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ABSTRACT. By exploiting the Denjoy theorem in topological dynamics and the unique ergodic

theorem in ergodic theory, we will give a classification of all solutions of asymmetric p-Laplacian

oscillators with periodic coefficients.
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1. INTRODUCTION

A basic model for oscillators is the Hill’s equation

(1.1) x′′ + q(t)x = 0, x ∈ R,

where q(t) ∈ L1(ST ) = L1(ST ,R), called a potential. Here ST = R/TZ, T > 0. Due

to the linearity of equation (1.1) and periodicity of potentials, the Floquet theory [11]

can be applied to equation (1.1). Consequently, solutions of (1.1) can be classified as

follows.

Without loss of generality, we assume that the period of q(t) is 2π and let ρ = ρ(q)

be the rotation number of (1.1). See (2.18) for its definition. Note that ρ(q) ∈ [0,∞).

Lemma 1.1 (Class 1). Suppose that ρ(q) = n/2, n ∈ Z+. Then any non-zero

solution x(t) of (1.1) can be decomposed as x(t) = g(t)h(t), where h(t) is either

periodic or asymptotical to some periodic function, and g(t) has a linear growth or

an exponential growth in t.

Class 2. Suppose that ρ(q) is rational and ρ(q) 6= n/2, n ∈ Z+. Then x(t) is periodic.

Class 3. Suppose that ρ(q) is irrational. Then x(t) is quasi-periodic of two frequencies.
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For the precise statement of these results and its proof based on the Floquet

theorem [11], see Section 2.

In this paper we will study the classification of solutions of the so-called scalar

asymmetric p-Laplacian oscillator

(1.2) (φp(x
′))′ + q+(t)φp(x+) + q−(t)φp(x−) = 0, x ∈ R,

with T -periodic coefficients q± ∈ L1(ST ). Here 1 < p < ∞, φp : R → R is s 7→
|s|p−2s, and y+ := max(y, 0), y− = min(y, 0) for y ∈ R. Note that (1.2) is linear

when and only when p = 2 and q+ = q−. In this case, equation (1.2) is reduced

to the Hill’s equation (1.1). Equation (1.2) is an interesting model of non-smooth

dynamical systems. In recent years, it has received a considerable study, including

the Fučik spectrum, existence of periodic solutions of inhomogeneous and nonlinear

perturbation, and the Lagrangian stability, etc. We refer to [9, 14].

To the knowledge of authors, a complete understanding for all solutions, even for

the homogeneous oscillators (1.2) themselves, is not available. Generally speaking, the

linear structure of systems is important in the Floquet theory, though some extension

of Floquet theory to nonlinear systems can be obtained [7, 13]. However, it seems

that the results in [7, 13] cannot be applied to (1.2).

In this paper, we find that the Denjoy theorem [6, Theorem 12.1.1] in topological

dynamics and the unique ergodic theorem in ergodic theory [12, Theorem 6.19] can

yield a classification of all solutions of the oscillators (1.2). The results are as follows.

Let us use ρ(q+, q−) ∈ [0,∞) to denote that rotation number of the oscillator (1.2).

Theorem 1.2 (Class A). Suppose that ρ(q+, q−) is rational. Then any non-zero solu-

tion x(t) of (1.2) can be decomposed as x(t) = g(t)h(t), where h(t) is either periodic

or asymptotical to some periodic function and g(t) has a linear or an exponential

growth rate in t.

Class B. Suppose that ρ(q+, q−) is irrational. Then x(t) = g(t)h(t), where h(t)

is quasi-periodic of two frequencies and g(t) has the exponential growth rate 0.

Precisely, we say that h(t) is asymptotical to a periodic function, say ĥ(t),

if limt→+∞(h(t) − ĥ(t)) = 0. The exponential growth rate of g(t) is defined as

limt→+∞(1/t) log g(t).

Compared with the classification of solutions of linear oscillators (1.1), for the p-

Laplacian asymmetric oscillators (1.2), Classes 1 and 2 in Lemma 1.1 are now written

as Class A in Theorem 1.2 in an unified way. A crucial difference between (1.1)

and (1.2) is as follows. For linear oscillators (1.1), when ρ(q) is a rational number

which is not half-integers, the exponential growth rate, or Lyapunov exponent, of all

solutions must be zero. However, for asymmetric oscillators, even when ρ(q+, q−) is a
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rational number which is not half-integers, some solutions of (1.2) may have a positive

exponential growth rate (or Lyapunov exponent [5, 15]). See Example 4.3.

The paper is organized as follows. In Section 2, we will first give a complete proof

of Lemma 1.1 based on the Floquet theorem [11, p. 4]. Note that this approach cannot

be applied to oscillators (1.2) due to the nonlinearity. In order to prove Theorem

1.2, we will use the Prüfer transformations to yield a circle diffeomorphism Hq+,q−

induced from (1.2). It will be proved that Hq+,q− just fulfills the minimal regularity

requirements in the Denjoy theorem for circle homeomorphisms, i.e., Hq+,q− is C1 and

logH′

q+,q− has bounded variation. See Proposition 2.5. In Section 3, we will give a

complete description on the dynamics of Hq+,q−, based on the Denjoy theorem and

the unique ergodic theorem. In Section 4, we will give the complete proof of Theorem

1.2. An example to illustrate the difference between Hill’s equations and asymmetric

oscillators will be given.

2. THE p-POLAR COORDINATES AND REDUCTION

OF THE OSCILLATORS

For completeness, we give the proof of Lemma 1.1. Let y = −x′. Then equation

(1.1) can be written as the planar system

(2.1)

(

x(t)

y(t)

)′

=

(

0 −1

q(t) 0

)(

x(t)

y(t)

)

:= A(t)

(

x(t)

y(t)

)

.

Let M(t) be the fundamental matrix solution of (2.1) such that M(0) = I2. Since

A(t) is 2π-periodic, one has

M(t+ 2π) = M(t)D,

where D := M(2π) is the so-called Poincaré matrix of (2.1). Note that detD = +1.

The eigenvalues λ1,2 of matrix D are called the Floquet multipliers of (1.1). Then

λ1 · λ2 = +1. Let us take λi so that |λ1| = 1/|λ2| ≥ 1.

The classification of (1.1) and its solutions are as follows.

Case (i). Equation (1.1) is hyperbolic. That is, λ1,2 ∈ R and λ1 6= λ2. In this

case, |λ1| > 1 and D is similar to

(

λ1 0

0 λ−1
1

)

, and by [11, Floquet’s theorem, p. 4],

there exist functions pi(t), i = 1, 2, such that

• pi(t) are 2π-periodic if λ1 > 0, and pi(t) are 4π-periodic if λ1 < 0, and

• any solution x(t) of (1.1) can be written as

x(t) = c1|λ1|t/(2π)p1(t) + c2|λ1|−t/(2π)p2(t) = |λ1|t/(2π)(c1p1(t) + c2|λ1|−t/πp2(t)),

where ci ∈ R are constants.
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By setting g(t) := |λ1|t/(2π) and h(t) := c1p1(t) + c2|λ1|−t/πp2(t), one sees that

g(t) has the exponential growth rate (log |λ1|)/(2π) > 0, and h(t) is periodic if c2 = 0

and h(t) is asymptotical to the periodic function c1p1(t) if c2 6= 0. Thus x(t) has the

form in Class 1.

Case (ii). Equation (1.1) is parabolic. That is, λ1 = λ2 = ±1. In this case, the

matrix D is similar to

(

λ1 β

0 λ1

)

, where β = 0 or 1.

If λ1 = 1, by the Floquet theorem, (1.1) has two linearly independent solutions

p1(t) and p̂(t) such that p1(t) is 2π-periodic and p̂(t) satisfies

p̂(t+ 2π) ≡ p̂(t) + γp1(t),

where γ = 0 if β = 0 and γ 6= 0 if β 6= 0. Then p2(t) := p̂(t)− γ
2π
tp1(t) is 2π-periodic.

Now any non-zero solution x(t) of (1.1) has the form

x(t) = c1p1(t) + c2

(

p2(t) +
γ

2π
tp1(t)

)

=

(

c2γp1(t)

2π
√

p1(t)2 + p2(t)2 + 1
t+

c1p1(t) + c2p2(t)
√

p1(t)2 + p2(t)2 + 1

)

√

p1(t)2 + p2(t)2 + 1

=: g(t)h(t).(2.2)

One sees that h(t) is 2π-periodic, while g(t) has at most a linear growth

lim sup
t→∞

|g(t)|
t

∈ [0,∞).

Thus x(t) has also the form in Class 1.

If λ1 = −1, one has also a decomposition like (2.2) where h(t) is 4π-periodic.

Case (iii). Equation (1.1) is elliptic. That is, λi ∈ C\R and λ1 6= λ2. Since

|λ1| = 1, we may write λ1 as λ1 = ei2απ where α ∈ R
+ := (0,∞) and α 6= n/2 for all

n ∈ N. In this case, any non-zero solution x(t) of (1.1) has the form

(2.3) x(t) = c1p1(t) cos(αt) + c2p2(t) sin(αt),

where pi(t) are 2π-periodic. We distinguish two cases.

• Subcase (iii)(a): α = m/n is rational, where m, n ∈ N are co-prime. Then x(t)

is 2nπ-periodic and is as in Class 2.

• Subcase (iii)(b): α is irrational. It shows form (2.3) that x(t) is quasi-periodic

with frequencies α and 1. Thus x(t) belongs to Class 3.

Finally, due to the rotation number approach [14], the rotation number ρ(q) of

(1.1) is n/2, n ∈ Z+, for cases (i) and (ii). For case (iii), one has ρ(q) = α + n/2 for

some n ∈ Z+. Now the proof of Lemma 1.1 is complete.
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Now we are going to study oscillator (1.2). Note that φp(s) = |s|p−2s is (p− 1)-

homogeneous

φp(ks) = kp−1φp(s), k ≥ 0, s ∈ R,

with the inverse φ−1
p = φp∗ . Here p∗ := p/(p− 1) ∈ (1,∞). For simplicity, from now

on, we always take the period T of q±(t) as

(2.4) T = 2πp, πp :=
2π(p− 1)1/p

p sin(π/p)
.

Now we introduce the p-polar coordinates [10] and give some properties. Consider

the auxiliary differential equation

(φp(x
′))′ + φp(x) = 0.

Set y = −φp(x
′). Then the equation becomes equivalent to the following planar

system

(2.5) x′ = −φp∗(y), y′ = φp(x).

This is an integrable Hamiltonian system with the Hamiltonian function

H(x, y) = |x|p/p+ |y|p∗/p∗.

Let (Cp(t), Sp(t)) be the unique solution of (2.5) with the initial value (x(0), y(0)) =

(1, 0). Then Cp(t) and Sp(t) are well-defined on the whole real line R. These functions

Cp(t) and Sp(t) are called the p-cosine and the p-sine respectively, because they possess

many properties similar to the cosine and sine functions. Some properties on Cp(t)

and Sp(t) are summarized as follows [10].

Lemma 2.1. (i) Both Cp(t) and Sp(t) are 2πp-periodic continuous functions, where

πp is defined by (2.4).

(ii) Cp(t) is even in t and Sp(t) is odd in t.

(iii) Cp(t+ πp) ≡ −Cp(t), and Sp(t+ πp) ≡ −Sp(t).

(iv) Cp(t) = 0 if and only if t = πp/2 + nπp, n ∈ Z, and Sp(t) = 0 if and only if

t = nπp, n ∈ Z.

(v) Cp(t) is strictly decreasing on [0, πp], and Sp(t) is strictly increasing on

[−πp/2, πp/2].

(vi) C ′
p(t) = −φp∗(Sp(t)), and S ′

p(t) = φp(Cp(t)).

(vii) |Cp(t)|p + (p− 1)|Sp(t)|p∗ ≡ 1.

Using these functions Cp and Sp, one can introduce the following p-polar coordi-

nates

(2.6) x = rCp(θ), y = (p− 1)1/p∗rp−1Sp(θ), r > 0, θ ∈ R.
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When p = 2, it is the usual polar coordinates. For oscillator (1.2), let −φp(x
′) = y.

Then it is transformed into the following Hamiltonian system

x′ = −φp∗(y), y′ = q+(t)φp(x+) + q−(t)φp(x−).

In the p-polar coordinates (2.6), it follows from Lemma 2.1 that the equations for θ

and r are respectively

(2.7) θ′ = Ξ(t, θ),

(2.8) r′ = rΨ(t, θ),

where

(2.9) Ξ(t, θ) =

{

(p− 1)1/p +Q+(t)|Cp(θ)|p when Cp(θ) ≥ 0,

(p− 1)1/p +Q−(t)|Cp(θ)|p when Cp(θ) ≤ 0,

(2.10) Ψ(t, θ) =

{

Q+(t)φp(Cp(θ))φp∗(Sp(θ)) when Cp(θ) ≥ 0,

Q−(t)φp(Cp(θ))φp∗(Sp(θ)) when Cp(θ) ≤ 0.

Here the functions Q±(t) are

(2.11) Q±(t) := (p− 1)1/p
(

(p− 1)−1q±(t) − 1
)

∈ L1(S2πp
).

We list some properties on vector fields Ξ(t, θ) and Ψ(t, θ) in the following lemma.

These can be deduced simply from (2.9) and (2.10).

Lemma 2.2. (i) The functions Ξ(t, θ) and Ψ(t, θ) are 2πp-periodic in both t and θ,

and Ξ(t, θ) is continuously differentiable in θ. In fact, one has

(2.12)
∂Ξ(t, θ)

∂θ
≡ −pΨ(t, θ).

(ii) The function Ψ(t, θ) can be rewritten as

(2.13) Ψ(t, θ) ≡ Q+(t)f+(θ) +Q−(t)f−(θ),

where Q±(t) are defined by (2.11) and f±(θ) are

(2.14) f±(θ) := φp

(

(Cp(θ))±
)

φp∗(Sp(θ)) = (φp (Cp(θ)))± φp∗(Sp(θ)).

Here both f±(θ) are continuous and 2πp-periodic in θ ∈ R.

Remark 2.3. Due to the positive homogeneity of (1.2) in x, equation (2.7) is inde-

pendent of r and equation (2.8) is positively homogeneous in r. Moreover, equality

(2.12) is the same as that system (2.7)–(2.8) preserves the area rp−1dr ∧ dθ.
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Given ϑ ∈ R. We use (θ, r) = (Θ(t, ϑ), R(t, ϑ)) to denote the solution of (2.7)–

(2.8) with the initial value (Θ(0, ϑ), R(0, ϑ)) = (ϑ, 1). From equation (2.8), one has

(2.15) R(t, ϑ) ≡ exp

(
∫ t

0

Ψ(s,Θ(s, ϑ))ds

)

.

Since the vector field Ξ(t, θ) is 2πp-periodic in both t and θ, we have the following

periodicity equalities

Θ(t, ϑ+ 2nπp)≡Θ(t, ϑ) + 2nπp, n ∈ Z,(2.16)

Θ(t+ 2nπp, ϑ)≡Θ(t,Θ(2nπp, ϑ)), n ∈ Z.(2.17)

Now we introduce H = Hq+,q− : R → R by

H(ϑ) := Θ(2πp, ϑ), ϑ ∈ R.

As Ξ(t, θ) is continuously differentiable in θ, Hq+,q− : R → R is an increasing diffeo-

morphism satisfying

H(ϑ+ 2πp) ≡ H(ϑ) + 2πp.

The rotation number ρ(q+, q−) of (1.2), or that of (2.7), is defined by

(2.18) ρ = ρ(q+, q−) := lim
t→+∞

Θ(t, ϑ) − ϑ

t
,

which is well-defined and is independent of ϑ. In fact, following Johnson and Moser

[4] and Feng and Zhang [2], the rotation number ρ(q+, q−) can be introduced even for

(1.2) with almost periodic coefficients q±(t). Further extension of rotation numbers

to random dynamical systems can be found in Arnold [1] and Li and Lu [8]. Note

that the projection of Hq+,q− onto S2πp
:= R/2πpZ yields an orientation-preserving

diffeomorphism of S2πp
.

By (2.6) and (2.15), non-zero solutions of (1.2) can be written as

(2.19) x(t) = r0 exp

(
∫ t

0

Ψ(s,Θ(s, ϑ))ds

)

Cp(Θ(t, ϑ))

for some r0 > 0 and some ϑ ∈ R.

Suggested by (2.13) and (2.14), we consider the following 2πp-periodic continuous

functions

C(θ) := φp (Cp(θ)) , S(θ) := φp∗(Sp(θ)), θ ∈ R.

For example, when p = 2, C(θ) = cos θ and S(θ) = sin θ. However, when p 6= 2, one

of the numbers p − 1 and p∗ − 1 is less than 1 and one of the functions C(θ) and

S(θ) is not differentiable on the whole real line R, while another one is continuously

differentiable on R. In fact, for the case p ∈ (1, 2), we have

C ′(θ) = ∞ at θ = πp/2 + nπp, n ∈ Z.

Then C(θ) is not Lipschitz continuous. Thus for any p 6= 2, neither of the functions

f±(θ) defined by (2.14) is Lipschitz continuous.
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Recall that for a function f(θ) : I = [a, b] → R, the total variation is defined by

Var(f, I) := sup

{

n−1
∑

i=0

|f(θi+1) − f(θi)| : a = θ0 < θ1 < · · · < θn = b, n ∈ N

}

∈ [0,∞].

We say that f has bounded variation on I if Var(f, I) < ∞. Note that f±(θ) are

2πp-periodic continuous functions. Moreover, from Lemma 2.1, it is easy to see that

both f±(θ) are piecewise monotone. Hence we have the following result.

Lemma 2.4. Both functions f±(θ) defined by (2.14) have bounded variations on any

finite closed interval I ⊂ R.

We have the following crucial observation on the induced diffeomorphism Hq+,q−.

Proposition 2.5. The mapping H = Hq+,q− : R → R induced by (1.2) is a C1

orientation preserving self-diffeomorphism of R. Moreover, the function logH′(ϑ)

has bounded variation on [0, 2πp].

Proof. Due to the continuous differentiability in θ of the vector field Ξ(t, θ) and the

continuously differentiable dependence of solutions on the initial value, we know that

for any t fixed, Θ(t, ·) is a C1 increasing diffeomorphism of R. Moreover, by differen-

tiating equation (2.7) with respect to the initial value ϑ, we know that E(t) := ∂Θ(t,ϑ)
∂ϑ

satisfies the variational equation

E ′(t) =
∂Ξ(t,Θ(t, ϑ))

∂θ
E(t) ≡ −pΨ(t,Θ(t, ϑ))E(t), E(0) = 1,

where (2.12) is used. Integrating this equation, we have

E(t) = exp

(

−p
∫ t

0

Ψ(s,Θ(s, ϑ))ds

)

.

Taking t = 2πp, we have

logH′(ϑ) = log
∂Θ(2πp, ϑ)

∂ϑ
= logE(2πp) = −p

∫ 2πp

0

Ψ(s,Θ(s, ϑ))ds.

Using the expression (2.13) for Ψ(s, θ), we have

(2.20) logH′(ϑ) = −p
∫ 2πp

0

Q+(t)f+(Θ(t, ϑ))dt− p

∫ 2πp

0

Q−(t)f−(Θ(t, ϑ))dt.

Given t ∈ [0, 2πp]. Since ϑ 7→ Θ(t, ϑ) is strictly increasing, the range

Θ(t, [0, 2πp]) = [Θ(t, 0), Θ(t, 2πp)] =: I t

is a closed interval. Some estimates on I t are as follows. Note from Lemma 2.1 (vii)

that

|Cp(θ)| ≤ 1, |Sp(θ)| ≤ cp := (p− 1)−1/p∗ , θ ∈ R.

By (2.9), we have

|Ξ(t, θ)| ≤ (p− 1)1/p + max
(

|Q+(t)|, |Q−(t)|
)

=: Q̌(t) ∈ L1(S2πp
).
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Let t ∈ [0, 2πp]. Combining with (2.7), we have

|Θ(t, ϑ) − ϑ| =

∣

∣

∣

∣

∫ t

0

Ξ(s,Θ(s, ϑ))ds

∣

∣

∣

∣

≤
∫ 2πp

0

Q̌(s)ds = ‖Q̌‖L1 ,

i.e., ϑ− ‖Q̌‖L1 ≤ Θ(t, ϑ) ≤ ϑ+ ‖Q̌‖L1. Here ‖q‖L1 =
∫ 2πp

0
|q(t)|dt is the L1 norm for

q ∈ L1(S2πp
). Hence one has

(2.21) I t ⊂
[

−‖Q̌‖L1, 2πp + ‖Q̌‖L1

]

=: I0 for any t ∈ [0, 2πp].

Denote

F±(ϑ) :=

∫ 2πp

0

Q±(t)f±(Θ(t, ϑ))dt.

Let 0 = ϑ0 < ϑ1 < · · · < ϑn = 2πp be a partition of [0, 2πp]. Then

n−1
∑

i=0

|F±(ϑi+1) − F±(ϑi)|=
n−1
∑

i=0

∣

∣

∣

∣

∫ 2πp

0

Q±(t) (f±(Θ(t, ϑi+1)) − f±(Θ(t, ϑi))) dt

∣

∣

∣

∣

≤
n−1
∑

i=0

∫ 2πp

0

|Q±(t)| |f±(Θ(t, ϑi+1)) − f±(Θ(t, ϑi))| dt

=

∫ 2πp

0

|Q±(t)|
(

n−1
∑

i=0

∣

∣

∣
f±(ϑ̂i+1) − f±(ϑ̂i)

∣

∣

∣

)

dt,

where {ϑ̂i = Θ(t, ϑi)} is a partition of I t, because Θ(t, ·) is increasing. By Lemma 2.4

and (2.21), we know that

n−1
∑

i=0

∣

∣

∣
f±(ϑ̂i+1) − f±(ϑ̂i)

∣

∣

∣
≤ Var(f±, I

t) ≤ Var(f±, I0) <∞.

Note that the upper bound above is independent of t ∈ [0, 2πp]. Hence we have

n−1
∑

i=0

|F±(ϑi+1) − F±(ϑi)| ≤ ‖Q±‖L1 · Var(f±, I0) <∞

for any partition {ϑi} of [0, 2πp]. Thus

Var(F±, [0, 2πp]) ≤ ‖Q±‖L1 · Var(f±, I0) <∞.

By (2.20), we conclude that logH′(ϑ) has bounded variation on [0, 2πp].

For the Hill’s equation (1.1), H : R → R is C∞. When p = 2, it is proved in

[15] that H = Hq+,q− is C1 and logH′(ϑ) is globally Lipschitz continuous in ϑ ∈ R,

because f±(θ) = (cos θ)± sin θ are Lipschitz continuous in θ in this case.
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3. DYNAMICS OF THE INDUCED CIRCLE DIFFEOMORPHISMS

Suggested by expression (2.19) for solutions of (1.2), in this section we will study

solutions Θ(t, ϑ) of (2.7).

Recall that H = Hq+,q− induces an orientation-preserving diffeomorphism h =

hq+,q− of the circle S2πp
. Since we have the regularity result in Proposition 2.5 for H,

the dynamics of h, or that of H, is completely clear due to the Denjoy theorem.

Case a. Suppose that ρ(q+, q−) = k/ℓ is rational, where k ∈ Z
+, ℓ ∈ N are

co-prime. Define

Ĥ = Ĥq+,q− : R → R, Ĥ(ϑ) := Hℓ(ϑ) − 2kπp,

where Hℓ is the ℓ-th iteration of H. By equalities (2.16) and (2.17), we have

Ĥ(ϑ) ≡ Θ(2ℓπp, ϑ) − 2kπp.

Then ρ(Ĥ) = 0. Thus

Ω = Ωq+,q− :=
{

ϑ0 ∈ R : Ĥ(ϑ0) = ϑ0

}

= {ϑ0 ∈ R : Θ(2ℓπp, ϑ) = ϑ0 + 2kπp} 6= ∅,

and, for any ϑ 6∈ Ω, there exists some ϑ0 ∈ Ω such that

(3.1) lim
n→+∞

Ĥn(ϑ) = lim
n→+∞

(Hnℓ(ϑ0) − 2nkπp) = ϑ0.

By equalities (2.16) and (2.17), we conclude that

• Case ϑ0 ∈ Ω. In this case, we have

(3.2) Θ(2ℓπp, ϑ0) = ϑ0 + 2kπp, Θ(2nℓπp, ϑ0) = ϑ0 + 2nkπp for n ∈ Z.

These imply that

(3.3) Θ(t, ϑ0) ≡ (k/ℓ)t+ Φϑ0
(t), Φϑ0

(t+ 2ℓπp) ≡ Φϑ0
(t).

• Case ϑ 6∈ Ω. As

(3.4) Ĥn(ϑ) − ϑ0 ≡ Θ(2nℓπp, ϑ) − Θ(2nℓπp, ϑ0) = Hnℓ(ϑ) −Hnℓ(ϑ0),

asymptotical result (3.1) gives

(3.5) lim
t→+∞

(Θ(t, ϑ) − Θ(t, ϑ0)) = 0,

where ϑ0 ∈ Ω is as in (3.1) and therefore Θ(t, ϑ0) is as in (3.3).

Case b. Suppose that ρ = ρ(q+, q−) is irrational. Proposition 2.5 shows that

H = Hq+,q− meets with the minimal regularity requirements of the Denjoy theorem

[6, Theorem 12.1.1]. We conclude that there exists a homeomorphism σ : R → R

such that

σ(ϑ+ 2nπp) = σ(ϑ) + 2nπp, ϑ ∈ R, n ∈ Z,(3.6)

Θ(2πp, ϑ) = H(ϑ) = σ−1(σ(ϑ) + 2πpρ), ϑ ∈ R.(3.7)
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That is, H is topologically conjugate to the translation on R defined by ϑ 7→ ϑ+2πpρ.

From a fundamental result due to Bohr, see, for example, [3, Theorem 2.6], we know

that (3.6) and (3.7) imply the following result. For completeness, a proof will be

given.

Proposition 3.1. Suppose that ρ = ρ(q+, q−) is irrational. Then there exists a

continuous function ω(u, v) : R2 → R such that ω(u, v) is 2πp-periodic in both u and

v, and solutions of (2.7) are given by

(3.8) Θ(t, ϑ) ≡ σ(ϑ) + ρt+ ω(t, σ(ϑ) + ρt).

Proof. Let us introduce ω(u, v) := Θ(u, σ−1(v − ρu)) − v. We will show that ω(u, v)

is 2πp-periodic in both u and v. Indeed, we have

ω(u+ 2πp, v)=Θ(u+ 2πp, σ
−1(v − ρu− 2πpρ)) − v

=Θ(u,Θ(2πp, σ
−1(v − ρu− 2πpρ))) − v (by (2.17))

=Θ(u, σ−1(σ(σ−1(v − ρu− 2πpρ)) + 2πpρ)) − v (by (3.7))

=Θ(u, σ−1(v − ρu)) − v = ω(u, v).

Similarly we have

ω(u, v + 2πp) =Θ(u, σ−1(v + 2πp − ρu)) − v − 2πp

=Θ(u, σ−1(v − ρu) + 2πp) − v − 2πp (by (3.6))

=Θ(u, σ−1(v − ρu)) + 2πp − v − 2πp = ω(u, v). (by (2.16))

By setting u = t and σ−1(v − ρu) = ϑ, i.e., v = σ(ϑ) + ρt, we get

Θ(t, ϑ) = v + ω(u, v) = σ(ϑ) + ρt+ ω(t, σ(ϑ) + ρt),

proving equality (3.8).

The following is a combination of the classification of orientation preserving home-

omorphisms on the circle and the unique ergodicity theorem in ergodic theory.

Proposition 3.2. Let f ∈ C(S2πp
,R) be a continuous function. Then, for any

ϑ ∈ S2πp
, the following ergodic limit exists

(3.9) lim
n→+∞

1

n

n−1
∑

i=0

f(Hi
q+,q−(ϑ)) =: f ∗(ϑ).

Proof. As mentioned before, we may consider H = Hq+,q− as a diffeomorphism of the

circle S2πp
.

Case 1. Suppose that ρ = ρ(Hq+,q−) = k/ℓ is rational. If ϑ0 ∈ Ωq+,q−, by (3.2)

and the 2πp-periodicity of f(θ), then we have

f(Hi+ℓ(ϑ0)) = f(Hi(Hℓ(ϑ0))) = f(Hi(ϑ0 + 2kπp)) = f(Hi(ϑ0) + 2kπp) = f(Hi(ϑ0))
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for all i ∈ Z. That is, the sequence {f(Hi(ϑ0))}i∈Z is ℓ-periodic. Hence the limit of

(3.9) is simply

f ∗(ϑ0) :=
1

ℓ

ℓ−1
∑

i=0

f(Hi(ϑ0)).

If ϑ 6∈ Ωq+,q−, we take ϑ0 ∈ Ωq+,q− as in (3.1). As f : S2πp
→ R is uniformly

continuous, result (3.1) shows that

lim
n→+∞

(f(Hn(ϑ)) − f(Hn(ϑ0))) = 0.

See (3.4). That is, the sequence {f(Hi(ϑ))}i∈Z is asymptotical to the ℓ-periodic

sequence {f(Hi(ϑ0))}i∈Z. Hence the limit of (3.9) exists and is just f ∗(ϑ0).

Case 2. Suppose that ρ = ρ(Hq+,q−) is irrational. Due to a fundamental result

([12, Theorem 6.18]), we know that the homeomorphism H : S2πp
→ S2πp

has the

unique ergodic Borel probability measure ν. Now the convergence (3.9) follows simply

from the unique ergodicity theorem ([12, Theorem 6.19]). Furthermore, in this case,

the convergence (3.9) is uniform in ϑ ∈ S2πp
and the limiting function f ∗ is constant

which is given by

f ∗(ϑ) ≡
∫

S2πp

fdν, ϑ ∈ S2πp
.

Thus the proof is complete.

4. CLASSIFICATION OF SOLUTIONS

Note that non-zero solutions x(t) of (1.2) are expressed using (2.15). The Lya-

punov exponent χ(x) of x(t) is defined by

χ(x) = lim
t→+∞

1

t
log
√

(x(t))2 + (x′(t))2

when it exists. Using the solutions Θ(t, ϑ) and R(t, ϑ), one has

(4.1) χ(x) = lim
t→+∞

1

t
logR(t, ϑ) = lim

t→+∞

1

t

∫ t

0

Ψ(s,Θ(s, ϑ))ds =: χ(ϑ),

because the p-polar coordinates lead to

r0R(t, ϑ) = (|x(t)|p + |x′(t)|p)1/p
.

Theorem 4.1. For any ϑ ∈ R, the Lyapunov exponent χ(ϑ) of (4.1) does exist.

Proof. Step 1. We assert that

(4.2) lim
t→+∞

1

t

∫ t

0

Ψ(s,Θ(s, ϑ))ds = lim
n→+∞

1

2nπp

∫ 2nπp

0

Ψ(s,Θ(s, ϑ))ds.

To see this, one needs only to notice from (2.10) that

|Ψ(t, θ)| ≤ (p− 1)−1/p max
(

|Q+(t)|, |Q−(t)|
)

∈ L1(S2πp
).
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Step 2. We observe that

∫ 2nπp

0

Ψ(s,Θ(s, ϑ))ds=

n−1
∑

i=0

∫ 2πp

0

Ψ(s+ 2iπp,Θ(s+ 2iπp, ϑ))ds

=

n−1
∑

i=0

∫ 2πp

0

Ψ(s,Θ(s+ 2iπp, ϑ))ds (by (2.10))

=

n−1
∑

i=0

∫ 2πp

0

Ψ(s,Θ(s,Θ(2iπp, ϑ)))ds (by (2.17))

=
n−1
∑

i=0

∫ 2πp

0

Ψ(s,Θ(s,Hi(ϑ)))ds

= 2πp

n−1
∑

i=0

Ψ̂(Hi(ϑ)),(4.3)

where Ψ̂ is

(4.4) Ψ̂(ϑ) :=
1

2πp

∫ 2πp

0

Ψ(s,Θ(s, ϑ))ds, ϑ ∈ R.

Therefore, (4.1), (4.2) and (4.3) imply that

(4.5) χ(ϑ) = lim
n→+∞

1

2nπp

∫ 2nπp

0

Ψ(s,Θ(s, ϑ))ds = lim
n→+∞

1

n

n−1
∑

i=0

Ψ̂(Hi(ϑ)).

Step 3. We assert that the function Ψ̂(ϑ) defined by (4.4) is 2πp-periodic and

continuous. Indeed, since Ψ(t, θ) is 2πp-periodic in both t and θ, the 2πp-periodicity

of Ψ̂(ϑ) follows simply from (2.16) and Lemma 2.2 (i). Then Ψ̂(ϑ) may be considered

as a function on S2πp
. As for the continuity, we have from (2.13) that

2πpΨ̂(ϑ) =

∫ 2πp

0

Q+(t)f+(Θ(t, ϑ))dt+

∫ 2πp

0

Q−(t)f−(Θ(t, ϑ))dt.

Note that Θ(t, ϑ) is continuous in (t, ϑ) and f±(θ) are continuous in θ. By the uniform

continuity of the functions f±(Θ(t, ϑ)) in (t, ϑ) ∈ [0, 2πp]
2, we know that for any ε > 0,

there exists δ > 0 such that

ϑi ∈ [0, 2πp], |ϑ2 − ϑ1| < δ =⇒ |f±(Θ(t, ϑ2)) − f±(Θ(t, ϑ1))| < ε for all t ∈ [0, 2πp],

which, in turn, implies that

|Ψ̂(ϑ2) − Ψ̂(ϑ1)| ≤
ε

2πp
(‖Q+‖L1 + ‖Q−‖L1).

Step 4. Applying Proposition 3.2 to f = Ψ̂, we know from (4.5) that χ(ϑ) exists

for any ϑ.
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By Proposition 3.2, if ρ(q+, q−) is irrational, then χ(ϑ) = γ is independent of ϑ

and

lim
n→+∞

logR(2nπp, ϑ)

2nπp

= γ uniformly for all ϑ ∈ S2πp
.

As shown in [15], if the constant γ is non-zero, then, as n → +∞, R(2nπp, ϑ) will

grow or decay exponentially uniformly in ϑ ∈ S2πp
. It is a contradiction to the area-

preserving property of system (2.7)–(2.8). Hence we have in this case the following

result.

Theorem 4.2. Suppose that ρ(q+, q−) is irrational. Then χ(ϑ) = 0 for all ϑ.

Now we give the proof of Theorem 1.2.

Case (i). Suppose that ρ = ρ(q+, q−) = k/ℓ is rational. When ϑ0 ∈ Ωq+,q−, by

(3.3), Θ(t, ϑ0) ≡ (k/ℓ)t+ Φϑ0
(t) where Φϑ0

(t) is 2ℓπp-periodic. Thus

ĥ(t) := Cp(Θ(t, ϑ0)) ≡ Cp((k/ℓ)t+ Φϑ0
(t))

is also 2ℓπp-periodic. Moreover, as Ψ(t, θ) is 2πp-periodic in both t and θ, we know

that

ĝ(t) := Ψ(t,Θ(t, ϑ0))

is also 2ℓπp-periodic. Thus

ĝ(t) = χ(ϑ0) + g̃(t),

where g̃(t) is 2ℓπp-periodic and has mean value 0. Thus

R(t, ϑ0) = eχ(ϑ0)t exp

(
∫ t

0

g̃(s)ds

)

.

By (2.19), we have

x(t) = r0R(t, ϑ0)Cp(Θ(t, ϑ0))

= eχ(ϑ0)t ·
(

r0 exp

(
∫ t

0

g̃(s)ds

)

· ĥ(t)
)

=: g(t) · h(t).

Notice that

lim
t→+∞

1

t
log g(t) = χ(ϑ0).

Since ĝ(t) has mean value 0, h(t) is 2ℓπp-periodic. Hence x(t) is as in Class A.

When ϑ 6∈ Ωq+,q−, one has from (3.5) that

Cp(Θ(t, ϑ)) = Cp(Θ(t, ϑ0)) + o(1) as t→ +∞,

because Cp(θ) is uniformly continuous in θ ∈ R. By Proposition 3.2 and the proof of

Theorem 4.1, we have χ(ϑ) = χ(ϑ0). By (4.1), we know that
∫ t

0

Ψ(s,Θ(s, ϑ))ds = (χ(ϑ0) + o(1))t as t→ +∞.
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Thus

x(t) = r0R(t, ϑ)Cp(Θ(t, ϑ))

= r0 exp

(
∫ t

0

Ψ(s,Θ(s, ϑ))ds

)

Cp(Θ(t, ϑ))

= exp ((χ(ϑ0) + o(1))t) · (r0Cp(Θ(t, ϑ0)) + o(1))

=: g(t)h(t).

Note that g(t) has the Lyapunov exponent χ(ϑ0) and h(t) is asymptotical to the

2ℓπp-periodic function r0Cp(Θ(t, ϑ0)). Hence x(t) belongs to Class A as well.

Case (ii). Suppose that ρ = ρ(q+, q−) is irrational. By (3.8),

Cp(Θ(t, ϑ)) = Cp(σ(ϑ0) + ρt+ ω(t, σ(ϑ0) + ρt)) := C(t, ρt),

which is a quasi-periodic function of two frequencies 1 and ρ. It follows from Theorem

4.2 that the exponential growth rate of R(t, ϑ) is 0. Thus

x(t) = r0R(t, ϑ)Cp(Θ(t, ϑ)) = R(t, ϑ) · (r0C(t, ρt))

is as in Class B.

The proof of Theorem 1.2 is complete.

A simple comparison between Lemma 1.1 for Hill’s equations (1.1) and Theorem

1.2 for asymmetric oscillators (1.2) is as follows.

• Classes 1 and 2 in Lemma 1.1 correspond to Class A in Theorem 1.2. However,

when rotation number is a rational number which is not half-integers, the result in

Theorem 1.2 is weaker than that in Lemma 1.1. In fact, one cannot expect the result

in Class 2 for (1.2). See the last example.

• Class 3 in Lemma 1.1 corresponds to Class B in Theorem 1.2. We are not clear

if the result in Class B can be improved so that the result is the same as that in Class

3.

Finally we give an example to illustrate a crucial difference between the classifi-

cation of solutions of (1.1) and (1.2) when ρ ∈ (0,∞)\1
2
N.

Example 4.3. Let p = 2. For each ℓ ∈ N, we will construct q±(t) ∈ L1(S2π) so

that (1.2) has rotation number ρ(q+, q−) = 1/ℓ. Moreover, (1.2) has solutions with

positive Lyapunov exponents.

At first, let us take a potential q−(t) ∈ L1(S2π) so that the Hill’s equation

(4.6) x′′ + q−(t)x = 0

has the following properties. Denote by ϕ(t) the solution of (4.6) satisfying (x(0), x′(0)) =

(0,−1). Then ϕ(t) < 0 for t > 0 is small. Suppose that ϕ(t) has positive zeros and
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the first positive zero t∗ satisfies

(4.7) t∗ ∈ (0, 2π), α∗ := ϕ′(t∗) > 1.

For example, q−(t) = 6 sin t fulfills these requirements and

t∗ ≈ 0.4919π, α∗ ≈ 1.4632.

Thus we have

(4.8)

(ϕ(0), ϕ′(0)) = (0,−1), (ϕ(t∗), ϕ
′(t∗)) = (0, α∗), ϕ(t) < 0 for t ∈ (0, t∗).

Given ℓ ∈ N. Let

aℓ := (π/(2ℓπ − t∗))
2 .

Then we consider the solution ψ(t) of

(4.9) x′′ + aℓx = 0, (x(t∗), x
′(t∗)) = (0, α∗).

Here the initial condition comes from the second result of (4.8). Explicitly,

ψ(t) =
α∗√
aℓ

sin
√
aℓ(t− t∗).

The first zero of ψ(t) after t∗ is t∗ + π/
√
aℓ = 2ℓπ. Moreover, one has

(4.10) (ψ(2ℓπ), ψ′(2ℓπ)) = (0,−α∗), ψ(t) > 0 for t ∈ (t∗, 2ℓπ).

Let us define

η(t) :=

{

ϕ(t) for t ∈ [0, t∗],

ψ(t) for t ∈ [t∗, 2ℓπ].

From properties (4.7)-(4.8)-(4.10) and equations (4.6)-(4.9), we know that x = η(t),

t ∈ [0, 2ℓπ], satisfies

(4.11) x′′(t) + q+(t)x+(t) + q−(t)x−(t) = 0.

Here q+(t) ≡ aℓ. The function η(t) can be extended to R by

η∗(t) := αn
∗η(t− 2nℓπ), t ∈ [2nℓπ, 2(n+ 1)ℓπ], n ∈ Z.

For these constructions, see Figure 1.

Since q±(t) are 2π-periodic, from the constructions above, it is easy to see that

η∗(t) is a solution of (4.11) on t ∈ R. Furthermore, one has ρ(q+, q−) = 1/ℓ, while

equation (4.11) has the solution η∗(t) which has the Lyapunov exponent

χ(η∗) =
logα∗

2ℓπ
> 0.

Thus (4.11) is a desired asymmetric oscillator.
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Figure 1. The solution η∗(t) of (4.11) with ℓ = 5 in the (x,−x′)-plane.
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