
Dynamic Systems and Applications 19 (2010) 87-96

MINIMAL AND MAXIMAL SOLUTIONS FOR INTEGRAL

BOUNDARY VALUE PROBLEMS FOR THE SECOND ORDER

DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

WAWRZYNIEC SZATANIK

Gdansk University of Technology, Department of Differential Equations

11/12 G.Narutowicz Str., 80–952 Gdańsk, POLAND
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1. INTRODUCTION

There are many papers which deal with second order BVP and monotone itera-

tive technique [2], [3], [7]–[8], [10]–[14] and [16]. Monotone iterative method for the

first order differential equation with integral initial condition was employed in [9].

Interesting results about fourth order BVP and lower and upper solutions method

can be found in [1], [5] and [15]. Extension fourth order BVP to 2mth with full non-

linear BVP is studied in [4]. This paper expands view of BVP with integral boundary

conditions and deviating arguments. Requirements for existence of solution are for-

mulated.

First we need some technical lemmas which will be used in the main theorem.

Monotone sequences will be defined as solutions of some linear BVP problems. Limits

of that sequences appear to be minimal and maximal solutions of out target problem.

Next we introduce a non trivial example with numerical illustration of algorithm used

in the main theorem.

Let us define a boundary value problem

(1.1)







x′′(t) = f
(

t, x(t), x(α(t))
)

≡ Fx(t), t ∈ J = [0, T ], T < ∞,

x(0) =
∫ γ1

0
K1

(

s, x(s)
)

ds, x(T ) =
∫ γ2

0
K2

(

s, x(s)
)

ds,
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where f ∈ C(J × R × R, R), K1, K2 ∈ C(J × R, R) and γ1, γ2 ∈ J .

2. LEMMAS

To apply monotone iterative technique to problems of type (1.1), we need some

results in differential inequalities and integral equations.

Lemma 1. Assume that:

(2.1) α ∈ C(J, J), M, N ∈ C(J, [0,∞]), M(t) > 0, t ∈ (0, T ),

(2.2) max
{

∫ T

0

(

∫ T

s

[M(t) + N(t)]dt
)

ds,

∫ T

0

(

∫ s

0

[M(t) + N(t)]dt
)

ds
}

< 1.

Let p ∈ C2(J, R) and






p′′(t) ≥ M(t)p(t) + N(t)p
(

α(t)
)

, t ∈ J,

p(0) ≤ 0, p(T ) ≤ 0.

Then p(t) ≤ 0 on J .

Proof. Suppose, that p(t) > 0 for some t ∈ J . Thus we will consider two possible

cases:

1. p(t) > 0 for t ∈ (0, T ),

2. there exist t∗, t
∗ ∈ J , such that p(t∗) < 0 and p(t∗) > 0.

Case 1. Because p(t) > 0 for t ∈ (0, T ) then p(0) = p(T ) = 0. It follows p′′(t) ≥ 0,

means that p is convex, thus in holds

p(t) ≤ T − t

T
p(0) +

t

T
p(T ) = 0,

for t ∈ (0, T ), is a contradiction.

Case 2. There exists t∗ ∈ J , such that

p(t∗) = max{p(t), t ∈ J}, p′(t∗) = 0.

Denote t∗ ∈ J , such that p(t∗) = min{p(t), t ∈ J}. Then for t ∈ J , we have

(2.3) p′′(t) ≥ M(t)p(t) + N(t)p
(

α(t)
)

≥ [M(t) + N(t)]p(t∗).

Suppose that t∗ < t∗, by integrating on (t, t∗) (2.3) we get

p′(t∗) − p′(t) ≥ p(t∗)

∫ t∗

t

[M(s) + N(s)]ds.

However p′(t∗) = 0 and p(t∗) < 0, then

(2.4) −p′(t) ≥ p(t∗)

∫ T

t

[M(s) + N(s)]ds, for t ∈ [0, t∗].
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Now let us integrate (2.4) on (t∗, t
∗), thus

p(t∗) ≥ −p(t∗) + p(t∗) ≥ p(t∗)

∫ t∗

t∗

∫ T

s

[M(τ) + N(τ)]dτds

≥ p(t∗)

∫ T

0

∫ T

s

[M(τ) + N(τ)]dτds.

(2.5)

Hence,

p(t∗)
(

1 −
∫ T

0

∫ T

s

[M(τ) + N(τ)]dτds
)

≥ 0.

It is a contradiction with assumption (2.2). For t∗ > t∗ we omit that part of proof

because it is similar.

Second Lemma follows from Green function properties.

Lemma 2. Let

G(t, s) = − 1

T







(T − t)s for 0 ≤ s ≤ t ≤ T,

(T − s)t for 0 ≤ t ≤ s ≤ T.

Let h : J → R be integrable on J . Then the problem







u′′(t) = h(t),

u(0) = κ, u(T ) = β

has the exactly one solution given by

u(t) =

∫ T

0

G(t, s)h(s)ds +
β

T
t +

κ

T
(T − t).

Also we need some existence lemma ([16]).

Lemma 3. Let α ∈ C(J, J), M , N ∈ C(J, [0,∞)). Assume that

(2.6) max
t∈[0,T ]

∫ T

0

2|G(t, s)||M(s) + N(s)|ds < 1.

Then the problem

(2.7)







y′′(t) = M(t)y(t) + N(t)y
(

α(t)
)

+ σ(t), t ∈ J

y(0) = β1, y(T ) = β2, β1, β2 ∈ R,

has the exactly one solution y ∈ C(J, R).
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3. MAIN RESULT

First we introduce definitions related with problem (1.1).

Definition 1. A function y0 ∈ C2(J, R) is said to be the lower solution of (1.1) if






y′′

0(t) ≥ Fy0(t) for t ∈ J,

y0(0) ≤
∫ γ1

0
K1

(

s, y0(s)
)

ds, y0(T ) ≤
∫ γ2

0
K2

(

s, y0(s)
)

ds.

Definition 2. A function z0 ∈ C2(J, R) is said to be the upper solution of (1.1) if






z′′0 (t) ≤ Fz0(t) for t ∈ J,

z0(0) ≥
∫ γ1

0
K1

(

s, z0(s)
)

ds, z0(T ) ≥
∫ γ2

0
K2

(

s, z0(s)
)

ds.

Definition 3. Let u, v ∈ C2(J, R) with u(t) ≤ v(t) for t ∈ J . Solutions U, V of (1.1)

are called minimal and maximal solutions in segment [u, v] if u(t) ≤ U(t), V (t) ≤ v(t)

for t ∈ J and for any else Z solution of (1.1), such as u(t) ≤ Z(t) ≤ v(t) for t ∈ J we

have U(t) ≤ Z(t) ≤ V (t), t ∈ J .

Now we can formulate the main theorem.

Theorem 1. Let f ∈ C(J × R × R, R), K1, K2 ∈ C(J × R, R), γ1, γ2 ∈ J and

α ∈ C(J, J). Let y0, z0 are lower and upper solutions of (1.1) and y0(t) ≤ z0(t),

t ∈ J . Moreover, assume that

(3.1) f(t, ū1, v̄1) − f(t, u1, v1) ≥ −M(t)[u1 − ū1] − N(t)[v1 − v̄1],

(3.2) K1(t, ū1) − K1(t, u1) ≤ h1(t)[ū1 − u1] where h1(t) ≥ 0 for t ∈ J,

(3.3) K2(t, ū1) − K2(t, u1) ≤ h2(t)[ū1 − u1] where h2(t) ≥ 0 for t ∈ J,

for y0(t) ≤ ū1 ≤ u1 ≤ z0(t), y0(α(t)) ≤ v̄1 ≤ v1 ≤ y0(α(t)). Also we assume that

functions M, N satisfies (2.1), (2.2) and (2.6). Then problem (1.1) has in segment

[y0, z0] the minimal and maximal solutions.

Proof. Let us define some linear BVP problems:

(3.4)



















y′′

1(t) = Fy0(t) + M(t)[y1(t) − y0(t)]

+N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

], t ∈ J,

y1(0) =
∫ γ1

0
K1

(

s, y0(s)
)

ds, y1(T ) =
∫ γ2

0
K2

(

s, y0(s)
)

ds,

(3.5)



















z′′1 (t) = Fz0(t) + M(t)[z1(t) − z0(t)]

+N(t)[z1

(

α(t)
)

− z0

(

α(t)
)

], t ∈ J,

z1(0) =
∫ γ1

0
K1

(

s, z0(s)
)

ds, z1(T ) =
∫ γ2

0
K2

(

s, z0(s)
)

ds.

Note that problems (3.4) and (3.5) have unique solutions y1 and z1, by Lemma (3).
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First we will prove that y0(t) ≤ y1(t) for t ∈ J . Put p(t) = y0(t) − y1(t), t ∈ J .

From definition of lower solution y0 and (3.4), we obtain,

p(0) = y0(0) − y1(0) ≤
∫ γ1

0

K1

(

s, y0(s)
)

ds −
∫ γ1

0

K1

(

s, y0(s)
)

ds = 0,

p(T ) = y0(T ) − y1(T ) ≤
∫ γ2

0

K2

(

s, y0(s)
)

ds −
∫ γ2

0

K2

(

s, y0(s)
)

ds = 0.

Now we will compute the second derivative of p to show that all assumption of

Lemma 1 are fulfilled by p. So,

p′′(t) = y′′

0(t) − y′′

1(t) ≥ Fy0(t) − Fy0(t)

− M(t)[y1(t) − y0(t)] − N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

]

= M(t)[y0(t) − y1(t)] + N(t)[y0

(

α(t)
)

− y1

(

α(t)
)

]

= M(t)p(t) + N(t)p
(

α(t)
)

.

Then Lemma 1 implies that p(t) ≤ 0 for t ∈ J . It proves that y0(t) ≤ y1(t). In

the same way we can show that z0(t) ≥ z1(t).

In the next step we will show that y1(t) ≤ z1(t) for t ∈ J . Let p(t) = y1(t)−z1(t),

by using assumptions (3.2) and (3.3), we get

p(0) = y1(0) − z1(0) =

∫ γ1

0

K1

(

s, y0(s)
)

ds −
∫ γ1

0

K1

(

s, z0(s)
)

ds

=

∫ γ1

0

[

K1

(

s, y0(s)
)

− K1

(

s, z0(s)
)

]

ds

≤
∫ γ1

0

h1(s)
[

y0(s) − z0(s)
]

ds ≤ 0,

p(T ) = y1(T ) − z1(T ) =

∫ γ2

0

K2

(

s, y0(s)
)

ds −
∫ γ1

0

K2

(

s, z0(s)
)

ds

=

∫ γ2

0

[

K2

(

s, y0(s)
)

− K2

(

s, z0(s)
)

]

ds

≤
∫ γ2

0

h2(s)
[

y0(s) − z0(s)
]

ds ≤ 0.

Moreover, using the assumption (3.1), we get

p′′(t) = Fy0(t) − Fz0(t) + M(t)[y1(t) − y0(t)] − M(t)[z1(t) − z0(t)]

+ N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

] − N(t)[z1

(

α(t)
)

− z0

(

α(t)
)

]

≥ −M(t)[z0(t) − y0(t)] − N(t)[z0

(

α(t)
)

− y0

(

α(t)
)

]

+ M(t)[y1(t) − y0(t)] − M(t)[z1(t) − z0(t)]

+ N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

] − N(t)[z1

(

α(t)
)

− z0

(

α(t)
)

]

= M(t)p(t) + N(t)p
(

α(t)
)

.

Hence y1(t) ≤ z1(t), t ∈ J , by Lemma 1.
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Now we will show that y1 and z1 are lower and upper solutions of (1.1), respec-

tively. From the definition of y1 and (3.2), we have

y1(0) =

∫ γ1

0

K1

(

s, y0(s)
)

ds −
∫ γ1

0

K1

(

s, y1(s)
)

ds +

∫ γ1

0

K1

(

s, y1(s)
)

ds

≤
∫ γ1

0

h1(s)
[

y0(s) − y1(s)
]

ds +

∫ γ1

0

K1

(

s, y1(s)
)

ds ≤
∫ γ1

0

K1

(

s, y1(s)
)

ds.

In the same way we can show that y1(T ) ≤
∫ γ2

0
K2

(

s, y1(s)
)

ds.

Next we need to show that y′′

1(t) ≥ Fy1(t). To do that, we will use the definition

of y1 and condition (3.1). So,

y′′

1(t) = Fy0(t) − Fy1(t) + Fy1(t) + M(t)[y1(t) − y0(t)]

+ N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

]

≥ Fy1(t) − M(t)[y1(t) − y0(t)] − N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

]

+ N(t)[y1

(

α(t)
)

− y0

(

α(t)
)

]

= Fy1(t).

Thus y1 is a lower solution of (1.1). Using same technique we can show that z1 is a

upper solution of (2.7).

Now we can define sequences lower and upper solutions of (1.1), by

(3.6)



















y′′

n(t) = Fyn−1(t) + M(t)[yn(t) − yn−1(t)]

+N(t)[yn

(

α(t)
)

− yn−1

(

α(t)
)

], t ∈ J,

yn(0) =
∫ γ1

0
K1

(

s, yn−1(s)
)

ds, yn(T ) =
∫ γ2

0
K2

(

s, yn−1(s)
)

ds,

(3.7)



















z′′n(t) = Fzn−1(t) + M(t)[zn(t) − zn−1(t)]

+N(t)[zn

(

α(t)
)

− zn−1

(

α(t)
)

], t ∈ J,

zn(0) =
∫ γ1

0
K1

(

s, zn−1(s)
)

ds, zn(T ) =
∫ γ2

0
K2

(

s, zn−1(s)
)

ds,

for n = 1, 2, . . . . We proved for n = 1, that problems (3.6) and (3.7) have solutions

which are also lower and upper solutions of (1.1). By induction in n, we can prove

the relation:

y0(t) ≤ · · · ≤ yn−1(t) ≤ yn(t) ≤ zn(t) ≤ zn−1(t) ≤ · · · ≤ z0(t)

for t ∈ J , n ∈ N. It is not problematic to show that sequences {yn}, {zn} are equicon-

tinuous and bounded on J . The Arzeli-Ascoli theorem guarantees the existence of

subsequences {ynk
}, {znk

} and functions y, z ∈ C(J, R) with {ynk
}, {znk

} converging

uniformly on J to y, z, respectively when nk → ∞. However, since the sequences

{yn}, {zn} are monotonic, we conclude that the whole sequences {yn}, {zn} converge
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uniformly on J to y, z, respectively. If n → ∞ in integral equations for yn, zn and we

compute first and second derivative of them, we get






y′′(t) = Fy(t), t ∈ J,

y(0) =
∫ γ1

0
K1

(

s, y(s)
)

ds, y(T ) =
∫ γ2

0
K2

(

s, y(s)
)

ds, t ∈ J

and






z′′(t) = Fz(t), t ∈ J,

z(0) =
∫ γ1

0
K1

(

s, z(s)
)

ds, y(T ) =
∫ γ2

0
K2

(

s, z(s)
)

ds, t ∈ J,

We have proved that the problem (1.1) has the solutions y and z.

In the last step, we will show that y and z are the minimal and maximal solutions

in segment [y0, z0]. Let z̄ be the solution of (1.1) such that

ym(t) ≤ z̄(t) ≤ zm(t), t ∈ J

for some m ∈ N. Put p(t) = ym+1(t) − z̄(t), t ∈ J . Form definition of ym+1 and

conditions (3.1), (3.2), (3.3), we get p(0) ≤ 0, p(T ) ≤ 0 and

p′′(t) = Fym(t) − F z̄(t) + M(t)[ym+1(t) − ym(t)]

+ N(t)[ym+1

(

α(t)
)

− ym

(

α(t)
)

]

≥ −M(t)[z̄(t) − ym(t)] − N(t)[z̄
(

α(t)
)

− ym

(

α(t)
)

]

+ M(t)[ym+1(t) − ym(t)] + N(t)[ym+1

(

α(t)
)

− ym

(

α(t)
)

]

= M(t)[ym+1(t) − z̄(t)] + N(t)[ym+1

(

α(t)
)

− z̄
(

α(t)
)

]

= M(t)p(t) + N(t)p
(

α(t)
)

.

In the same way we can show that z̄(t) ≤ zm+1(t), t ∈ J . By induction, we obtain

yn(t) ≤ z̄(t) ≤ zn(t), for n ∈ N.

If n → ∞, it yields

y(t) ≤ z̄(t) ≤ z(t), t ∈ J.

It shows that (y, z) are minimal and maximal solutions of problem (1.1) in segment

[y0, z0].

Example 1. Let us consider a problem:

(3.8)























x′′(t) = t2 sin x(t) +

(

x(
√

t)
)3

et+3
+ 1, t ∈ J = [0, 1],

x(0) =
∫ 1

2

0
[1.5 + sin(s)2 arctanx(s)]ds,

x(T ) =
∫ 1

0
es−1

(

x(s) + 1
)

ds

Let y0(t) = t(t − 2) − 1, z0(t) = −t(t − 2) + 1.

By numerical computation we can obtain that y0, z0 are lower and upper solutions

of (1.1). Because max{z0(t) − y0(t), t ∈ J} = 4, we can prove then an assumption
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(3.1) held by using the mean value theorem. Let u, v̄, z, v̄ and y0(t) ≤ ū ≤ u ≤
z0(t), y0(α(t)) ≤ v̄ ≤ v ≤ y0(α(t)). Thus

f(t, ū, v̄) − f(t, u, v) = t2(sin ū − sin u) +
1

et+3
(v̄3 − v3),

so there exist θ1 ∈ (ū, u) and θ2 ∈ (v̄, v) such as

t2(sin ū − sin u) +
1

et+3
(v̄3 − v3) = t2 cos θ1(ū − u) +

3(θ2)
3

et+3
(v̄ − v)

≤ t2(ū − u) +
48

et+3
(v̄ − v) = −t2(u − ū) − 48

et+3
(v − v̄),

Then M(t) = t2 and N(t) =
48

exp(t + 3)
. By numerical calculation we can show that

functions M and N satisfy (2.2) and (2.6). Conditions (3.2) and (3.3) also holds,

h1(t) = exp(t − 1) and h2(t) =
2

17
sin t, it can be shown by same way like condition

(3.1) . So all conditions from Theorem 1 hold. Then, in the view of Theorem 3,

the problem (3.8) has, in segment [y0, z0], the minimal and maximal solutions. On

Figure 1, we see four numerical results of iterations algorithm from Theorem 3. On

Figure 2 there are shown the first eight iterations of algorithm.

y
3

y
4

z
3

z
4

y
2

y
1

z
1

z
2

y
2

y
3

z
2

z
3

y
4

y
5

z
4

z
5

Figure 1. First four results of iteration in problem (3.8).

To obtain numerical solutions of problems (3.4) and (3.5), we discreetized it and

solved appropriate linear systems by Mathematica 4.0. Solutions are interpolated

by Lagrange polynomials to obtain values for deviating arguments.
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0.2 0.4 0.6 0.8 1

-2

-1

1

2

Figure 2. First eight results of iteration in problem (3.8).
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