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ABSTRACT. We give a global description of the branches of positive solutions of second order

periodic boundary value problems

u′′ − q(t)u + λa(t)f(u) = 0, 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π)

which are not necessarily linearizable. Our approach based on topological degree and global bifur-

cation techniques.
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1. INTRODUCTION

Krasnosel’skii’s theorem in a cone has often been used to study the existence and

multiplicity of positive solutions of periodic boundary value problems over forty years,

see Krasnosel’skĭi [1], Gustafson and Schmitt [2], Nussbaum [3], Atici and Guseinov

[4], Jiang et al. [5], O’Ragan and Wang [6], Torres [7], Zhang and Wang [8] and the

references therein. Very recently, Graef et al [9] considered the the following periodic

boundary value problems

(1.1) u′′ − ρ2u + ra(t)f(u) = 0, 0 < t < 2π,

(1.2) u(0) = u(2π), u′(0) = u′(2π),

where ρ > 0 is a constant and r is a positive parameter, a and f satisfy the assump-

tions:

(H1) a : [0, 2π] → [0,∞) is continuous and
∫ 2π

0
a(t)dt > 0;

(H2) f : [0,∞) → [0,∞) is continuous and f(u) > 0 for u > 0.

Furthermore, let

f0 = lim
s→0+

f(s)

s
, f∞ = lim

s→+∞

f(s)

s
.
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Under different combinations of superlinearity and sublinearity of the function f ,

using the cone expansion/compression fixed-point theorem, they established some

existence results of positive solutions which are derived in terms of different values of

r.

Of course the natural question is what would happen if the limits lim
s→0+

f(s)
s

and/or

lim
s→+∞

f(s)
s

do no exist?

It is the purpose here that we shall obtain a global description of the branches of

positive solutions of second order periodic boundary value problems

(1.3)
u′′ − q(t)u + λa(t)f(u) = 0, 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π)

which are not necessarily linearizable, where λ ∈ [0,∞) is a parameter, q, a and f

satisfy the assumptions:

(A0) q ∈ C([0, 2π], [0,∞)) is of period 2π and q 6≡ 0 on [0, 2π];

(A1) a ∈ C([0, 2π], [0,∞)) is of period 2π and a(t) 6≡ 0 in any subinterval of [0, 1];

(A2) f : [0,∞) → [0,∞) is continuous and differentiable, and the limits

f0 = lim inf
s→0+

f(s)

s
, f∞ = lim sup

s→+∞

f(s)

s
,

f∞ = lim inf
s→+∞

f(s)

s
, f 0 = lim sup

s→0+

f(s)

s

exist;

(A3) f∞ > 0.

To state our main results, we need the spectrum theory of the linear eigenvalue

problem

(1.4)
− u′′ + q(t)u = λa(t)u, 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π).

Lemma 1.1 ([10]). Let (A0), (A1) hold. Then the weight linear eigenvalue problem

(1.4) has an infinite sequences of eigenvalue

0 < λ0 < λ1 ≤ λ2 < · · ·

such that the eigenfunction ϕn corresponding to λn has exactly [n+1
2

] zeros on the

interval [0, 2π].

Remark 1.2. In the Lemma 1.1, λ0 are simple eigenvalue with positive eigenfunction.

The main results of this paper are as follows

Theorem 1.3. Let (A0)–(A3) hold. Suppose f(0) = 0 and f0 > 0. Then
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(i)
[

λ0

f∞
, λ0

f∞

]

is a bifurcation interval from infinity for positive solutions, and there

exists no bifurcation interval from infinity which is disjointed with
(

λ0

f∞
, λ0

f∞

)

.

More precisely, there exists a component Σ∞ of positive solutions which meets
[

λ0

f∞
, λ0

f∞

]

× {∞}.

(ii)
[

λ0

f0 ,
λ0

f0

]

is a bifurcation interval from the trivial solution, and there exists no bi-

furcation interval from the trivial solution which is disjointed with
(

λ0

f0 ,
λ0

f0

)

. More

precisely, there exists a unbounded component Σ0 of positive solutions which

meets
[

λ0

f0 ,
λ0

f0

]

× {0}.

(iii) If f(s) > 0 for all s > 0, then there is a number λ∗ > 0 such that problem (1.3)

admits no solutions with λ > λ∗. In this case, Σ∞ = Σ0.

(iv) If f(s0) ≤ 0 for some s0 > 0, there exists no positive solution (λ, u) with ‖u‖ =

s0. Hence the components Σ0 and Σ∞ are disjoint, and problem (1.3) admits at

least two positive solutions for all λ > max
{

λ0

f0
, λ0

f∞

}

.

Theorem 1.4. Let (A0)–(A3) hold. Suppose f(0) = 0 and f 0 = 0. Then

(i) Assertion (i) of Theorem 1.3 holds.

(ii) There is no bifurcation of positive solutions from the line of trivial solutions

R
+ × {0}.

Theorem 1.5. Let (A0)–(A3) hold. Suppose f(0) > 0. Then

(i) Assertion (i) of Theorem 1.3 holds.

(ii) There exists a unbounded component Σ0 of positive solutions meeting (0, 0). If

f(s) > 0 for all s > 0, then Σ∞ = Σ0.

(iii) If f(s0) ≤ 0 for some s0 > 0, there exists no positive solution (λ, u) with ‖u‖ =

s0. Hence the components Σ0 and Σ∞ are disjoint, and problem (1.3) admits at

least two positive solutions for all λ > λ0

f∞
.

Our main tools in the proof of Theorems 1.3–1.5 are topological arguments and

the global bifurcation theorems for mappings which are not necessarily smooth.

Theorem 1.6 ([11, Rabinowitz]). Let V be a real reflexive Banach space. Let F : R×

V → V be completely continuous such that F (λ, 0) = 0, ∀λ ∈ R. Let a, b ∈ R (a < b)

be such that u = 0 is an isolated solution of the equation

(1.5) u − F (λ, u) = 0, u ∈ V,

for λ = a and λ = b, where (a, 0), (b, 0) are not bifurcation points of (1.5). Further-

more, assume that

d(I − F (a, ·), Br(0), 0) 6= d(I − F (b, ·), Br(0), 0),

where Br(0) is an isolating neighborhood of the nontrivial solution. Let

S = {(λ, u) : (λ, u) is a solution of (1.5) with u 6= 0} ∪ ([a, b] × {0}),
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and let C be the connected component of S containing [a, b] × {0}. Then, either

(i) C is unbounded, or

(ii) C ∩ [(R \ [a, b]) × {0}] 6= ∅.

Theorem 1.7 ([12, Schmitt]). Let V be a real reflexive Banach space. Let F :

R × V → V be completely continuous, and let a, b ∈ R (a < b) be such that the

solutions of (1.5) are, a priori, bounded in V for λ = a and λ = b, i.e., there exists

an R > 0 such that

F (a, u) 6= u 6= F (b, u)

for all u with ‖u‖ ≥ R. Furthermore, assume that

d(I − F (a, ·), BR(0), 0) 6= d(I − F (b, ·), BR(0), 0),

for R > 0 large. Then there exists a closed connected set C of solutions of (1.5) that

is unbounded in [a, b] × V , and either

(i) C is unbounded in λ direction, or else

(ii) there exists an interval [c, d] such that (a, b) ∩ (c, d) = ∅ and C bifurcates from

infinity in [c, d] × V .

The rest of the paper is organized as follows: In Section 2, we state some notations

and preliminary results. Section 3 and Section 4 are devoted to study the bifurcation

from infinity and from the trivial solution for a nonlinear problem which are not

necessarily linearizable, respectively. In Section 5, we briefly look at the continuum

without bifurcation. Finally in Section 6, we concerns the intertwining of the branches

bifurcating from infinity and from the trivial solution, showing that the essential role

played by the fact whether f has zeros in (0,∞) or not.

2. NOTATION AND PRELIMINARY RESULTS

We shall work in the Banach space E = C[0, 2π] with sup norm ‖·‖. By a positive

solution of Problem (1.3) we mean a pair (λ, u), where λ > 0 and u is a solution of

(1.3) with u > 0 (i.e., u ≥ 0 in (0, 2π) and u 6≡ 0). Let Σ ⊂ R
+ ×E be the closure of

the set of positive solutions of (1.3).

Let H := L2(0, 2π), with inner product 〈·, ·〉L2 and norm ‖ · ‖L2 . Further Define

the linear operator L : D(L) ⊂ E → E

Lu = −u′′ + q(t)u, u ∈ D(L)

with

D(L) = {u ∈ C2[0, 2π] | u(0) = u(2π), u′(0) = u′(2π)}.

Then L is a closed operator with compact resolvent, and 0 ∈ ρ(L).
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We extend the function f to a continuous function f̄ defined on R in such a way

that f̄ > 0 for all s < 0. For λ ≥ 0 we then look at arbitrary solutions u of second

order periodic boundary value problems

(2.1)
u′′ − q(t)u + λa(t)f̄(u) = 0, t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).

Let G(t, s) be the Green’s function of the homogeneous boundary value problem

− u′′ + q(t)u = 0, 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π).

From Theorem 2.5 of [13], we know that G(t, s) > 0, ∀t, s ∈ [0, 2π] under condition

(A0).

Let

m = min G(t, s), M = maxG(t, s), t, s ∈ [0, 2π].

Then m > 0, M > 0.

Remark 2.1. The problem (2.1) is equivalent to the operator equation A : E → E,

Au := u = λ

∫ 2π

0

G(t, s)a(s)f̄(u(s))ds, t ∈ [0, 2π].

For λ > 0, if u is solution of (2.1), from the positivity of G(t, s) and f̄ , we have that

u > 0, t ∈ [0, 2π], and it is solution of (1.3). Therefore, the closure of the set of

nontrivial solutions (λ, u) of (2.1) in R
+ × E is exactly Σ.

Let N : E → E be the Nemytskii operator associated with f̄ :

N(u)(t) = a(t)f̄(u(t)), u ∈ E.

The problem (2.1), with λ ≥ 0, is now equivalent to the functional equation

(2.2) u = λL−1N(u), u ∈ E.

In the following we shall apply the Leray-Schauder degree theory, mainly to the

mapping Φλ : E → E,

Φλ(u) = u − λL−1N(u).

For R > 0, let BR = {u ∈ E : ‖u‖ < R}, let deg(Φλ, BR, 0) denote the degree of Φλ

on BR with respect to 0.
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3. BIFURCATION FROM INFINITY

In order to investigate the bifurcation from infinity, we follow the standard pattern

and perform the change of variable z = ‖u‖−2u (u 6= 0).

Lemma 3.1. Let Λ ⊂ R
+ be a compact interval with

[

λ0

f∞
, λ0

f∞

]

∩ Λ = ∅. Then there

exists a number R1 > 0 such that

Φλ(u) 6= 0, ∀λ ∈ Λ, ∀u ∈ E : ‖u‖ ≥ R1.

Proof. Let r = dist(Λ,
[

λ0

f∞
, λ0

f∞

]

). Then r > 0. Suppose to the contrary that there

exists {(µn, un)} ⊂ Λ×E with ‖un‖ → ∞ (n → ∞), such that Φµn
(un) = 0. We may

assume µn → µ̄ ∈ Λ. By Remark 2.1, un > 0 in [0, 2π]. Set vn := ‖un‖
−1un. Then

vn = µnL
−1 N(un)

‖un‖
.

Since ‖un‖
−1N(un) is bounded in E, {vn} is a relatively compact set in E by the

compactness of L−1. Suppose vn → v̄ in E. Then ‖v̄‖ = 1 and v > 0 in [0, 2π].

Further

(3.1) Lvn = µn‖un‖
−1N(un).

From (A1), (A2), we have

(3.2) min
0≤t≤2π

un(t) ≥ σ‖un‖,

where σ = m
M

> 0. For arbitrary

(3.3) ǫ ∈
(

0, min

{

λ0f
∞

λ0 − rf∞
− f∞, f∞ −

λ0f∞

λ0 + rf∞

}

)

,

there exists K > 0, such that for n ≥ K,

µn(f∞ − ǫ)avn ≤ Lvn ≤ µn(f
∞ + ǫ)avn, t ∈ [0, 2π],

which implies that for all ǫ ∈
(

0, min
{

λ0f∞

λ0−rf∞
− f∞, f∞ − λ0f∞

λ0+rf∞

})

,

(3.4) µ̄(f∞ − ǫ)av̄ ≤ Lv̄ ≤ µ̄(f∞ + ǫ)av̄, t ∈ [0, 2π].

Multiplying both sides of (3.4) with ϕ0 and integrating from 0 to 2π and we using

the fact 〈v̄, aϕ0〉L2 > 0, we get that

(3.5) µ̄(f∞ − ǫ) ≤ λ0 ≤ µ̄(f∞ + ǫ), t ∈ [0, 2π].

If Λ is in the left side of
[

λ0

f∞
, λ0

f∞

]

, then we have from (3.3) and the second

inequality in (3.5) that

µ̄ ≥
λ0

f∞ + ǫ
>

λ0

f∞
− r.

This contradicts the definition of r.
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If Λ is in the right side of
[

λ0

f∞
, λ0

f∞

]

, then we have from (3.3) and the first inequality

in (3.5) that

µ̄ ≤
λ0

f∞ − ǫ
<

λ0

f∞
+ r.

This contradicts the definition of r again.

Corollary 3.2. For µ ∈ (0, λ0

f∞
) and R ≥ R1 , deg(Φµ, BR, 0) = 1.

Proof. Lemma 3.1, applied to the interval Λ = [0, µ], guarantees the existence of

R1 > 0 such that for R ≥ R1

u − τµL−1N(u) 6= 0, u ∈ E : ‖u‖ ≥ R, τ ∈ [0, 1].

Hence for any R ≥ R1,

deg(Φµ, BR, 0) = deg(I, BR, 0) = 1,

which implies the assertion.

On the other hand, we have

Lemma 3.3. Suppose λ > λ0

f∞
. Then there exists R2 > 0 with the property that

∀u ∈ E with ‖u‖ ≥ R2, ∀τ ≥ 0,

Φλ(u) 6= τϕ0.

Proof. Let us assume that for some sequence {un} in E with ‖un‖ → ∞ and numbers

τn ≥ 0, Φλ(un) = τnϕ0. Then

Lun = λN(un) + τnλ0aϕ0,

and since τnλ0aϕ0 ≥ 0 in [0, 2π], it follows that un > 0 in [0, 2π].

Let vn = un

‖un‖
. Then

(3.6) vn(t) ≥ λL−1

(

N(un)

un

(t) · vn(t)

)

= λ

∫ 2π

0

G(t, s)
N(un(s))

un(s)
· vn(s)ds,

and consequently,

(3.7)

lim vn ≥ λ lim

(

L−1

(

N(un)

un

· vn

))

≥ λ

∫ 2π

0

G(t, s)(lim
N(un)

un

· vn)ds

= λ

(

L−1 lim

(

N(un)

un

· vn

))

.

Since min
0≤t≤2π

un(t) ≥ σ‖un‖, we have that

(3.8) lim vn(t) ≥ σ > 0, t ∈ [0, 2π].
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Moreover,

〈lim vn, aϕ0〉L2 ≥ λ

〈

lim

(

L−1

(

N(un)

un

· vn

))

, aϕ0

〉

L2

≥ λ

〈

L−1

((

lim
N(un)

un

· vn

))

, aϕ0

〉

L2

(by (3.7))

≥ λ

〈

L−1

(

lim
N(un)

un

· lim vn

)

, aϕ0

〉

L2

≥ λf∞〈L−1(a lim vn), aϕ0〉L2 (by (3.8))

= λf∞〈L−1(a lim vn),
1

λ0

Lϕ0〉L2

=
λ

λ0
f∞〈LL−1(a lim vn), ϕ0〉L2

=
λ

λ0

f∞〈lim vn, aϕ0〉L2.

Therefore

λ ≤
λ0

f∞
.

This is a contradiction.

Corollary 3.4. For λ > λ0

f∞
and R ≥ R2, deg(Φλ, BR, 0) = 0.

Proof. By Lemma 3.3, there exists R2 > 0 such that

Φλ(u) 6= τϕ0, u ∈ E : ‖u‖ ≥ R2, τ ∈ [0, 1].

Then

deg(Φλ, BR, 0) = deg(Φλ − ϕ0, BR, 0) = 0

for all R ≥ R2. The assertion follows.

We are now ready to prove

Proposition 3.5.
[

λ0

f∞
, λ0

f∞

]

is a bifurcation interval from infinity for positive solu-

tions. There exists an unbounded component Σ∞ of positive solutions which meets
[

λ0

f∞
, λ0

f∞

]

× {∞} and is unbounded in λ direction. Moreover, there exists no bifurca-

tion interval from infinity which is disjointed with
(

λ0

f∞
, λ0

f∞

)

.

Proof. For fixed n ∈ N with λ0

f∞
− 1

n
> 0, let us take that an = λ0

f∞
− 1

n
, bn = λ0

f∞
+ 1

n

and R̂ = max{R1, R2}. It is easy to check that for R > R̂, all of the conditions of

Theorem B are satisfied. So there exists a closed connected set Cn of solutions of (2.2)

that is unbounded in [an, bn] × E, and either

(i) Cn is unbounded in λ direction, or else



PERIODIC BOUNDARY VALUE PROBLEMS 219

(ii) ∃ [c, d] s.t. (an, bn) ∩ (c, d) = ∅ and Cn bifurcates from ∞ in [c, d] × E. By

Lemma 3.1, the case (ii) cannot occur. Thus Cn bifurcates from ∞ in [an, bn]×E

and is unbounded in λ direction. Furthermore, we have from Lemma 3.1 that

for any closed interval I ⊂ [an, bn]\
[

λ0

f∞
, λ0

f∞

]

, the set {u ∈ E | (λ, u) ∈ Σ, λ ∈ I}

is bounded in E. So Cn must be bifurcated from ∞ in
[

λ0

f∞
, λ0

f∞

]

× E and is

unbounded in λ direction.

Assertion (i) of Theorems 1.3–1.5 follows directly.

4. BIFURCATION FROM THE TRIVIAL SOLUTION

We suppose now f(0) = 0 and investigate the first case f0 > 0.

Lemma 4.1. Let Λ ⊂ R
+ be a compact interval with

[

λ0

f0 ,
λ0

f0

]

∩ Λ = ∅. Then there

exists a number δ1 > 0 with the property

Φλ(u) 6= 0, ∀u ∈ E : 0 < ‖u‖ ≤ δ1, ∀λ ∈ Λ.

Proof. Let

r2 = dist

(

Λ,

[

λ0

f 0
,
λ0

f0

])

.

Then r2 > 0.

Suppose to the contrary that there exist sequences {µn} in Λ and {un} in E :

µn → µ̄ ∈ Λ, un → 0 in E, such that Φµn
(un) = 0 for all n ∈ N. By Remark 2.1,

un > 0 in [0, 2π].

Set vn = un

‖un‖
. Then Lvn = µn‖un‖

−1N(un). Since ‖un‖
−1N(un) is bounded in

E, we infer that {vn} is relatively compact in E, hence (for a subsequence) vn → v̄

with v̄ > 0 in E, ‖v̄‖ = 1.

Now, for any

(4.1) ǫ ∈

(

0, min

{

λ0f
0

λ0 − r2f 0
− f 0, f0 −

λ0f0

λ0 + r2f0

})

,

there exists N̄ > 0, such that

f0 − ǫ <
f(un)

un

< f 0 + ǫ, t ∈ [0, 2π], n ≥ N̄ .

This together with the fact Lvn = µna(·)f(un)
un

vn imply that

µ̄(f0 − ǫ)〈v̄, aϕ0〉L2 ≤ λ0〈v̄, aϕ0〉L2 ≤ µ̄(f 0 + ǫ)〈v̄, aϕ0〉L2.

Thus

(4.2)
λ0

f 0 + ǫ
≤ µ̄ ≤

λ0

f0 − ǫ
.
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From (4.1) and (4.2), it follows that

λ0

f 0
− r2 < µ̄ <

λ0

f0
+ r2.

This contradicts the fact µ̄ ∈ Λ.

Corollary 4.2. For λ ∈ (0, λ0

f0 ) and δ ∈ (0, δ1), deg(Φλ, Bδ, 0) = 1.

On the other hand, we have

Lemma 4.3. Suppose λ > λ0

f0
. Then there exists δ2 > 0 such that ∀u ∈ E with

0 < ‖u‖ ≤ δ2, ∀τ ≥ 0,

Φλ(u) 6= τϕ0.

Proof. We assume again to the contrary that there exists τn ≥ 0 and a sequence

{un} with ‖un‖ > 0 and un → 0 in E such that Φλ(un) = τnϕ0 for all n ∈ N. As

Lun = λN(un) + τnλ0aϕ0 and τnλ0aϕ0 ≥ 0 in [0, 2π], we conclude from Remark 2.1

that un > 0 in [0, 2π].

Notice that un ∈ D(L) has a unique decomposition

(4.3) un = wn + snϕ0,

where sn ∈ R and 〈awn, ϕ0〉L2 = 0. Since un > 0 on [0, 2π] and ‖un‖ > 0, we have

from (4.3) that sn > 0. Now

snλ0〈aϕ0, ϕ0〉L2 = 〈Lun, ϕ0〉L2 = λ〈N(un), ϕ0〉L2 + τnλ0〈aϕ0, ϕ0〉L2 .

Choose β > 0 such that β < f0 −
λ0

λ
. For all sufficiently large n,

N(un) ≥ a(·)(f0 − β)un, t ∈ [0, 2π].

Thus
snλ0〈aϕ0, ϕ0〉L2 ≥ λ(f0 − β)sn〈aϕ0, ϕ0〉L2 + λ0τn〈aϕ0, ϕ0〉L2

> λ0sn〈aϕ0, ϕ0〉L2

a contradiction.

Corollary 4.4. For λ > λ0

f0
and δ ∈ (0, δ2), deg(Φλ, Bδ, 0) = 0.

Proof. Let 0 < ǫ ≤ δ2, where δ2 is the number asserted in Lemma 4.3. As Φλ is

bounded in B̄ǫ, there exists c > 0 such that Φλ(u) 6= cϕ0, ∀u ∈ B̄ǫ. By Lemma 4.3,

Φλ(u) 6= tcϕ0, u ∈ ∂Bǫ, t ∈ [0, 2π].

Hence

deg(Φλ, Bǫ, 0) = deg(Φλ − cϕ0, Bǫ, 0) = 0.

Now, using Theorem 1.6 and the similar method to prove Proposition 3.5 with

obvious changes, we may prove the following
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Proposition 4.5.
[

λ0

f0 ,
λ0

f0

]

is a bifurcation interval from the trivial solution. There

exists an unbounded component Σ0 of positive solutions which meets
[

λ0

f0 ,
λ0

f0

]

× {0}.

Moreover, there exists no bifurcation interval from the trivial solution which is dis-

jointed with
(

λ0

f0 ,
λ0

f0

)

.

This is exactly the assertion (ii) of Theorem 1.3.

We conclude this section by considering the case f(0) = f 0 = 0.

Proposition 4.6. In the case f(0) = f 0 = 0, there is no bifurcation of positive

solutions from the trivial solution.

Proof. Suppose to the contrary that there exist sequences {µn} in (0,∞) and {un}

in E : µn → µ̄ ∈ [0,∞), un → 0 in E, such that Φµn
(un) = 0 for all n ∈ N. By

Remark 2.1, un > 0 in [0, 2π].

Set vn = un

‖un‖
. Then we infer that (for a subsequence) vn → v̄ with v̄ > 0 in E,

‖v̄‖ = 1.

On the other hand, we have from Φµn
(un) = 0 that

v̄′′ − q(t)v̄ + µ̄a(t)f 0v̄ = 0, t ∈ (0, 2π),

v̄(0) = v̄(2π), v̄′(0) = v̄′(2π),

which implies v̄ ≡ 0 on [0, 2π]. This is a contradiction.

This is exactly the assertion (ii) of Theorem 1.4.

5. CONTINUUM WITH BIFURCATION

We briefly look at the situation where f(0) > 0.

Lemma 5.1. There is a unbounded component Σ0 of positive solutions of (1.3) meet-

ing (0, 0).

Proof. By Amann [14, Theorem 17.1], Σ contains an unbounded component Σ0 con-

taining (0, 0). Note that (0, u) is a solution if and only if for u = 0, while (λ, 0)

is a solution only for λ = 0. Thus (λ, u) ∈ Σ0 \ {(0, 0)} is a positive solution, by

Remark 2.1.

6. GLOBAL BEHAVIOR OF THE COMPONENT OF POSITIVE

SOLUTIONS

Lemma 6.1. Suppose f(s) > αs ∀s ≥ 0, with α > 0. Then there exists a number

λ∗ > 0 such that there is no positive solution (λ, u) of Φλ(u) = 0 with λ > λ∗.
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Proof. Let (λ, u) be a positive solution of Φλ(u) = 0. Then

−u′′(t) + q(t)u(t) = λa(t)f(u(t)) ≥ λαa(t)u(t), t ∈ (0, 2π)

and hence

λ0〈u, aϕ0〉L2 = 〈Lu, ϕ0〉L2 ≥ λα〈au, ϕ0〉L2.

Since 〈u, aϕ0〉L2 > 0, it follows that λ < α−1λ0.

Note that (i) if f(0) = 0, f∞ > 0, and f(s) > 0 ∀s > 0, or (ii) if f(0) > 0, f∞ > 0

and f(s) > 0 ∀s ≥ 0, the hypothesis of Lemma 6.1 is satisfied.

The assertion that Σ0 = Σ∞ in both Theorem 1.3 (iii) and Theorem 1.5 (ii) now

easily follows. For, in both cases, Σ0 and Σ∞ are contained in [0, λ∗] ×E. Moreover,

there exists no bifurcation interval from infinity which is disjointed with
(

λ0

f∞
, λ0

f∞

)

,

there exists no bifurcation interval from the trivial solution which is disjointed with
(

λ0

f0 ,
λ0

f0

)

. In Theorem 1.3 (iii), the unbounded component Σ0 has to meet
[

λ0

f∞
, λ0

f∞

]

×

{∞}. In Theorem 1.5 (ii), the unbounded component Σ0 has to meet
[

λ0

f∞
, λ0

f∞

]

×{∞}.

Lemma 6.2. Let (A0)–(A3) hold. If f(s0) ≤ 0 for some s0 > 0, then Φλ(u) = 0 has

no solution (λ, u) ∈ [0,∞) × E with ‖u‖ = s0.

Proof. For λ = 0, the assertion is obviously true.

Suppose to the contrary that Φλ(u) = 0 for some λ > 0 and ‖u‖ = s0. By

Remark 2.1, u > 0 and 0 < u(t) ≤ s0, ∀t ∈ [0, 2π]. By Condition (A2), there exists

m ≥ 0 such that a(t)f(s) + ms is monotone increasing in s for s ∈ [0, s0]. Then

(L + λm)u = λ(N(u) + mu)

and, since Ls0 = 0 and N(s0) ≤ 0,

(L + λm)s0 ≥ λ(N(s0) + ms0).

Subtracting and letting w := s0 − u, we get

(L + λm)w ≥ 0, t ∈ (0, 2π),

w(0) = w(2π), w′(0) = w′(2π).

Let e ∈ C([0, 2π], (0,∞)), such that

−w′′ + (q(t) + λm)w = e(t) > 0, t ∈ (0, 2π),

Let G1(t, s) be the Green’s function of the homogeneous boundary value problem

− w′′ + (q(t) + λm)w = 0, 0 < t < 2π,

w(0) = w(2π), w′(0) = w′(2π).



PERIODIC BOUNDARY VALUE PROBLEMS 223

From (A0), λ ≥ 0 and m ≥ 0, applying the Theorem 2.5 of [13], we know that

G1(t, s) > 0, ∀t, s ∈ [0, 2π]. Since

w(t) =

∫ 2π

0

G1(t, s)e(s)ds, ∀t ∈ [0, 2π],

from G1(t, s) > 0, ∀t, s ∈ [0, 2π] and e(s) > 0, ∀s ∈ [0, 2π], we have

w > 0, t ∈ [0, 2π],

i.e. s0 > u, t ∈ [0, 2π]. Hence ‖u‖ < s0, a contradiction.
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