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ABSTRACT. Let T be a time scale with [a,b] C T. We establish criteria for existence of one or

more than one positive solutions of the non-eigenvalue problem

y2 (1) —g(t)y™ (o(t) = f(t,y(t), telab] CT,

(0.1) yla) = X7 awy(&), y(o?(0)) = 377 biy (&),
2 m— 2 2 m— 2
v (0) = T ay® (&), Y2 (02 (0) = 7 by (&),
where &; € (a,b), a;, b; € [0,00) (for i € {1,2,...,m—2}) are given constants. Later, we consider the

existence and multiplicity of positive solutions for the eigenvalue problem y=" (t) — q(t)y2” (o(t)) =
Af(t,y(t)) with the same boundary conditions. We shall also obtain criteria which lead to nonexis-

tence of positive solutions. In both problems, we will use Krasnoselskii fixed point theorem.

AMS (MOS) Subject Classification. 34B10, 39A10

1. INTRODUCTION

We are concerned with the following fourth-order m-point boundary value prob-
lem (BVP)

ya (1) — q(t)y™ (o (t)) = f(t,y(1), t€fab] CT,
(1.1) y(a) = 305 ay (&), y(@®(b) = 21 by (&),
y¥ (@) = S ™ (&), y (02 (0) = I biy™ (&),
and the eigenvalue problem y2"(t) —q(t)y>” (o(t)) = Af (¢, y(t)) with the same bound-
ary conditions where \ is a positive parameter, § € (a,b), a;, b; € [0,00) (for
i€{l1,2,...,m — 2}) are given constants.
We will assume that the following conditions are satisfied.
(H1) f: [a,0?(b)] x R — R is continuous with respect to y and f(¢,y) > 0 for y € R,

where R™ denotes the set of nonnegative real numbers.
(H2) q(t) > 0.
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Throughout this work we let T be any time scale (nonempty closed subset of R),
and [a,b] ={t € T:a <t <b}. The study of dynamic equations on time scales goes
back to its founder Stefan Hilger [6]. Some preliminary definitions and theorems on
time scales can be found in books [2, 3] which are excellent references for calculus of

time scales.

It is well known that many authors have given considerable attention to the
second-order boundary value problems for dynamic equations on time scales [1, 5, 7].
See also Ma [11] and Ma and Thompson [12] for related results when T = R. There are
fewer results in the literature on boundary value problems for fourth-order ordinary
differential equations when T = R [4, 9, 10]. A few papers can be found in the

literature on BVPs for fourth-order dynamic equations on time scales.

Wang and Sun [13] obtained criteria for a solution and a positive solution to the

fourth-order two-point boundary value problem on time scale T:

WABAA (Y _ F(, u(t), ubA (1)) = 0, t € [a, p*(b)),

(1.2)
u(a) = A, u(c*(b) =B, u?(a)=C, u*2(b)=D.

Their arguments are based on the Leray-Schauder fixed point theorem. Our
results include criteria for existence of one or more than one positive solutions of
our non-eigenvalue problem. Moreover we also determine values of A for at least one
positive solution of our eigenvalue problem and obtain criteria for existence of one or
two positive solutions of this problem in terms of superlinear or sublinear behavior
of f(t,y). Finally, we obtain criteria which lead to nonexistence of positive solutions.
In this article, the main tool is the following well-known Krasnoselskii fixed point

theorem in a cone [8].

Theorem 1.1 ([8]). Let B be a Banach space, and let P C B be a cone in B. Assume
Q1, Qs are open subsets of B with 0 € Qy, O C s, and let

APﬂ(QQ\Ql)—)P
be a completely continuous operator such that, either

(1) Ayl <llyll, v € PN O, and [|[Ayl| = |lyll, y € PN Oy, or
(i) Ayl = llyll, v € PO, and [[Ayl| < lyl|, u € PN OQ,.

Then A has at least one fized point in PN (2 \ Q).

2. THE PRELIMINARY LEMMAS

Denote by ¢ and v, the solutions of the corresponding homogeneous equation

(2.1) y(8) = a)y(o(t) =0, € [a,b)
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under the initial conditions

(2.2) pla) =0, ¢*(a)=1, P(@*1) =0, ¢¥3(o*(b)=—1.
Define the number D by
(2.3) D := y(a) = ¢(*(D)).

Using the initial conditions (2.2), we can deduce from equation (2.1) for ¢ and ¢ the

following equations:

(2.4) =t—a+ / / ))AsAT,

2(1)
(2.5) P(t) = —t+ / / (s))AsAT.
t
Lemma 2.1. Under the condition (H2) the following inequalities

{ o(t) >0, te[a,o?B)]; ¥(t) >0, t€a ()]

(26) P 20, tea,o®) M) <0, € [a,0°(0)

yield.

Proof. Using the induction method on time scales as in [1] one can easily see these
inequalities in (2.6) hold. O

Lemma 2.2. Under the condition (H2) the inequality D > 0 holds.

Proof. By (2.3) and (2.4) we have

(2.7) D = o*( —a+/ / ))AsAT.

Since ¢(t) > 0 for t € [a, 0*(D)], we have
(2.8) D > d*(b) —a
by (2.7). This completes the proof. O

We use the following assumptions in the rest of the paper.

(H3) Y72 anb(&) < 1, o0 m(&) <1,
(H4) S % ai(0%(h) — &) < 1, 02 bi(& —a) < 1.

Set
2.9) ’ Sra() T ale) - vio)|
S b)) — e(a?(0) LI bhi(€)
(210) A, = S a6 - a) S ai(0?(b) - &) —(0(6) ~a)|
S bil€ — a) = (0%(0) — a) S bl (b) — &)

Lemma 2.3. Let (H2) hold and assume that
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(H5) Ay #0.
Then for any g € Cla,c*(b)], the problem

211) { 5 () + a(Oy(o(8) = 9(t), ¢ € [a, ]

yla) = S P aw(&),  y(0*(h) = S0 biy(&)

has a unique solution

o (b)
(2.12) y(t) = / Gu(t, $)9(5)As + A(g)p(t) + Blg)(t),
where
1| et)(o(s), t<s,
(2.13) Gi(t,s) = —
D{¢<a<s>>¢<t>, o(s) <t
1 1 Zf D Gi(&,5)9(s)As I anb(&) — (a)
2.14 A = ’ v
24 SO v "2 [ g(s)As  TIZba(E)
and
1 S aip(&) — zl ai f; a e, ><> s
2.15 B = .
(219) - Blo)= 5 S 2 hip(&) — p(a¥(b) — b [ Gy (&, 5)g(s) As

Proof. Now we show that the function defined by (2.12) is a solution of (2.11) only
if G1(t,s), A(g), and B(g) are as in (2.13), (2.14) and (2.15), respectively. Let
y(t) = faUQ(b) G(t,s)g(s)As + A(g)p(t) + B(g)y(t) be a solution of (2.11), then we
have that

a?(b
/ FeEuOaeas+ [ Fute()eals)s
Alg)el0) + Blo)u(t),
a?(b)
020 [ Setoaoins+ o0 [ SotolNa)ds
A0 + <>wA<>
and
a?(b)
(1) = (0 / FANae)As +50) [ Gulelg)as
AW (0) + <>W<> ()
so that

—y® () + q()y(o(t) = %[—@W () +a()y(a(t))] / p(o(s))g(s)As
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B(g)(—¢™*(t) + a(t)(o (1)) + g(t)
=g(t).

Since

m—2 o2 ()
B(g)¢(a) = > ai [ / G(&i,8)g(s)As + A(g)p(&) + B(g)w(&)] :
m—2 o2 (b)
A(g)p(a?(b)) = ' b [/ G(&i,8)g(s)As + A(g)p(&i) + B(g)ib(&)] :

Then we get that

[—Z_aiso(@) Alg) +

m—2

2(1)
a; / G(&,s)

v - Y aw(6)

i=1
m—2 -2 a2 (b)
[ szgo &) [Z bio(E,) S0 / G(& 5)
1=1 1=1
which implies that A(g) and B(g) satisfy (2.14) and (2.15), respectively. O

Lemma 2.4. Let (H2), (H3) hold and assume that
(H6) Al < 0.

Then for any g € Cla,c*(b)] and g > 0, the unique solution y of problem (2.11)
satisfies
y(t) >0, tela,a0b).

Proof. From Lemma 2.1 and Lemma 2.2, the Green’s function (2.13) satisfies Gy (¢, s) >
0 on [a,%(b)] x [a, o(b)]. By hypotheses (H3) and (H6), it is clear that A(g) and B(g)

are nonnegative. Thus the result follows. O
Lemma 2.5. Let (H2) hold and assume that

(H7) Aq # 0.

Then for any g € Cla,a*(b)], the problem

M%) = g(t), t€ [a,o2(b)]
(2.16) { yla) =" ay(&),  y(0*(b) = X0 biy(&)

has a unique solution

o2(b)
y(t) = / Ga(t,3)g(s)As + Clg)(t — a) + D(g)(o*(b) — 1),
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where

(2.17) Clt ) = . {(meﬂw—dﬁxtga

o2(b) —a | (o(s) —a)(c®(b) —t), o(s)<t,
1 —z:“faiﬁ Ga(&i, 5)9(5)As X
BI85 CO= K] Sy 170 e o(s)As I b(0%0) — ) |
LY (& —a) — 712% . 5“ s
X =Y alo’) - &) - (0°0) ~ ),
and __2
Y =S bi(02() - &) — (0*(b) — a).

Lemma 2.6. Let (H2), (H4) hold and assume that
(H8) AQ < 0.
Then for any g € Cla,c?(b)] and g > 0, the unique solution y of problem (2.16)

satisfies
y(t) >0, tela, o).

Lemma 2.7. Let (H2), (H6) and (H8) hold. Then for any g € Cla,c?(b)], the

problem

v (1) = a(t)y™ (o (1) = g(0),
(2.20) y(a)ZZ?lI2 zy(&) (0' (b )) YDy zy(&)
2(a) = y¥ (0 (0) = X7 by (&),

<

has a unique solution
2(b 2(b a?(b)
(2.21) y(t) = / / Go(t, 7)G (7, 5)g(5) AsAAT + / Golt, T A(g)p(r) AT

*(v)
+ [ Gat.1)BlgS()AT + O (e~ a) + D(h)(*(E) — 1),

where Gy, G2, A(g), B(g), C(g), D(g) are defined as in (2.13), (2.17), (2.14), (2.15),
(2.18), (2.19) respectively and

2(b)
W)= [ Gt s)als)8s + Alg)elt) + Bla)u (o)
In addition, if (H3), (H4) hold and g > 0, then

y(t) >0, t¢€la,a*D).
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Proof. Let us consider the following BVP:

o2(0)
way 0= [ G984 AR + Bl 1 a0 0)
yla) =" ay(&), w0 (b)) = X0 biy(&)

The Green’s function associated with the BVP (2.22) is Gs(t, s). This completes the
proof. O

Lemma 2.8. Let (H2) hold. G;(t,s) (i = 1,2) has the following properties:

(i) Gi(t,s) >0, V(t,s) € (a,0%(D)) x (a,0(b)).

(i) Gilt,5) < Gi(o(s), 5), ¥(t,5) € [0, *()] x [0 0(B).

(iii) Gi(t,s) > 6:;Gi(t, t)Gi(o(s),s), V(t,s) € [a,a(b)] x [a,o(b)], where 6; > 0 is a

constant.

Proof. We can easily see that G;(t,s) > 0 for all (¢,s) € (a,02(b)) x (a,0(b)) and
Gi (ta S)
sup ———
(t,s)€(a,02 (b)) (a,0(b)) Gi(a(s),s)
inf Gz(t> S)
(t,s)€(a, cr(b))x(a o) Gi(t,t)G;i(o (s),s)
l_a}. Hence the result

where §; = min{w(ol( E so(o } and 0y = mln{ 3 U(a) o (b)
holds. =

=1 < +o0,

:5i>0,

Lemma 2.9. Let (H2)-(H4), (H6) and (H8) hold. Then for g € Cla,o?(b)] with
g > 0, the unique solution of boundary value problem (2.20) satisfies y(t) > T'||yl|| for

t e (20 300ma] yhere ||y|| = maxa<i<oze) |y(t)| and
2.23 I':=9§ 1 Gs(t. 1).
225 By 20

Proof. From (2.21) and Lemma 2.8, we get
2(b
/ / Go(t, t)Go(o(T), 7)G1(T, )g(s)AsAT
o2(b)
20 [ Gt Galo(r). ) Alg)e(r)AT

o2(b)
5 / Galt, 1)Ga(o(7), 7) B(g)u(7) AT
+ C(R)(t — a) + D(R)(0*(b) — 1),

for all t € [a,o(b)]. Since the inequalities t —a > 0G5 (¢, t)(c(b) —a) for t € [a, o(b)],
o2(b) —t > 63Ga(t,t)(0*(b) — a) for t € [a,o(D)], and

/ / TV (7, 5)g(s) As AT
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2(b)
+/ Ga(o(r), 7)Alg)p(r) AT

2(b)
+/ Ga(o(r), ) Blg)(r) Ar
L C(h)(0*(B) — a) + D(R)(0*(b) — a)

for ¢ € [a, 0?(b)] hold, for t € [ZE¥3e 30B)=a] "o have

SO > 55Ca(t D { [ e NGy (r s)g(s) AsAr

+C(h)(0*(b) — a) + D(h)(o*(b) — a)}
> Tllyll;

where I is defined as in (2.23). The proof is complete.

3. EXISTENCE OF ONE OR MORE POSITIVE SOLUTIONS

2(b
max {/ / o(t, 7)G1(T, s)ASAT
a<t<o2(b)

—I—/ Go(t, 7)Ap(T)AT.

Denote

O :=

o2
+ / Go(t, T)By(T)AT

2(b)
+ C(/ Gi(t, s)As + Ap(t) + By(t))(t — a)

o (b)
+D(/ G1(t, s)As + Ap(t) + By(t)) (o (b) —t)}] ,

s
a<t<o?

2)  po(w)
O = [ max(b){/ Ga(t,7)G1(T, s)AsAT}
a ¢

-—er%f*@cws $)As YT a(&) — v(a)

1
A S [TV GG s)As IR ba(E)

Y
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and
Z?:ﬁ aip(&) —z;“faz- ff“’) Gl@,sms |
S bip(&) — o(0?(b)) =0 b [T Gl s)As

We further assume that the set [a, o (b)] is such that
C::min{TGT:TZW}, w::maX{TET:TSW}

exist and satisfy

1

(3.2) B = A

O’(b)4—|— 3a <l<w< 30(b) — a
We also assume that if o(w) = b, then o(w) < o(b). Let
i S Galo()s) o) —a H(b) — o)
69 rmmn{r o ST e o )

where I is as in (2.23). Then for n > 0, set
F(n) = max{f(t,v) : a <t < o*(b),0 <v <n},
H(n) = min{f(t,v): ( <t <o(w), "y < v <n}.

Theorem 3.1. Let (H1)-(H4), (H6) and (H8) hold. Assume there exist two positive
numbers n; and 1y with n; # ny such that

F(m) <m®,  H(np) > 1,0
Then the BVP (1.1) has at least one positive solution y satisfying
min{ni, 7o} < [lyl| < max{n:, ne}.

Proof. We only show the case 11 < 1m5. The other case can be treated by the same
method.

We work in the Banach space B = C|a, 0%(b)] with the norm
lyll == Jnax ly(2)].
Then define a cone K in B by
(34)  K:={yeB:yt) >0on [a,c*b)], and y(t) > T*|yll, t€(,ow)]},

where I'* is as in (3.3). For each y € K, denote

/ / 2(b 2(t, )G (7, 5) f (5, y(s)) AsAT

+ /a Go(t, T)
/o2<b)

_l_

A(f)p(r)AT

B(f)(T)AT + C(h)(t — a) + D(h)(c*(b) — 1)
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where G, Go, A(f), B(f), C(f), D(f) are defined as in (2.13), (2.17), (2.14), (2.15),
(2.18), (2.19) respectively and

o2(b)
h(t) = / Gu(t,3)f(5,y(3)) s + A(g)p(t) + B(g)(t).

We now show that T': K — K. First, note that y € K implies that Ty(¢) > 0 on
[a, o*(b)], and

2(1)
min Ty(t) > { / / )G (7, 5) (5, y(s) AsAT
2(1)
4 / Galo(r), 7 A(f)p(r) A
2(b)
4 / Galo(r), 7 B(f)b(r)Ar

+C@Wﬂ®—®+DMWﬂ®—®}

> T[Ty
by Lemma 2.9. It follows that

min Ty(t) > I*|Ty].
te[¢,w]

Ty( { | - / T)Gh(7, ) (5, 5(5)) AsAT
o

n / Ga(o(7), PVA(f)p(r) AT

Also

2(b)
" / Galo(r), ) B(f)b(r) A

+C@Wﬁ®—@+D%Wﬂ®—®}
> (| Tyl

Hence Ty € K and so T : K — K. Applying Arzela-Ascoli theorem, we can easily
check that T" is completely continuous.

For y € K with ||y|| = 1, we have
ft,y) < F(m) <m®.

Hence

() po?(b)
ITy|| = max {/ / Go(t, 7)G1(1,38)f(s,y(s))AsAT

a<t<o2(b)
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a2(b)
+ / Galt, 7)A(f)p(r) AT

o2 ()
+/ Gao(t, 7)B(f)y(r)AT + C(h )(t—a)+D(h)(02(b)—t)}

2(1)
< max {/ / o(t, T)G1 (T, $)AsAT
a<t<cr2(b

+/ Go(t, 7)Ap(T)AT
o*(b)
—I—/ Go(t, 7)BY(T)AT

o2(b)
+C ( / Gi(t,s)As + Ap(t) + Bw(t)> (t—a)

a?(b)
+D ( / G1(t,s)As + Ap(t) + B¢(t>> (0% (b) — t)}F(m)

<m =yl

where A, B are given as in (3.1), (3.2), respectively.
For y € K with ||y|| = 72, we have that

[y < y(t) < me
and
min{f(t,v) : ¢ <t < o(w), " S v <mp} = H(pp) =2 7207,
so that

a?(b) po(w)
ITy|| > max / / Go(t, 7)G1(1,38)f(s,y(s))AsAT
a ¢

a<t<o?(

(b (w)
>  max / / Go(t, )G (1, s)AsATH (1))
¢

a<t<o?(b)
> n2 = |lyll

Therefore, by the first part of Theorem 1.1, it follows that T has a fixed point y with
m < [yl < . O
Theorem 3.2. Let (H1)-(H4), (H6), and (H8) hold. If there exist j + 1 positive
numbers My, Nz, . .., N1 with m < nmp < -+ < nj41 such that either
(55) { Flap-1) < 1t for all 26 =1 € {120, j 41},

H(nog) > nox©* for all 2k € {1,2,...,5 + 1};
or
(56) { H(na—1) > 0a1© for all 2k — 1 € {1,'2, i1,

F(nor) < nox®* for all 2k € {1,2,...,5 +1}.
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Then (1.1) has at least j positive solutions.

Proof. We only prove the result under (3.5). In the case that (3.6) holds, the results
can be proved by the same method. Since F' and H are continuous, 0 < © < ©%
there exist 6; and 7; with n; < 6; <7, <me1,2=1,2,...,7 such that

F(O—1) < 02,10  H(Top—1) = 7o—10" for all 2k — 1 € {1,2,...,j + 1},

H(091) > 0910 F(191) < 1940 for all 2k € {1,2,...,5+1}.
From Theorem 3.1, for each ¢ € {1,2,...,7}, the BVP (1.1) has a positive solution
y; satisfying
n < 0 < |yl <1 <41
U

Corollary 3.3. Let (H1)-(H4), (H6), and (H8) hold. Assume that there exist two
sequences {n;}, {0;} of (0,400) such that

(i) lim; 400 m = +00,
(ii) limy— 400 0; = +00,
(i) Tim; 00 T < ©,

(iv) lim; oo H(e > O,

Then the BVP ( .1) has a sequence of positive solutions {y;} such that ||yx|| — oo

as k — oo.

4. BOUNDARY VALUE PROBLEM WITH A PARAMETER

In this section we consider the following BVP with parameter A,
Ly(t) = yN(t) gy (o) = Af(t (1), t€ [a,b],
(4.1) yla) =" ay(&),  y(0?(b) = S biy(&),
y¥(a) = X  ayt (&), v (0%(0) = T by (&),

Define the nonnegative extended real numbers fy, f°, fo and > by

t t

fo:= lim inf min / ,y)’ f%:= lim sup max M,
y—0t  tela,02(0)] Y y—0F tela,o%(b)] Y
t t

foo := lim inf min /( ,y)’ £ := lim sup max ( ,y)’
Yy—00 t€la,02(b)] Yy y—00 t€la,02(b)] Yy

respectively. These numbers can be regarded as generalized super or sublinear con-
ditions on the function f(¢,y) at y = 0 and y = oo. Thus, if fy = f° =0 (4+00), then
f(t,y) is superlinear (sublinear) at y = 0 and if f,, = f* =0 (+00), then f(¢,y) is
sublinear (superlinear) at y = 4+00. The BVP (4.1) has a solution y = y(t) if and

only if y solves the operator equation

2(b
y(t) = (Thy)(t {/ / o(t, )G (T, 8) f(s,y(s))AsAT
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2(b)
+ / Galt, T)A(f)p(7) AT

o2(b)
+ / Gy(t, ) B(f)(1)AT + C(h)(t — a) + D(h)(a*(b) — t)},

where Gy, Ga, A(f), B(f), C(f), D(f) are defined by (2.13), (2.17), (2.14), (2.15),
(2.18), (2.19), respectively and

o2(b)
h(t) = / Gu(t,$)f(5,y(s)) As + A(f)plt) + B(F)(t).

Define the cone K as in (3.4). It is clear that 7\K C K and T) is completely
continuous. Define

(4.2) M= / / F)G(7, $)AsAT
o2(b)
+ [ Gulotr)nAlelar
o2(b)
+ [ GatornBlular

o2(b)
+C (/ Gi(t, s)As + Aol + B||¢H> (0*(b) — a)

o2 ()
+D (/ Gi(t, s)As + Aol + B||¢H> (0*(b) — a).

Theorem 4.1. Assume that (H1)—(H4), (H6), and (H8) are satisfied. Then, for each
A satisfying

1
(4.3) <A<

I fag fc G2 (to, T)G1(T, ) ASAT foo Mfo’

where to € [a,0?(b)] and T* is a constant as in (3.3), there exists at least one positive
solution of the BVP (4.1).

Proof. Clearly,

02(6 s
Ao, () < ) % Ly f e e |
- Al
BU(sy(s) < 5] 2 4 :z’zfzj”b’ i

= B|fl;
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1 a?(b)
C(h) < A_2(I>l||f|| =C (/ Gi(t,s)As + Allo|| +BII¢II> 1 £1l,
and
1 o?(b)
D(h) < Kz%llfll =D / Gi(t,s)As + Al + Blll | £,
where

B, — W Y2 ai(o?(b) — &) — (0%(b) — a)

A S bi(o?(b) — &)
Zm12a2(§z_ ) w

Z?;ZbZ(gz— a) — (o 2(b)—a) A

Y

(1)2:

Y

7= ngamsi) — (o) ),

V- iijbiso@) — (@) ),
Zaz / Galé:,s) ( / " e mar + Al +Br|w||> As
sz / Gt >( / " s,y A+ Alg] +B||w||> As

Let A be given as in (4.3). Let € > 0 be chosen such that

1
(4.4) <A< 1

D [7O [7) Goto, 1)G (7 8) AsAT(fu — ) — M(fot+€)]

Now, turning to fo, there exists an H; > 0 such that f(s,y) < (fo+e€)yfor0 <y < Hj.
So, from (4.4) and Lemma 2.8, for y € K with ||y|| = Hy, we have

2(1)
Thy(t) < )\{/ / T)G1(T, $)ASAT

v [ Gutotr), malglar

o2(b)
T / Ga(o(r), 7) B[] A

o2()
+C (/ Gi(t, s)As + Allpl| + B||¢H> (0*(b) — a)

()
+D </ Gi(t, s)As + Allpll +BH¢II> (o*(b) — a)}IIfH

{ / /2“’ GA(r, $)AsAr
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o(b)
T / Galo(r), 7)All o]l A
o(b)
T / Ga(o(7), 7) Bl|o| A7

o2 (b)
e ( | Gites)ns+ algl +B||wr|> (@) ~ a)

o?(b)
+D (/ Gi(t,5)As + Allel + BII?/)II) (o*(b) - a)}(fo + o)yl

< [lyll

Next, considering f.., there exists Hy > 0 such that f(s,y) > (foo — €)y for y > H,.
Let Hy = max{2H;, %} Then y € K and ||y|| = Hs implies
min t)>1" > H.
i (o) 2 Tyl >
and so

o a?(b)
Tt 23 [ [ Galto )Gl 5) (s, y(s)) Asr
a?(b)  pa(b)
> )\/ / Go(to, 7)G1(T, 8)(foo — €)y(s)ASAT

a?(b) po(w)
S T / / Ga(to, 7)G1 (7, ) (foo — ©)||y]| AsAT
a ¢

> [lyll-

Therefore, by first part of Theorem 1.1, it follows that T, has a fixed point y satisfying
H, <||ly|| < Hs. The proof is complete. O

Theorem 4.2. Assume that (H1)—(H4), (H6), and (H8) are satisfied. Then, for each
A satisfying
1
<< —,
T [T [79 Gy (te, 7)G1 (7, 5) AsAT fo M fx

(4.5)

where ty € [a,a?(b)] and T* is a constant as in (3.3), there exists at least one positive
solution of the BVP (4.1).

Proof. Let A be given as in (4.5) and choose € > 0 such that

1 1
(4.6) <A<

Do 7O 179 Gty )G (r, ) AsAT(fo— ) M{fx 6

Beginning with fj, there exists an Hy > 0 such that f(s,y) > (fo—€)y for 0 < y < Hj.
Thus, from (4.6), for y € K with ||y|| = H;, we have

() o?(0)
Thy(to) > A/ / Go(to, T)G1(T,8) f(s,y(s)) AsAT
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a2(b)  po2(b)
> )\/ / Go(to, 7)G1(T, 8)(fo — €)y(s) AsAT

a2 (b) o(w)
S T / / Ga(to, )G (7, 5)(fo — )yl AsAr
a ¢

> [lyll-

It remains to consider f.,. There exists an Hy > 0 such that f(s,y) < (fs + €)y, for

all y > H,. There are two cases:

(a) f is bounded, and
(b) f is unbounded.

For case (a), suppose N > 0 such that f(s,y) < N, for all 0 <y < oo. Let
Hy = {2H, A\NM}.
Then, for y € K with ||y|| = Hs, we have
Thy(t) < AMN < |y,

so that || Tayl < [lyl-
For case (b), let g(r) = max{f(t,y) : t € [a,0%()],0 < y < r}. The function

g is nondecreasing and lim, ., g(r) = co. Choose Hy = max{2H;, H,} so that
g(Hy) > g(r) for 0 < r < H,. From (4.6), for y € K with |ly|| = Hs, we obtain

Thy(t) < AMg(Hy) < AM(foo +€)Hy < Hy = ||y]]

so that | Thy|| < ||ly||. It follows from Theorem 1.1 that T\ has a fixed point. Thus
the problem (4.1) has a positive solution. The proof is complete. O

Theorem 4.3. In addition to (H1)—-(H4), (H6) and (H8) assumptions, assume
f(s,y(s)) >0 on [a,0?(b)] x RT.

() If fO© = 0 or f° = 0, then there is a A\g > 0 such that for all X > )Xo the
eigenvalue problem (4.1) has a positive solution.

(b) If fo = 00 or fo = 00, then there is a A\g > 0 such that for all 0 < X\ < \g the
eigenvalue problem (4.1) has a positive solution.

(c) If fO = f> =0, then there is a \g > 0 such that for all X > \g the eigenvalue
problem (4.1) has two positive solutions.

(d) If fo = foo = 00, then there is a N\g > 0 such that for all 0 < X < Ao the

eigenvalue problem (4.1) has two positive solutions.

Proof. We now prove the part (a) of Theorem 4.3. Let ty € [a, o?(b)] and for all
r > 0, define

2(b) po?(b)
m(r) = min { / / Go(to, 7)G1(7,8) f(s,y(s))AsAT
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o2 ()
+ / Galto, T)A(f)p(r) AT

o2 ()
+ / Ga(to, T)B(f)(T)AT + C(h)(t — to) + D(h)(c*(b) — to)}

for y € K with ||y|| = r. It can be shown that m(r) > 0 for all » > 0. We now show
that for any rqg > 0 and for all A > Ao, where )\ := —°~ we have that if y € K

m(ro)’

with ||y|| = 7o, then ||Thy| > [|y||. To prove this let y € K with ||y|| = r¢. Then for
A Z )\09

a?(b) o (b)
T)\y(to) = )\{ / / G2<t07 T)Gl(Tu S)f(S, y(S))ASAT
a?(b)

+/ Golto, T)A(f)p(T)AT
o2 (b)
n / Galto. ) B(f)i(r) Ar

+C(h)(to — a) + D(h)(0*(b) — to)}

> Am(rg) = Aom(ro) = 1o = |y
Hence it follows that | Thy|| > ||y|| for all y € K with ||y|| = o and A > Ao.

We now show that the condition f° = 0 implies that given any o > 0 there exists
po such that 0 < py < 19 and for any y € K with ||y|| = po it follows that ||T\y|| < ||y
for all A > Ag. To prove this fix A > Ay and pick €5 > 0 so that

(4.7) AMey < 1.
Since fY = 0, there exists py < ry such that
t
max 1Y) o

telac? (b)) Y
for 0 < y < pg. Hence we have that
f(ty) < ey
for t € [a,0%(b)], 0 <y < po. For y € K with ||y|| = py, we obtain
Thy(t) < AMeollyll < lly

by (4.7). It follows that if y € K with ||y|| = po, then ||Thy| < ||y|| and hence, the
problem (4.1) has a positive solution and the first part of (a) has been proven.

We now prove the second part of (a) of this theorem. Fix A > \g, where )¢ :=

70~ Pick ¢y so that (4.7) holds. Since f* =0, there is R > r( so that

m(ro) *
t

t€fa,02(b)] Yy
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for y > R. Hence we have that

f(tv y) < €Y
for t € [a,0?(b)]. We consider two cases. The first case is that f(¢,y) is bounded on

[a,0%(b)] x RT. In this case there is a positive number N such that

[f(ty)l <N
for t € [a, 02(b)], y € RT. Choose R; > R so that

AMN < R;.
Then for y € K with ||y|| = Ry, we have
Tyy(t) < AMN < Ry = [y

It follows that if y € K with ||y|| = Ry, then ||Thy|| < ||ly||. Since at the beginning of
the proof of this theorem we proved that if ||y|| = 7o, then ||Th\y|| > ||y||, and since
ro < Ry, it follows from Theorem 1.1 that 7T has a fixed point and hence the BVP

(4.1) has a positive solution.

Next we consider the case where f(t,y) is unbounded on [a, 0?(b)] x RT. Let
g(h) = max{f(t,y) : t € [a,0°(b)],0 < y < h}.
The function g is nondecreasing and

lim g(h) = co.

h—o00

Choose Ry > R so that
g(Ry) > g(h) for 0 < h < Ry.
Then for y € K with ||y|| = Ry, we get
Thy(t) < AMg(Ro) < AMeolly|| < [|y]|

by (4.7). It follows that the problem (4.1) has a positive solution y, satisfying ry <
llyo|| < Ry. Hence the proof of part (a) of this theorem is complete. The proof of
part (b) can be made analogous way.

Now we show (c). Clearly if fO = f* = 0, then by the proof of part (a) we get
for any ro > 0 that for each fixed A > Ay := % there are numbers py < ro < Ry
such that there are two positive solutions of problem (4.1) with py < ||y1|| < 79 <
ly2]l < Ry. The proof of part (d) is similar. O

Theorem 4.4. Under the hypotheses of Theorem 4.3, the following assertions hold.

(a) If there is a constant ¢ > 0 such that f(t,y) > cy for y > 0, then there is
a Ao > 0 such that the eigenvalue problem (4.1) has no positive solutions for
A > Ao
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(b) If there is a constant ¢ > 0 such that f(t,y) < cy for y > 0, then there is
a Ao > 0 such that the eigenvalue problem (4.1) has no positive solutions for
0< A< .

Proof. We now prove the part (a) of this theorem. Assume there is a constant ¢ > 0
such that f(t,y) > cy for y > 0 and y(t) is a positive solution of the eigenvalue
problem (4.1). Since Tyy(t) = y(¢) for ¢ € [a,a*(b)], we have for ¢, € [a,a%(D)]

o2(b 2(b
y(to) =A{ / / Galto, 7)G1 (7 5) (5, y(s)) AsAr
2(5)
"—/ GQ(tO,T)A(f)(p(T)AT
o2(b)
i / Galto, ) B (1) AT + C(R)(ty — a) + D(h)(0*(b) — to>}

a?(b)  po?(b)

> c)\/ / Go(to, 7)G1 (T, 8)y(s) AsAT
a?(b) po(w)

> e\ / / Galto, )Gh (7, 8)y(s) AsAT
a ¢

a2 (b) o(w)
S T\ / / Galto, )G (7, ) AsAT[y].
a ¢

If we pick \g sufficiently large so that

a?(b)  po(w)
cF*)\/ / Go(to, 7)G1(T, 8)AsAT > 1
a ¢

for all A > Ao, then y(ty) > ||y|| which is a contradiction.
The proof of part (b) is similar. O

5. EXAMPLES

Example 5.1. Let T = {ﬁ :n € Ny}. Consider the following problem on T :

Y2 (t) =100y /32 + 1, te0,1],
(5.1) y( ) =1/2y(1/2), y(2) =1/2y(1/2),
yA7(0) = 1/242%(1/2), 2 (2) = 1/2y27(1/2).

When taking ¢(t) =0,a=0,b=1,a; = b = %, & = % and f(t,y(t)) = ;2‘)3;, we

prove the solvability of the problem (3.5) by means of Theorem 3.1.

Since ¢(t) = 0, we get
t2—oa(s)) ))

Gi(t,s) = Ga(t, s) = B
<22 t o(s) <t.
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By using (2.9), (2.10), (3.1), (3.2), (2.18), (2.19) and (3.3), we obtain
A=Ay =2,
A=B=3/16,

C (/2 G1(t, s)As + 3/8) =D </2 G1(t,s)As + 3/8) = 27/256,
0 " = 10/6,
respectively. Hence we get
©=16/9, ©"=32/3.
There exist two positive numbers 1/100 and 12 such that
F(1/100) = 0.00009999000100 < 0.01777777778 = 1/1000,
H(12) =160 > 128 = 120",
Then, from Theorem 3.1 the problem (5.1) has least one positive solution y satisfying

1/100 < |ly|| < 12.
Example 5.2. Let us introduce an example to illustrate the usage of Theorem 4.1.
Let T = [—1,2] U [3,5].
Consider the BVP:

(5.2)

y2 (1) — y2 (o(1) = ye?, e [0,4],

y(0) = 1/20y(1) +1/10y(2),  y(4) = 1/50y(1) + 1/300y(2),

y27(0) = 1/20y%(1) + 1/10y2°(2),  y™'(4) = 1/50y™(1) + 1/300y>"(2).

Thena=0,b=4,& =1, & =2, a1 = 1/20, as = 1/10, by = 1/50, by = 1/300, and
qt) =1, f(t,y) = fly) =ye’, t€]0.4].
It is clear that (H1)-(H4), (H6), and (H8) are satisfied, and fy = 1, fo = 0.

We can also see that

s _ 1 p(t)(o(s), t<s,
. {sow(s))w(t), o) <t

Gg(t, S) =

where D = e3 + sinh 1 cosh 2,

(1) = sinht, 0<t<2,
T e + cosh 2sinh(t — 3), 3 <t <4,

o) = e3~t +sinh1cosh(2 —t), 0<t<2,
| sinh(4—1t), 3<t<4.
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Hence we get

4 3
/ / Go(3,7)G1 (T, ) AsAT = 0.7135480189.
0o J1

(3.1), (3.2

From (2.9), (2.10), 2), (2.18), (2.19), (3.3), and (4.2) we obtain

Ay = —5H78.8438568 A,y = —14.486,
A = 0.0005469299304, B = 0.002863069162,

4
C (/ Gi(t, s)As + Allg| + B||w||) = 0.006460923847,
0

D (/4 Gi(t, s)As + Alle|| + B||1DH) = 0.04664575747,
: "~=1/8, M =1.926834049
respectively. Thus, for each A satisfying
0 < A < 0.5189860541,

there exists at least one positive solution of BVP (5.2).
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