalized Prüfer angle and the Prüfer distance of y(t), i.e.,

they are continuous functions satisfying
{

y(t) = ρ(t)S(θ(t))

y′(t) = ρ(t)C(θ(t)),

and equivalently,

(3.5) ρ(t) = (|y(t)|r+1 + |y′(t)|r+1)
1

r+1 , θ(t) = T−1

(

y(t)

y′(t)

)

.

It is easy to see that IVP (3.1), (3.2) is equivalent to the IVP consisting of the system

θ′(t) = |C(θ(t))|r+1 +
w(t)f(ρ(t)S(θ(t)))S(θ(t))

rρ(t)r
−

q(t)|S(θ(t))|r+1

r

ρ′(t) = ρ(t)

[

1 +
q(t)

r

]

φ (S(θ(t)))C(θ(t)) −
w(t)f(ρ(t)S(θ(t)))C(θ(t))

rρ(t)r−1

(3.6)

and the initial condition

(3.7) θ(t0) = T−1

(

y0

z0

)

, ρ(t0) = (|y0|
r+1 + |z0|

r+1)
1

r+1 .
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The following result is on the global existence of the solution of IVP (3.1), (3.2).

Proposition 3.1. For any t0 ∈ [a, b] and y0, z0 ∈ R, IVP (3.1), (3.2) has a solution

which exists on the whole interval [a, b].

Proof. The existence of a local solution of IVP (3.1), (3.2) is guaranteed by the

Cauchy-Peano existence theorem. Now we show that the solution exists on the whole

interval [a, b]. Assume the contrary, without loss of generality, we may assume y(t)

exits on a maximal right interval [t0, c) for some c ∈ (t0, b). Then y(t) is unbounded

on [t0, c).

(I) Consider the case when f∞ < ∞. For any ǫ > 0, there exists M > 0 such that

(3.8) |f(y)| ≤ (f∞ + ǫ)φ(|y|) for |y| ≥ M.

Let

(3.9) K = max
τ∈[t0,c)

{(f∞ + ǫ)w(τ) + |q(τ)|}.

Case (i). Assume y(t) is not oscillatory about M or −M at c. Then there exists

t∗ ∈ [t0, c) such that |y(t)| ≥ M for all t ∈ [t∗, c) and |y′(t∗)| > 0. From Eq. (3.1), for

t ∈ [t∗, c) we have

(3.10) y(t) = y(t∗) +

∫ t

t∗

φ−1

(

φ(y′(t∗)) −

∫ s

t∗

[w(τ)f(y(τ)) − q(τ)φ(y(τ))]dτ

)

ds.

Then from (3.8) and (3.9),

|y(t)| ≤ |y(t∗)| +

∫ t

t∗

φ−1

(

φ(|y′((t∗)|) + K

∫ s

t∗

φ(|y(τ)|)dτ

)

ds.

By Lemma 2.1 (i), |y(t)| is bounded on [t0, c), contradicting the assumption.

Case (ii). Assume y(t) is oscillatory about M at c. Then there exist sequences

{tn}
∞
n=1 and {τn}

∞
n=1 in [t0, c) such that for each n ∈ N, tn < τn, tn, τn → c−, tn is a

local maximal point of y, y(tn) → ∞, y(τn) = M , and y(t) is decreasing on [tn, τn].

Note that by (3.8) and (3.9) that for t ∈ [tn, τn]
∫ t

tn

[w(s)f(y(s))− q(s)φ(y(s))]ds ≤

∫ t

tn

[(f∞ + ǫ)w(s) + |q(s)|]φ(y(s))ds

≤

(
∫ t

tn

[(f∞ + ǫ)w(s) + |q(s)|]ds

)

φ(y(tn)) ≤ K(t − tn)φ(y(tn)).

Then (3.10) with t∗ = tn and t = τn implies that

M = y(τn) = y(tn) −

∫ τn

tn

φ−1

(
∫ s

tn

[w(τ)f(y(τ)) − q(τ)φ(y(τ))]dτ

)

ds

≥ y(tn) −

∫ τn

tn

φ−1 (K(s − tn)φ(y(tn))) ds

≥ y(tn) −

∫ τn

tn

φ−1(K(τn − tn))φ(y(tn))ds
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=
(

1 − [φ−1(K(τn − tn))](τn − tn)
)

y(tn).

Letting n → ∞ in the above inequality we get limn→∞ y(tn) ≤ M , contradicting the

assumption that y(tn) → ∞.

Case (iii). Assume y(t) is oscillatory about −M at c. The proof is similar to

Case (ii) and hence is omitted.

(II) Consider the case when f∞ = ∞. Define a generalized energy function for

y(t) by

(3.11) [E(y)](t) =
r

r + 1
|y′(t)|r+1 −

1

r + 1
q(t)|y(t)|r+1 + w(t)F (y(t)),

where F (y) =

∫ y

0

f(σ)dσ. In view of Eq. (3.1) we find that

(3.12) [E(y)]′(t) = −
1

r + 1
q′(t)|y(t)|r+1 + w′(t)F (y(t)).

Let k = max{|w′(t)|/w(t) : t ∈ [a, b]}. From (3.12) we have that for t ∈ [a, b]

[E(y)]′(t) = −
1

r + 1
q′(t)|y(t)|r+1 +

w′(t)

w(t)
[w(t)F (y(t))](3.13)

≤ −
k + 1

r + 1
q(t)|y(t)|r+1 +

1

r + 1
[(k + 1)q(t) − q′(t)]|y(t)|r+1

+ kw(t)F (y(t)).

Because w(t) > 0 is continuous and q(t), q′(t) are bounded on [a, b], we can find a

constant h > 0 such that for t ∈ [t0, c)

(3.14)
h

r + 1
[(k + 1)q(t) − q′(t)] ≤ w(t).

Since f∞ = ∞, we have |y|r+1 = o(F (y)) as |y| → ∞. This means that there exists

M > 0 such that |y|r+1 ≤ hF (y) for |y| ≥ M . Define

I1 = {t ∈ [t0, c) : |y(t)| ≤ M} and I2 = {t ∈ [t0, c) : |y(t)| > M}.

Then from (3.13) and (3.14), there exists N > 0 such that [E(y)]′(t) ≤ N for t ∈ I1,

and for t ∈ I2

[E(y)]′(t) ≤ (k + 1)

[

−
1

r + 1
q(t)|y(t)|r+1 + w(t)F (y(t))

]

≤ (k + 1)[E(y)](t).

Hence for t ∈ [t0, c) we have

[E(y)](t) = [E(y)](t0) +

∫ t

t0

[E(y)]′(s)

≤ [E(y)](t0) +

∫

[t0,t]∩I1

Nds +

∫

[t0,t]∩I2

(k + 1)[E(y)](s)ds

≤ [E(y)](t0) + N(c − t0) +

∫

[t0,t]∩I2

(k + 1)[E(y)](s)ds.
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Let N∗ = |[E(y)](t0)| + |N(c − t0)|. Then for t ∈ [t0, c)

|[E(y)](t)| ≤ N∗ +

∫

[t0,t]∩I2

(k + 1)|[E(y)](s)|ds ≤ N∗ +

∫ t

t0

(k + 1)|[E(y)](s)|ds.

By the Gronwall inequality, for t ∈ [t0, c)

|[E(y)](t)| ≤ N∗e
(k+1)(t−t0) ≤ N∗e

(k+1)(c−t0).

Therefore, lim supt→c− |([E(y)](t)| < ∞. On the other hand, since y(t) is unbounded

on [t0, c), there exists a sequence tn → c− such that |y(tn)| → ∞. Since

limy→∞ F (y)/|y|r+1 = f∞ = ∞, by (3.11)

[E(y)](tn) ≥

(

−
1

r + 1
q(tn) + w(tn)

F (y(tn))

|y(tn)|r+1

)

|y(tn)|
r+1 → ∞ as n → ∞,

i.e. |[E(y)](tn)| → ∞ as n → ∞. We have reached a contradiction.

Proposition 3.2. For any t0 ∈ [a, b] and y0, z0 ∈ R, the solution of IVP (3.1), (3.2)

is unique.

Proof. Since φ−1(z), φ(y) and f(y) are locally Lipschitz continuous in y, z ∈ R\{0},

from the equivalent form (3.3), (3.4) to IVP (3.1), (3.2), we see that the local solution

of IVP (3.1), (3.2) is unique for the case when y0 6= 0 and z0 6= 0. Thus it suffices to

show the uniqueness of a local solution of the problem in the case when y0z0 = 0. We

divide the proof into the following three cases: (i) y0 = 0, z0 6= 0; (ii) y0 6= 0, z0 = 0;

(iii) y0 = 0, z0 = 0. We will show the uniqueness in a right-neighborhood of t0 only.

The proof for the uniqueness in a left-neighborhood of t0 is similar and hence is

omitted.

(i) Assume y0 = 0, z0 6= 0. We may assume that z0 > 0 without loss of generality.

Let y1 and y2 be solutions of IVP (3.1), (3.2). Then there exists a t1 ∈ (t0, b] such

that y′
j(t) ≥ z0/2 for t ∈ [t0, t1], j = 1, 2. Let [E(yi)](t) be the generalized energy

function for yi(t), i = 1, 2, as defined by (3.11). In view of (3.12), we obtain that for

j = 1, 2,

[E(yj)](t) − [E(yj)](t0) =

∫ t

t0

(

−
1

r + 1
q′(s)|yj(s)|

r+1 + w′(s)F (yj(s))

)

ds.

Note that [E(y1)](t0) = [E(y2)](t0), we have

[E(y1)](t) − [E(y2)](t)

=

∫ t

t0

[

−
1

r + 1
q′(s)(|y1(s)|

r+1 − |y2(s)|
r+1)

]

ds

+

∫ t

t0

[w′(s) (F (y1(s)) − F (y2(s)))] ds.

Therefore, by (3.11)

|y′

1(t)|
r+1 − |y′

2(t)|
r+1(3.15)
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=
1

r
q(t)(|y1(t)|

r+1 − |y2(t)|
r+1) −

r + 1

r
w(t)(F (y1(t)) − F (y2(t)))

+

∫ t

t0

[

−
1

r
q′(s)(|y1(s)|

r+1 − |y2(s)|
r+1)

]

ds

+

∫ t

t0

[

r + 1

r
w′(s)(F (y1(s)) − F (y2(s)))

]

ds.

By the Mean value theorem, there exist continuous functions ξ1(t) and ξ2(t) between

y1(t) and y2(t) such that for t ∈ [t0, t1]
∣

∣|y1(t)|
r+1 − |y2(t)|

r+1
∣

∣ = (r + 1)|φ(ξ1(t))||y1(t) − y2(t)|

and

|F (y1)(t) − F (y2)(t)| = |f(ξ2(t))||y1(t) − y2(t)|.

Note that y1(t) and y2(t) are bounded on [t0, t1], there exists A > 0 such that for

t ∈ [t0, t1], |φ(ξ1(t)| ≤ A and |f(ξ2(t)| ≤ A. Then

(3.16)
∣

∣|y1(t)|
r+1 − |y2(t)|

r+1
∣

∣ ≤ A|y1(t) − y2(t)|

and

(3.17) |F (y1)(t) − F (y2)(t)| ≤ A|y1(t) − y2(t)|.

From (3.15), (3.16), and (3.17), we have that for t ∈ [t0, t1]

(3.18)
∣

∣|y′

1(t)|
r+1 − |y′

2(t)|
r+1
∣

∣ ≤ C1|y1(t) − y2(t)| +

∫ t

t0

C2|y1(s) − y2(s)|ds,

where

C1 =
A

r

(

max
t∈[t0,t1]

{|q(t)|} + (r + 1) max
t∈[t0,t1]

{|w(t)|}

)

,

C2 =
A

r

(

max
t∈[t0,t1]

{|q′(t)|} + (r + 1) max
t∈[t0,t1]

{|w′(t)|}

)

.

Since y′
j(t) ≥ z0/2 for t ∈ [t0, t1], then

(3.19)
∣

∣|y′

1(t)|
r+1 − |y′

2(t)|
r+1
∣

∣ ≥ (r + 1)
(z0

2

)r

|y′

1(t) − y′

2(t)|, t ∈ [t0, t1].

Let Y (t) = y1(t)− y2(t) and C0 = (r + 1)(z0/2)r. Using (3.18) and (3.19) we see that

for t ∈ [t0, t1]

(3.20) C0|Y
′(t)| ≤ C1|Y (t)| +

∫ t

t0

C2|Y (t)|dt.

Let C = max{C1/C0, C2/C0} and |Y (t)|′R the right derivative of |Y (t)|. Then

(3.21) |Y (t)|′R ≤ |Y ′(t)| ≤ C|Y (t)| + C

∫ t

t0

|Y (s)|ds, t ∈ [t0, t1].

Integrating (3.21) over [t0, t] we get that for t ∈ [t0, t1]

|Y (t)| ≤ C

∫ t

t0

|Y (s)|ds + C

∫ t

t0

(t − s)|Y (s)|ds
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≤ C(1 + t1 − t0)

∫ t

t0

|Y (s)|ds.

By the Gronwall inequality, we have Y (t) ≡ 0, i.e., y1(t) ≡ y2(t) for t ∈ [t0, t1].

(ii) Assume y0 6= 0, z0 = 0. Let y(t) be a solution of IVP (3.1), (3.2), and θ(t),

ρ(t) the generalized Prüfer angle and distance of y(t). Since y0 6= 0, there exists

t1 ∈ (t0, b] such that S(θ(t)) 6= 0 and ρ(t) 6= 0 for t ∈ [t0, t1]. Hence the right hand

sides of (3.6) are locally Lipchitz in θ and ρ which garantees that the solution of IVP

(3.6), (3.7) is unique, and so is of IVP (3.1), (3.2).

(iii) Assume y0 = 0, z0 = 0. We will show y ≡ 0 and hence the solution of the

IVP is unique.

First, we consider the case when f0 < ∞. For any ǫ > 0, there exists δ > 0 such

that

|f(y)| ≤ (f0 + ǫ)φ(|y|) for |y| < δ.

Since y0 = 0, there exists t1 ∈ (t0, b] such that |y(t)| < δ for t ∈ [t0, t1). From (3.1),

(3.2) with y0 = z0 = 0, we have that for t ∈ [t0, t1),

y(t) =

∫ t

t0

φ−1

(

−

∫ s

t0

[w(τ)f(y(τ)) − q(τ)φ(y(τ))]dτ

)

ds.

Hence

|y(t)| ≤

∫ t

t0

φ−1

(

max
τ∈[a,b]

{(f0 + ǫ)w(τ) + |q(τ)|}

∫ s

t0

φ(|y(τ)|)dτ

)

ds.

By Lemma 2.1 (ii), we have y(t) ≡ 0 for t ∈ [t0, t1).

Then we consider the case when f0 = ∞. Let E(y) be defined by (3.11). Then

(3.13) holds on [t0, b]. Choose h > 0 such that (3.14) holds on [t0, b]. Since f0 =

∞, we have |y|r+1 = o(F (y)) as y → 0. This means there exists δ > 0 such that

|y|r+1 < hF (y) for |y| < δ. Since y0 = 0, there exists c ∈ (t0, b] such that |y(t)| < δ

for t ∈ (t0, c). It follows from (3.13) that for t ∈ (t0, c)

[E(y)]′(t) ≤ (k + 1)[E(y)](t).

Note that [E(y)](t0) = 0, so we have [E(y)](t) ≤ 0 for t ∈ (t0, c). This implies that

y(t) ≡ 0 on t ∈ (t0, c). For otherwise, there exists t1 ∈ (t0, c) such that y(t1) 6= 0 and

y(t1) is sufficiently close to 0. Then from (3.11)

[E(y)](t1) ≥

(

−
1

r + 1
q(t1) + w(t1)

F (y(t1))

|y(t1)|r+1

)

|y(t1)|
r+1 > 0.

We have reached a contradiction.

Note that IVP (1.1), (1.2) can be transformed to IVP (3.1), (3.2). Then Theorem

1.1 is the combination of Propositions 3.1 and 3.2.
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