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1. INTRODUCTION

This paper is concerned with the following Lidstone boundary value problem

(BVP, for short)

(1.1)







(−1)nu2n(t) = f(t, u(t), u′′(t), . . . , u(2(n−1))(t)), t ∈ (0, 1);

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n − 1,

where n ≥ 1, f is a given sign-changing function satisfying some assumptions that

will be specified later. For convenience, we first give some notations.

Let R+ = [0, +∞), R− = (−∞, 0], U = (u0, u1, . . . , un−1) ∈ Rn, |U | = max{|u0|,

|u1|, . . . , |un−1|}, Rn
i =

n−1
∏

i=0

(−1)iR+, Rn
+ =

n−1
∏

i=0

R+, where

(−1)iR+ =

{

R+, i is even;

R−, i is odd.

In last few years, many authors have studied the existence and multiplicity of

positive solutions for Lidstone boundary value problem (for details, see [1, 2, 3, 4,

7, 8, 9, 10, 11, 12, 13] and references therein) since it arises in many different areas

of applied mathematics and physics. In particular, if n = 2, it describes the de-

formation of an elastic beam whose both ends are simply supported. Some authors
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even considered singular case (for instance, see, [1, 7, 8, 9]). The approaches used

in references are mainly the monotone iterative and upper-lower solutions methods

(see, [3, 11]), Leray-Schauder continuation theorem(see, [1]) and topological degree

(see, [7, 8, 9, 12]), or Leggett-Williams theorem and the five functional fixed point

theorem(see, [2, 4, 13]). It is required that the nonlinearity f does not depend on any

derivatives of u in some references (see, for instance, [12]). Very recently, in paper

[10], Ma investigated Lidstone BVP(1.1) by using global bifurcation techniques. The

main result is the following:

Theorem A Suppose that

(A1) f : [0, 1] × Rn
i → R+ is continuous and there exist A = (a0, a1, . . . , an−1),

B = (b0, b1, . . . , bn−1) ∈ Rn

+ \ {(0, 0, . . . , 0)} such that

f(t, U) =
n−1
∑

i=0

(−1)iaiui + o(|U |), |U | → 0,

f(t, U) =
n−1
∑

i=0

(−1)ibiui + o(|U |), |U | → ∞,

uniformly in t ∈ [0, 1].

(A2) f(t, U) > 0 for any t ∈ [0, 1] and U 6≡ 0.

(A3) There exists C = (c0, c1, . . . , cn−1) ∈ Rn

+ \ {(0, 0, . . . , 0)} such that

f(t, U) ≥
n−1
∑

i=0

(−1)iciui, (t, U) ∈ [0, 1] × Rn
i .

(A4) λ1(B) < 1 < λ1(A) or λ1(A) < 1 < λ1(B), where

λ1(A) =
π2n

n−1
∑

i=0

aiπ2i

, λ1(B) =
π2n

n−1
∑

i=0

biπ2i

,

where U = (u0, u1, . . . , un−1) ∈ Rn
i .

Then BVP(1.1) has at least one positive solution.

To our best knowledge, there is no paper which considers the case with sign-

changing nonlinear terms by using topological degree theory. We try to fill this gap.

It is showed in this paper that BVP(1.1) has at least one nontrivial solution under

more general and extensive assumptions such as the nonlinear term f may be sign-

changing and unbounded from below. Furthermore we extend Theorem A.

The paper is organized as follows. Section 2 gives some preliminaries. Section 3

is devoted to the existence of positive solutions for BVP(1.1). Finally, one example

is worked out to demonstrate the main results.

At the end of this Section we state the following lemmas, which will be used in

Section 3.
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Lemma 1.1 ([5, 6]). Let E be a Banach space and Ω be a bounded open set in E

with θ ∈ Ω. Suppose that A : Ω̄ → E is a completely continuous operator. If

Au 6= µu, ∀u ∈ ∂Ω, µ ≥ 1,

then the topological degree deg(I − A, Ω, θ) = 1.

Lemma 1.2 ([5, 6]). Let E be a Banach space and Ω be a bounded open set in E.

Suppose that A : Ω̄ → E is a completely continuous operator. If there exists u0 6= θ

such that

u − Au 6= µu0, ∀u ∈ ∂Ω, µ ≥ 0,

then the topological degree deg(I − A, Ω, θ) = 0.

Lemma 1.3 ([5, 6]). Let E be a Banach space and A : E → E is a completely

continuous operator. If Aθ = θ and A′

θ exists, in addition, 1 is not an eigenvalue of

A′

θ, then there exists r > 0 such that the topological degree

deg(I − A, Br, θ) = deg(I − A′

θ, Br, θ) = (−1)β,

where β is the sum of multiplicities of the eigenvalues, which are less than 1, of A′

θ.

2. PRELIMINARIES

Throughout this paper we assume f : [0, 1] × Rn → R is continuous.

We first convert BVP(1.1) into another form. Suppose u(t) is a solution of

BVP(1.1). Let v(t) = (−1)n−1u(2n−2)(t). Notice that






−[u(2n−4)]′′(t) = (−1)n−2v(t), t ∈ I;

u(2n−4)(0) = u(2n−4)(1) = 0.

So u(2n−4)(t) can be written as u(2n−4)(t) = (−1)n−2A1v(t), where

A1v(t) =

∫ 1

0

G1(t, s)v(s)ds, t ∈ I,

(2.1) G1(t, s) =







s(1 − t), 0 ≤ s ≤ t ≤ 1;

t(1 − s), 0 ≤ t ≤ s ≤ 1.

Similarly, notice that

(−1)iu(2i)(t) =

∫ 1

0

G1(t, s)(−1)i+1u(2i+2)(s)ds, i = 0, 1, . . . , n − 1.

So we can obtain

(2.2) u(2i)(t) = (−1)iAn−i−1v(t), t ∈ I,
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here

(2.3) Ajv(t) =

∫ 1

0

Gj(t, s)v(s)ds, j = 0, 1, . . . , n − 1,

and

(2.4) A0v(t) = v(t), Gj(t, s) =

∫ 1

0

G1(t, τ)Gj−1(τ, s)dτ, i = 2, 3, . . . , n.

Obviously, Gj(t, s) is the Green’s function of homogeneous boundary value problem






u(2j)(t) = 0, t ∈ (0, 1);

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , j − 1.

Therefore, if u(t) is a solution of BVP(1.1), we know by (2.1)–(2.4) that v(t) =

(−1)n−1u(2n−2)(t) satisfies the following BVP

(2.5)



















−v′′(t) = f(t, An−1v(t), (−1)An−2v(t), . . . , (−1)n−2A1v(t), (−1)n−1v(t)),

t ∈ (0, 1);

v(0) = v(1) = 0.

Conversely, if v(t) is a solution of BVP(2.5), it is not difficult to see u(t) =

An−1v(t) is a solution of BVP(1.1). So, we need only to study BVP(2.5).

The basic space to be used in this paper is Banach space C(I), which is endowed

with the maximum norm ‖ · ‖. Let

(2.6) q(t) = min{t, 1 − t}, t ∈ I.

From (2.1) it is easy to see

(2.7) q(t)G1(τ, s) ≤ q(t)G1(s, s) ≤ G1(t, s) ≤ min{t(1 − t), s(1 − s)}, ∀t, s, τ ∈ I,

where q(t) is defined by (2.6).

Define an operator on C(I) by

(2.8) (Av)(t) =:

∫ 1

0

G1(t, s)f(s, An−1v, (−1)An−2v, . . . , (−1)n−2A1v, (−1)n−1v)ds.

Since f : [0, 1] × Rn → R is continuous, the operator A is well defined on C(I).

On the other hand, it is well known that the solution of BVP(2.5) is equivalent

to the fixed point of operator A. So, in the following, we need only to investigate the

existence of fixed points of A on C(I).

Notice that f : [0, 1]×Rn → R is continuous. So we have the following conclusion.

Lemma 2.1. A : C(I) → C(I) is completely continuous.

Lemma 2.2. For each v ∈ C(I), we have

(2.9) 6n−1‖An−1v‖ ≤ 6n−2‖An−2v‖ ≤ · · · ≤ 6‖A1v‖ ≤ ‖v‖.
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Proof. For each v ∈ C(I), from (2.3) and (2.7), we know

‖A1v‖ ≤

∫ 1

0

s(1 − s)‖v‖ds =
1

6
‖v‖.

By induction, one can get (2.9) holds.

Remark 2.3. Lemma 2.2 indicates the relationship among v(t), A1v(t), . . . , An−1v(t)

for each v ∈ C(I).

Lemma 2.4. For d = (d0, d1, . . . , dn−1) ∈ Rn

+ \{(0, 0, . . . , 0)}, define a linear integral

operator

(2.10) Ldv(t) =

∫ 1

0

kd(s, t)v(s)ds, ∀t ∈ I, v ∈ C(I),

where

(2.11) kd(s, t) =
n−2
∑

i=0

∫ 1

0

G1(s, τ)diGn−i−1(τ, t)dτ + dn−1G1(s, t).

Then the generalized eigenvalues of Ld are given by

0 < λ1(Ld) < λ2(Ld) < · · · < λm(Ld) < · · · ,

where

(2.12) λm(Ld) =
(mπ)2n

n−1
∑

i=0

di(mπ)2i

, m = 1, 2, 3, . . . .

The generalized eigenfunction corresponding to λm(Ld) is

(2.13) φm(t) = sin(mπt).

Moreover,

(2.14) r(Ld) =

n−1
∑

i=0

diπ
2i

π2n
,

where r(Ld) denotes the spectral radius of linear operator Ld.

Proof. Suppose there exist λ and v 6= 0 such that v = λLdv. Set u(t) = An−1v(t).

Then from (2.1)–(2.4) and (2.10)–(2.11) it is easy to see that







(−1)nu(2n)(t) = λ
n−1
∑

i=0

(−1)idiu
(2i)(t), t ∈ (0, 1);

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n − 1.

This together with [10, Lemma 2] guarantees (2.12)–(2.14) hold.
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3. MAIN RESULTS

We now list the following hypotheses for convenience.

(H1) There exist a positive number r and a = (a0, a1, . . . , an−1) ∈ Rn

+ \ {(0, 0, . . . , 0)}

such that

|f(t, U)| ≤
∣

∣

∣

n−1
∑

i=0

(−1)iaiui

∣

∣

∣
, as |U | ≤ r uniformly in t ∈ [0, 1],

and r(La) < 1, where La is defined as in (2.10) ( replacing d with a).

(H2) There exists b = (b0, b1, . . . , bn−1) ∈ Rn

+ \ {(0, 0, . . . , 0)} such that

f(t, U) ≥
n−1
∑

i=0

(−1)ibiui + o(|U |), as |U | → +∞ uniformly in t ∈ [0, 1],

and r(Lb) > 1, where Lb is defined as in (2.10) (replacing d with b).

(H3) There exists a continuous function g : Rn → R+ with g(U) = o(|U |) as |U | →

+∞ satisfying

f(t, U) ≥ −g(U), ∀U = (u0, u1, . . . , un−1) ∈ Rn.

Theorem 3.1. Assume that (H1)–(H3) hold. Then BVP(1.1) has at least one non-

trivial solution.

Proof. We first prove that

(3.1) Av 6= µv, ∀v ∈ ∂Br, µ ≥ 1.

If this is not true, then there exist v̄ ∈ ∂Br and µ1 ≥ 1 satisfying Av̄ = µ1v̄.

Without loss of generality, assume µ1 > 1 (if µ1 = 1, then v̄ is a fixed point of A).

So, by (H1), (2.8), and Lemma 2.2, we obtain that

µ1|v̄(t)| = |Av̄(t)|

≤

∫ 1

0

G1(t, s)
∣

∣

∣

n−1
∑

i=0

aiAn−i−1v̄(s)
∣

∣

∣
ds(3.2)

≤

∫ 1

0

G1(t, s)
n−1
∑

i=0

aiAn−i−1|v̄(s)|ds, ∀t ∈ I.

Multiplying (3.2) by sin(πt), then integrating them from 0 to 1 and using Lemma 2.3

we have

µ1

∫ 1

0

|v̄(t)| sin(πt)dt ≤

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)
n−1
∑

i=0

aiAn−i−1|v̄(s)|ds

≤

∫ 1

0

sin(πt)dt

∫ 1

0

ka(t, τ)|v̄(τ)|dτ

≤

∫ 1

0

|v̄(τ)|dτ

∫ 1

0

ka(t, τ) sin(πt)dt
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≤

∫ 1

0

|v̄(τ)|La sin(πτ)dτ

≤ r(La)

∫ 1

0

|v̄(τ)| sin(πτ)dτ,

in contradiction with µ1 > 1. Therefore, (3.1) holds. This together with Lemma 1.1

guarantees that

(3.3) deg(I − A, Br, θ) = 1.

Next, choose a positive number ε′ with ε′ ≤ 1
4
[r(Lb) − 1]. By condition (H2),

there exists a positive number R′ with R′ > r such that

(3.4) f(t, U) ≥
n−1
∑

i=0

(−1)ibiui − ε′|U |, as |U | ≥ R′ uniformly in t ∈ [0, 1].

Let

h(t) = sup{|f(t, U) −
n−1
∑

i=0

(−1)ibiui| : |U | ≤ R′}, t ∈ [0, 1].

This together with (3.4) guarantees that

(3.5) f(t, U) ≥
n−1
∑

i=0

(−1)ibiui − ε′|U | − h(t), ∀U ∈ Rn, t ∈ [0, 1].

Let ε′′ be a positive number with ε′′ ≤ 1
8
. From condition (H3) we know there

exists M1 > 0 such that

(3.6) g(U) ≤ ε′′|U | + M1, ∀U ∈ Rn.

Choose a positive number R satisfying

(3.7) R >
2

r(Lb) − 1

[

2M1r(Lb) +

∫ 1

0

q(s)h(s)ds].

We now prove

(3.8) v − Av 6= µ sin(πt), ∀v ∈ C(I), ‖v‖ = R, µ ≥ 0.

Suppose, on the contrary, there exist v0 ∈ C(I), ‖v0‖ = R and µ0 ≥ 0 such that

(3.9) v0 − Av0 = µ0 sin(πt).

Let

w0(t) =

∫ 1

0

G1(t, s)g(V̄ (s))ds,

where

V̄ (s) = (An−1v0(s), (−1)An−2v0(s), . . . , (−1)n−2A1v0(s), (−1)n−1v0(s)), ∀s ∈ I.
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By (3.6) and Lemma 2.2 we can get

w0(t) =

∫ 1

0

G1(t, s)g(V̄ (s))ds

≤ ε′′
∫ 1

0

G1(t, s)‖V̄ (s)‖ds + M1

∫ 1

0

G1(t, s)ds(3.10)

≤
M1 + ε′′R

2
t(1 − t).

Therefore, from (2.7) and

sin(πt)

π2
=

∫ 1

0

G1(t, s) sin(πs)ds

we have

v0(t) + w0(t) =

∫ 1

0

G1(t, s)
[

f(s, V̄ (s)) + g(V̄ (s))
]

ds + µ0 sin(πt) ≥ q(t)‖v0 + w0‖.

This together with (3.5)–(3.7) and (3.9)–(3.10) guarantees that
∫ 1

0

Av0(t) sin(πt)dt −

∫ 1

0

v0(t) sin(πt)dt

=

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)f(s, V̄ (s))ds −

∫ 1

0

v0(t) sin(πt)dt

≥

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)
n−1
∑

i=0

biAn−i−1v0(s)ds

−

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds −

∫ 1

0

v0(t) sin(πt)dt

≥

∫ 1

0

sin(πt)dt

∫ 1

0

kb(t, τ)v0(τ)dτ −

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

−

∫ 1

0

v0(t) sin(πt)dt

=

∫ 1

0

v0(τ)dτ

∫ 1

0

kb(t, τ) sin(πt)dt −

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

−

∫ 1

0

v0(t) sin(πt)dt

≥

∫ 1

0

v0(τ)Lb sin(πτ)dτ −

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

−

∫ 1

0

v0(t) sin(πt)dt

= [r(Lb) − 1]

∫ 1

0

v0(τ) sin(πτ)dτ −

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

= [r(Lb) − 1]

∫ 1

0

[

v0(τ) + w0(τ)
]

sin(πτ)dτ − [r(Lb) − 1]

∫ 1

0

w0(τ) sin(πτ)dτ
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−

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

≥ [r(Lb) − 1]‖v0 + w0‖

∫ 1

0

q(τ) sin(πτ)dτ − [r(Lb) − 1]

∫ 1

0

w0(τ) sin(πτ)dτ

−

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

≥ [r(Lb) − 1][‖v0‖ − ‖w0‖]

∫ 1

0

q(τ) sin(πτ)dτ − [r(Lb) − 1]

∫ 1

0

w0(τ) sin(πτ)dτ

−

∫ 1

0

sin(πt)dt

∫ 1

0

G1(t, s)[h(s) + ε′R]ds

≥ [r(Lb) − 1][R − (M1 + ε′′R)] − [r(Lb) − 1](M1 + ε′′R) − ε′R −

∫ 1

0

q(s)h(s)ds

= [r(Lb) − 1][R − 2(M1 + ε′′R)] − ε′R −

∫ 1

0

q(s)h(s)ds

> 0.

On the other hand, from (3.9) we have
∫ 1

0

Av0(t) sin(πt)dt −

∫ 1

0

v0(t) sin(πt)dt = −µ0

∫ 1

0

sin2(πt)dt ≤ 0.

This is a contradiction. So (3.8) holds. Combining this with Lemma 1.2 we obtain

that

(3.11) deg(I − A, BR, θ) = 0.

From the additivity of topological degree, (3.3), and (3.11), it follows that

deg(I − A, BR \ B̄r, θ) = deg(IA, BR, θ) − deg(IA, Br, θ) = −1.

Then by the solution property of topological degree, A has at least one fixed point

on BR \ B̄r, which means that BVP(1.1) has at least one nontrivial solution.

Corollary 3.2. Suppose conditions (H1)–(H2) hold. In addition, if there exists a

constant l ≥ 0 such that

(3.12) f(t, u0, u1, . . . , un−1) ≥ −8l, if (−1)n−1un−1 ≥ −l.

Then BVP(1.1) has at least one nontrivial solution.

Proof. Define

(3.13) f̄(t, u0, u1, . . . , un−1) =







f(t, u0, u1, . . . , un−1), (−1)n−1un−1 ≥ −l;

f(t, u0, u1, . . . , (−1)nl), (−1)n−1un−1 ≤ −l,

and for ∀v ∈ C(I), let

Āv(t) =

∫ 1

0

G1(t, s)f̄(s, An−1v, (−1)An−2v, . . . , (−1)n−2A1v, (−1)n−1v)ds.
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By Theorem 3.1 we know that Ā has at least one nonzero fixed point ṽ. Then by

(3.12)–(3.13) we have

ṽ(t) =

∫ 1

0

G1(t, s)f̄(s, An−1ṽ, (−1)An−2ṽ, . . . , (−1)n−2A1ṽ, (−1)n−1ṽ)ds

≥ −8l

∫ 1

0

G1(t, s)ds ≥ −l.

This together with (3.13) guarantees that

f̄(s, An−1ṽ,(−1)An−2ṽ, . . . , (−1)n−2A1ṽ, (−1)n−1ṽ)

= f(s, An−1ṽ, (−1)An−2ṽ, . . . , (−1)n−2A1ṽ, (−1)n−1ṽ).

Therefore,

ṽ(t) =

∫ 1

0

G1(t, s)f(s, An−1ṽ, (−1)An−2ṽ, . . . , (−1)n−2A1ṽ, (−1)n−1ṽ)ds,

which implies that ṽ(t) is a nontrivial solution of BVP(1.1).

Theorem 3.3. Suppose (H2)–(H3) are satisfied. In addition, suppose that

(3.14) f(t, U) =

n−1
∑

i=0

(−1)iaiui + o(|U |), as |U | → 0 uniformly in t ∈ [0, 1],

and

(3.15) λm(La) =
(mπ)2n

n−1
∑

i=0

ai(mπ)2i

6= 1, m = 1, 2, 3, . . . .

Then BVP(1.1) has at least one nontrivial solution.

Proof. By (2.8) and (3.14) we know

A′

θv(t) =

∫ 1

0

kd(s, t)v(s)ds = Ldv(t).

Then from (3.15) it follows that 1 is not the eigenvalue of A′

θ. By Lemma 1.3, there

exists r1 > 0 such that

(3.16) deg(I − A, Br1
, θ) = deg(I − A′

θ, Br1
, θ) = (−1)β = ±1,

where β is the sum of multiplicities of the eigenvalues, which are less than 1, of A′

θ.

Similar to the proof of Theorem 3.1, by (H2)-(H3), there exists R > 0 such

that (3.11) holds. This together with (3.16) and the additivity of topological degree

guarantees that

deg(I − A, BR \ B̄r1
, θ) = deg(IA, BR, θ) − deg(IA, Br1

, θ) = ∓1.

Then A has at least one fixed point on BR \ B̄r1
, which means that BVP(1.1) has

at least one nontrivial solution.
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Similar to the Corollary 3.2, we have the following corollary.

Corollary 3.4. Suppose (H2), (3.12), and (3.14)–(3.15) hold. Then BVP(1.1) has

at least one nontrivial solution.

Remark 3.5. As immediate consequences of above results, we can give some results

on the following BVP when the nonlinear term does not depend on higher derivatives:






(−1)nu(2n)(t) = f(t, u(t)), t ∈ (0, 1);

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n − 1.

Example 3.6. Consider the following Lidstone BVP:

(3.17)



















−u(6)(t) =
∣

∣

∣
a0(U(t))u(t) − a1(U(t))u′′(t) + a2(U(t))u(4)(t)

∣

∣

∣

−(1 + t2)a3(U(t)), t ∈ (0, 1);

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2,

where a0(U), a1(U), a2(U), and a3(U) are continuous functions given by the following:

(3.18) a0(U) =

{

10, |U | ≤ 1;

π6, |U | ≥ 2;
a1(U) =

{

5, |U | ≤ 1;

10, |U | ≥ 2;

(3.19) a2(U) =

{

1, |U | ≤ 1;

2, |U | ≥ 2;
a3(U) =

{

0, |U | ≤ 1;
√

|U |, |U | ≥ 2;

where

U(t) =
(

u(t), u′′(t), u(4)(t)
)

, |U(t)| = max{|u(t)|, |u′′(t)|, |u(4)(t)|}.

Conclusion BVP(3.17) has at least one nontrivial solution.

Proof. In fact, BVP(3.17) can be regarded as the form of BVP(1.1), where n = 3,

and

(3.20) f(t, u0, u1, u2) =
∣

∣

∣
a0(U)u0 − a1(U)u1 + a2(U)u2

∣

∣

∣
− (1 + t2)a3(U),

a0(U), a1(U), a2(U), and a3(U) are defined as in (3.18) and (3.19).

Choose a = (10, 5, 1). Then by (2.14) it is easy to see r(La) < 1. Therefore,

condition (H1) holds.

Let b = (π6, 10, 2), g(U) = 2
√

|U |. Then r(Lb) > 1. From (3.20) we can get that

(H2)–(H3) hold.

Consequently, Theorem 3.1 guarantees that BVP(3.17) has at least one nontrivial

solution.

Remark 3.7. From (3.20), one can find that f is unbounded from below.
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