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ABSTRACT. We establish criteria of Hille-Nehari type for the half-linear second order dynamic

equation (r(t)Φ(y∆))∆ +p(t)Φ(yσ) = 0, Φ(u) = |u|α−1 sgnu, α > 1, on time scales, under the condi-

tion
∫

∞

r1/(1−α)(s)∆s < ∞. As a particular important case we get that there is a (non-improvable)

critical oscillation constant which may be different from the one known from the continuous case,

and its value depends on the graininess of a time scale and on the coefficient r. Along with the results

of the previous paper by the author, which dealt with the condition
∫

∞

r1/(1−α)(s)∆s = ∞, a quite

complete discussion on generalized Hille-Nehari type criteria involving the best possible constants

is provided. To prove these criteria, appropriate modifications of the approaches known from the

linear case (α = 2) or the continuous case (T = R) cannot be used in a general case, and thus we

apply a new method. As applications of the main results we state criteria for strong (non)oscillation,

examine a generalized Euler type equation, and establish criteria of Kneser type. Examples from

q-calculus and h-calculus, and a Hardy type inequality are presented as well. Our results unify and

extend many existing results from special cases, and are new even in the well-studied discrete case.

AMS (MOS) Subject Classification. 34C10, 39A11, 39A12, 39A13

1. INTRODUCTION

Consider the half-linear dynamic equation

(1.1) (r(t)Φ(y∆))∆ + p(t)Φ(yσ) = 0,

where Φ(u) = |u|α−1 sgn u with α > 1, 1/r(t) > 0 and p(t) are rd-continuous functions

defined on an interval [a,∞) ⊆ T, T being a time scale. If T = R and α = 2, then

(1.1) reduces to the well-known Sturm-Liouville linear differential equation

(1.2) (r(t)y′)′ + p(t)y = 0.

One of the most famous (non)oscillation criteria, the so-called Hille-Nehari ones,

say that (1.2) is oscillatory provided lim inft→∞(
∫ t

a
1/r(s) ds)

∫∞
t
p(s) ds > 1/4, and

(1.2) is nonoscillatory provided lim supt→∞(
∫ t

a
1/r(s) ds)

∫∞
t
p(s) ds < 1/4, where we

assume
∫∞

t
p(s) ds ≥ 0 and

∫∞
a

1/r(s) ds = ∞, see, e.g., [28, Chapter 2]. Many works

have appeared in which these criteria were generalized or extended either to half-linear
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differential equations or to difference equations or to dynamic equations on time scales,

see, e.g., [5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 20, 24, 25, 29]. However, concerning

an extension in the sense of time scales different from R, the results presented there

usually contain restrictions, typically of two types, that disable examination of many

important cases: The constants on the right-hand sides are not the best possible

and/or the choice of time scale is strictly limited. These restrictions were substantially

removed only very recently, see [26, 27]; in particular, it was shown that the constant

on the right-hand side may depend on time scales and on the coefficient r, and can be

strictly less than 1/4 (or, more generally, than ((α− 1)/α)α−1/α) with being still the

best possible. Somehow related oscillation result can be found also in [3]. Another

interesting and kind of initiating paper is [6].

In the above criteria for (1.2) we required
∫∞

a
1/r(s) ds = ∞. If we consider

the complementary case, i.e.,
∫∞

a
1/r(s) ds <∞, then the corresponding criteria can

be obtained from the known ones using certain (linear) transformation of dependent

variable which transforms (1.2) with the convergent integral condition into the equa-

tion of the same form with the divergent integral condition. In our general case, these

conditions read as

(1.3)

∫ ∞

a

r1−β(s) ∆s = ∞

and

(1.4)

∫ ∞

a

r1−β(s) ∆s <∞,

where β is the conjugate number to α, i.e., 1/α + 1/β = 1. In [27] we established a

generalization of Hille-Nehari criteria for (1.1) under condition (1.3), see Theorem 2.2

below. Now we wish to derive corresponding criteria for (1.1) in the complementary

case, i.e., under condition (1.4). However, in contrast to the linear theory, there is

no suitable transformation, which transforms the case with (1.4) into the one with

(1.3), at disposal in a nonlinear case, and so we cannot use Theorem 2.2 as in [26]. In

the continuous case, i.e., T = R, desired criteria under condition (1.4) were already

established, see [15] or [9], and they are based on a knowledge of oscillation behavior

of certain generalized Euler differential equation, Hille-Wintner type comparison the-

orem, and a transformation of independent variable. This approach however cannot

be used in a general time scale case (or even in the discrete case T = Z) since a be-

havior of a related Euler type equation (along with the right oscillation constant) is

unknown and the required transformation is not available. Hence, for equation (1.1)

we have to use an approach which is different from the ones known from the linear

or continuous theory.

A suitable method which is applicable in a general case was developed in [19] very

recently, see Lemma 2.1 in the next section, where we present also other preliminary
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results and introduce notations. Using this lemma, in Section 3, we prove Hille-Nehari

type criteria for equation (1.1) provided (1.4) holds. In particular, these criteria

contain the critical (thus the best possible) constant under certain mild assumptions,

i.e., the constants on the right-hand sides are the same and, moreover, they exhibit

the expected dependence on the graininess of a time scale and on the coefficient r. In

special cases, especially if α = 2 and/or T = R, they reduce to the classical (sharp)

results. It is worthy of note that our results are new also in the well-studied case T =

Z, i.e., for half-linear difference equations. In the last section we present applications

of the main results: Criteria for strong (non)oscillation are derived, a conditional

oscillation of a generalized Euler type dynamic equation is described, which is then

used in establishing sharp Kneser type criteria. We also provide several important

examples from q-calculus and h-calculus, and obtain a Hardy type inequality involving

the best possible constant. Finally we indicate some directions for a future research.

2. NOTATION AND PRELIMINARIES

We assume that the reader is familiar with the notion of time scales. Thus note

just that T, σ, fσ, µ, f∆ and
∫ b

a
f(s) ∆s stand for time scale, forward jump operator,

f ◦σ, graininess, delta derivative of f , and delta integral of f from a to b, respectively.

Recall that, for instance, f∆(t) = f ′(t) when T = R, f∆(t) = ∆f(t) when T = Z, and

f∆(t) = Dqf(t) when T = {qk : k ∈ N0} with q > 1, where Dq denotes the Jackson

derivative. See [13], which is the initiating paper of the time scale theory written by

Hilger, and the monograph [4] by Bohner and Peterson containing a lot of information

on time scale calculus. Time scales intervals will be denoted as usual real intervals,

and from the context it always be clear whether the interval under consideration is

real or of time scale type.

A (nontrivial) solution to (1.1) is said to be nonoscillatory if it is eventually

of one sign, otherwise it is said to be oscillatory. Thanks to the Sturm type sep-

aration theorem, see [23], either all (nontrivial) solutions of (1.1) are oscillatory or

all (nontrivial) solutions of (1.1) are nonoscillatory. Hence the equation can easily

be classified as oscillatory or nonoscillatory, similarly as in the linear theory. Basic

qualitative properties of (1.1) were studied in [23] or in [2].

As we distinguish two cases depending on behavior of the coefficient r in (1.1),

it is practical to introduce the notation:

RD(t) :=

∫ t

a

r1−β(s) ∆s, RC(t) :=

∫ ∞

t

r1−β(s) ∆s

Subscripts D and C stand for the divergence case (condition (1.3)) and the conver-

gence case (condition (1.4)), respectively. Similar convention is used also in below

defined formulae.
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The so-called Riccati technique plays a very important role in the qualitative

theory of (1.1) and there are known several sophisticated modifications of this method.

The basic statement says that (1.1) is nonoscillatory if and only if the generalized

Riccati dynamic inequality w∆ + p(t) + S(w, r)(t) ≤ 0 is solvable with Φ−1(r(t)) +

µ(t)Φ−1(w(t)) > 0 for large t, where

S(w, r) = lim
λ→µ

w

λ

(

1 − r

Φ(Φ−1(r) + λΦ−1(w))

)

,

see [23]. Recall that (1.1) and w∆ + p(t) + S(w, r)(t) = 0 are related by the sub-

stitution w = rΦ(y∆/y). Under conditions (1.3) and
∫∞

t
p(s) ∆s ≥ 0, in the above

characterization of nonoscillation, instead of Riccati type dynamic inequality we can

take the integral inequality

w(t) ≥
∫ ∞

t

p(s) ∆s+

∫ ∞

t

S(w, r)(s) ∆s,

see [25]. This can be then used to show the equivalence between nonoscillation of (1.1)

and the (pointwise) convergence of the sequence {ψk(t)}, where ψ0(t) =
∫∞

t
p(s) ∆s

and ψk(t) = ψ0(t) +
∫∞

t
S(ψk−1, r)(s) ∆s, k = 1, 2, . . . , see [25]. If, in addition,

p(t) ≥ 0, then w(t) ≤ R1−α
D (t). The following two characterizations of nonoscillation

to (1.1) can be understood as complements to the previous ones, now for the case

(1.4), see [19]: Assume p(t) ≥ 0. Equation (1.1) is nonoscillatory if and only if
∫∞

p(s)(Rσ(s))α∆s converges and there is a function w satisfying w(t) ≥ −R1−α
C (t)

and

Rα
C(t)w(t) ≥

∫ ∞

t

p(s)(Rσ
C(s))α∆s−

∫ ∞

t

w(s)(Rα
C(s))∆∆s+

∫ ∞

t

S(w, r)(s)(Rσ
C(s))α∆s

for large t. In the if part, p(t) ≥ 0 can be relaxed to
∫∞

t
p(s)(Rσ

C(s))α∆s ≥ 0 for large

t. The following lemma (we call it a function sequence technique) is based on the

previous relation and plays a crucial role in the proofs of our main results. Denote

H(t) = R−α
C (t)

∫∞
t
p(s)(Rσ

C(s))α∆s and

G(u)(t) = R−α
C (t)

∫ ∞

t

(

−u(s)(Rα
C(s))∆ + S(u, r)(s)(Rσ

C(s))α
)

∆s.

In [19] we showed that u 7→ G(u) is increasing for u ≥ −R1−α
C . Further, G(−R1−α

C ) =

−R1−α
C . Define the sequence {ϕk(t)} by

(2.1) ϕ0 = −R1−α
C , ϕk+1 = H + G(ϕk), k = 0, 1, 2, . . . .

Clearly, ϕk+1 ≥ ϕk, k = 0, 1, 2, . . . , provided H ≥ 0.

Lemma 2.1 ([19]). Let p(t) ≥ 0 for large t. Equation (1.1) is nonoscillatory if and

only if there exists t0 ∈ [a,∞) such that limk→∞ ϕk(t) = ϕ(t) for t ≥ t0, i.e., {ϕk(t)}
is well defined and pointwise convergent. In the if part, p(t) ≥ 0 can be relaxed to the

condition H(t) ≥ 0 for large t.
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For comparison purposes we now recall the sharp Hille-Nehari criteria for the

case when (1.3) hold, see [27]. To this aim we introduce the notation:

RD(λ)(t) :=
λ(t)r1−β(t)

RD(t)

γD(x) := lim
t→x

(

(t+ 1)
α−1

α − 1

t

)α
t

(t+ 1)α−1 − 1
, x ∈ [0,∞) ∪ {∞},

and

AD(t) := Rα−1
D (t)

∫ ∞

t

p(s) ∆s.

The proof of the following theorem is based on the above mentioned equivalence

between nonoscillation of (1.1) and the convergence of the sequence {ψk(t)}.

Theorem 2.2 ([27]). Let
∫∞

t
p(s) ∆s exist, be eventually nonnegative and eventually

nontrivial for large t, and (1.3) hold.

(i) Let M∗ = lim inft→∞ RD(µ)(t). If

(2.2) lim inf
t→∞

AD(t) > γD(M∗),

then (1.1) is oscillatory.

(ii) Let M∗ = lim supt→∞ RD(µ)(t). If

(2.3) lim sup
t→∞

AD(t) < γD(M∗),

then (1.1) is nonoscillatory.

If M := M∗ = M∗ in Theorem 2.2, then γD(M) is the critical constant satisfying

γD(M) =























1
α

(

α−1
α

)α−1
if M = 0,

(

(M+1)
α−1

α −1
M

)α
M

(M+1)α−1−1
if 0 < M <∞,

0 if M = ∞.

Note that x 7→ γD(x) is decreasing on [0,∞). Thus the critical constant is not

invariant with respect to time scales and it may be strictly less than the constant

known from the continuous theory. If, in addition, α = 2, then

γD(M) =



















1
4

if M = 0,

1

(
√

M+1+1)
2 if 0 < M <∞,

0 if M = ∞.

This result matches the one known from the linear theory, see [26] and also [6].
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In the next section we prove a complement to Theorem 2.2. For this purpose we

introduce the following notation:

RC(λ)(t) :=
λ(t)r1−β(t)

RC(t)

γC(x) := lim
t→x

(

1 − (1 − t)
α−1

α

t

)α

(1 − t), x ∈ [0, 1],

and

AC(t) := R−1
C (t)

∫ ∞

t

(Rσ
C(s))αp(s) ∆s.

For x ∈ (0, 1) the function γC can be rewritten as γC(x) =
(

(1−x)1/α−1
x

+ 1
)α

. Now it

is not difficult to see that x 7→ γC(x) is decreasing and nonnegative on [0, 1]. Further

we have γC(0) = β−α and γC(1) = 0.

3. MAIN RESULTS

We are in a position to state and prove the main result of the paper, namely the

complement of Theorem 2.2 in the sense of condition (1.4).

Theorem 3.1. Let (1.4) hold and
∫∞

a
p(s)(Rσ

C(s))α∆s be convergent.

(i) Assume p(t) ≥ 0 for large t. Let N∗ = lim inft→∞ RC(µ)(t). If

(3.1) lim inf
t→∞

AC(t) > γC(N∗),

then (1.1) is oscillatory.

(ii) Assume
∫∞

t
p(s)(Rσ

C(s))α∆s ≥ 0 for large t. Let N∗ = lim supt→∞ RC(µ)(t).

If

(3.2) lim sup
t→∞

AC(t) < γC(N∗),

then (1.1) is nonoscillatory.

Proof. Condition (3.1) can be rewritten as
∫∞

t
(Rσ

C(s))αp(s) ∆s ≥ γ0RC(t) for large

t, say t ≥ t0, where γ0 > γC(N∗). Recall that {ϕk(t)} is defined by (2.1), where

u 7→ G(u) is increasing for u ≥ −R1−α
C . Then ϕ1(t) = R−α

C (t)
∫∞

t
(Rσ

C(s))αp(s) ∆s +

G(ϕ0)(t) ≥ R−α
C (t)γ0RC(t) − R1−α

C (t) = γ1R
1−α
C (t), t ≥ t0, where γ1 = γ0 − 1.

We have Rα−1
C γ1R

1−α
C = γ1 > −1 and Rα−1

C ϕ1(t) ≥ γ1 > −1. Hence, ϕ2(t) =

R−α
C (t)

∫∞
t

(Rσ
C(s))αp(s) ∆s + G(ϕ1)(t) ≥ γ0R

1−α
C (t) + G(γ1R

1−α
C )(t) = γ0R

1−α
C (t) +

R−α
C (t)

∫∞
t

T (γ1R
1−α
C )(s) ∆s, t ≥ t0, where T (u) = −u(Rα

C)∆ +S(u, r)(Rσ
C)α. We dis-

tinguish two cases. For convenience we skip the argument t sometimes in the computa-

tions. At a right-dense t, T (γ1R
1−α
C ) = αr1−βγ1R

1−α
C Rα−1

C +(α−1)r1−β|γ1R
1−α
C |βRα

C =
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r1−β(αγ1 + (α− 1)|γ1|β), while at a right-scattered t,

T (γ1R
1−α
C ) = − γ1R

1−α
C

(Rσ
C)α −Rα

C

µ

+
γ1R

1−α
C (Rσ

C)α

µ

(

1 − r
(

rβ−1 + µΦ−1(γ1R
1−α
C )

)α−1

)

= r1−β

(

γ1RC

µr1−β
− rγ1R

1−α
C (RC + µR∆

C )α

µr1−β
(

rβ−1 + µR−1
C Φ−1(γ1)

)α−1

)

= r1−β

(

γ1

RC(µ)
− γ1(1 − RC(µ))α

RC(µ)(1 + Φ−1(γ1)RC(µ))α−1

)

.

Denote

Γ∗(t, u) = inf
s≥t

lim
λ→µ(s)

{

u

RC(λ)(s)
− u(1 − RC(λ)(s))α

RC(λ)(s)(1 + Φ−1(u)RC(λ)(s))α−1

}

with noting that in this formula we have limλ→0

{ }

= αu + (α − 1)|u|β, which

corresponds to the “right-dense” case. Thus, at any t ≥ t0, we get

ϕ2(t) ≥ γ0R
1−α
C (t) +R−α

C (t)Γ∗(t0, γ1)

∫ ∞

t

r1−β(s) ∆s = γ2R
1−α
C (t),

where γ2 = γ0 + Γ∗(t0, γ1). Further note that u 7→ Γ∗(t, u) is increasing for u ≥ −1

which can be easily verified by differentiation, and Γ∗(t,−1) = −1. Hence, γ2 ≥
γ0 + Γ∗(t0,−1) = γ0 − 1 = γ1. Similarly, by induction, ϕk(t) ≥ γkR

1−α
C (t), where

(3.3) γk+1 = γ0 + Γ∗(t0, γk), k = 1, 2, . . . ,

and γk+1 ≥ γk, k = 1, 2, . . . . We claim that limk→∞ γk = ∞. If not, let limk→∞ γk =

L <∞ (a limit must exist). Then from (3.3)

(3.4) L = γ0 + Γ∗(t0, L).

First assume that N := N∗ = N∗. Letting t0 tend to ∞ in (3.4), we get

(3.5) L = γ0 + Ω(L,N),

where

(3.6) Ω(L,N) = lim
λ→N

{

L

λ
− L(1 − λ)α

λ(1 + Φ−1(L)λ)α−1

}

.

Note that Ω(L,N) = limt0→∞ Γ∗(t0, L). Recall that N ∈ [0, 1] and it is easy to see

that Ω(L, 0) = αL+ (α− 1)|L|β and Ω(L, 1) = L. We have

∂Ω(L,N)

∂L
= lim

λ→N

{

1

λ
− (1 − λ)α

λ(1 + Φ−1(L)λ)α

}

.

The case with N = 1 is immediate since then from (3.5), L = γ0 +L, a contradiction.

Thus next we may assume N ∈ [0, 1). It is a matter of routine computations to see

that the graph of L 7→ γC(N) + Ω(L,N) is a parabola-like curve and touches the line

L 7→ L at L# = − limt→N

(

(1 − (1 − t)(α−1)/α)/t
)α−1

; the values of L# and γC(N)
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being found by solving ∂Ω(L,N)/∂L = 1 and L# = γ + Ω(L#, N) with respect to L

and γ, respectively. Since in (3.5) we have γ0 > γC(N), there is no real solution of

that equation, and we get a contradiction. This proves that limk→∞ γk = ∞ and so

ϕk(t) → ∞ as k → ∞ for t ≥ t0. Consequently, (1.1) is oscillatory by Lemma 2.1.

Now we analyse the case when N∗ < N∗. A closer examination of the previous part

shows that we are particularly interested in L ∈ [−1, 0]. It is not difficult to verify

that x 7→ Ω(L, x) is increasing on [0, 1] for L ∈ [−1, 0]. Hence, letting t0 tend to ∞
in (3.4) we have L = γ0 + Ω(L,N∗). Since we assume γ0 > γC(N∗), we get that the

last equation has no real solution, similarly as in the previous part. Thus oscillation

of (1.1) follows from Lemma 2.1.

(ii) Condition (3.2) can be rewritten as
∫∞

t
(Rσ

C(s))αp(s) ∆s ≤ δ0RC(t) for large

t, say t ≥ t0, where 0 < δ0 < γC(N∗). Similarly as in part (i), we get

(3.7) ϕk(t) ≤ δkR
1−α
C (t),

where δ1 = δ0 − 1 and

(3.8) δk+1 = δ0 + Γ∗(t0, δk),

k = 1, 2, . . . , with

Γ∗(t, u) = sup
s≥t

lim
λ→µ(s)

{

u

RC(λ)(s)
− u(1 − RC(λ)(s))α

RC(λ)(s)(1 + Φ−1(u)RC(λ)(s))α−1

}

.

Thanks to monotone properties of u 7→ Γ∗(t, u), we have δk+1 ≥ δk > −1, k = 1, 2, . . . .

We need to show that {δk} converges. First assume N := N∗ = N∗. Consider the

fixed point problem x = g(ω, x), where g(ω, x) = ω + Ω(x,N), Ω being defined by

(3.6), with a real parameter ω, and the perturbed problem x = g̃(ω, x, t0), where

g̃(ω, x, t0) = ω + Γ∗(t0, x). The fixed point will be found by means of the iteration

scheme xk+1 = g(xk), k = 1, 2, . . . . The graph of x 7→ g(0, x) is a parabola-like curve

with the minimum at the point [−1,−1]. The graph of x 7→ g(γC(N), x) touches the

line x 7→ x at x = x# := − limt→N

(

(1 − (1 − t)(α−1)/α)/t
)α−1

. Therefore, if we choose

x1 = −1+γC(N) (noting that −1 < x1 < x#), then, as easily seen, the approximating

sequence {xk} for the problem x = g(γC(N), x) is strictly increasing, and converges

to x#. Clearly, if −1 < y1 < −1 + γC(N), then the approximating sequence for the

same problem, i.e., satisfying yk+1 = g(γC(N), yk), k = 1, 2, . . . , is increasing as well

and permits yk < xk < x#, k ∈ N. Therefore {yk} converges. Now take into account

that limt0→∞ g̃(ω, x, t0) = g(ω, x). Hence the function g̃ in the perturbed problem

can be made as close to g as we need (locally, on the interval under consideration)

provided t0 is sufficiently large. This closeness of g to g̃ along with the inequality

δ0 < γC(N) and the behavior of {yk} lead to the fact that the sequence {δk} in the

original problem (3.8) converges for t0 large. Thus {ϕk(t)} converges by (3.8), and

so (1.1) is nonoscillatory by Lemma 2.1. The case when N∗ < N∗ can be treated
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similarly, taking into account also the ideas of the last part of (i). In particular, we

take 0 < δ0 < γC(N∗).

Remark 3.2. (i) A closer examination of the proof of (ii) of Theorem 3.1 shows

that under the condition RC(t) ≡ N for large t, assumption (3.2) can be replaced

by AC(t) ≤ γC(N) for large t. Indeed in that proof we then take δ0 such that

0 < δ0 ≤ γC(N). The statement then follows from the fact that g̃(ω, x, t) ≡ g(ω, x)

and the graph of x 7→ g(γC(N), x) touches the line x 7→ x. This result will be very

important to show nonoscillation in some critical cases, as presented below. We will

provide also several important examples of T and r where RC(t) ≡ N is satisfied.

(ii) In the nonoscillation criterion, we assume
∫∞

t
p(s)(Rσ

C(s))α∆s ≥ 0 for large t.

We conjecture that the condition p(t) ≥ 0 for large t can be relaxed to this inequality

also in the oscillation criterion.

Corollary 3.3. Let N := N∗ = N∗ in Theorem 3.1. Then γC(N) is the critical

constant, i.e., the constants on the right-hand sides of (3.1) and (3.2) are the same.

In particular, N ∈ [0, 1] and

γC(N) =























β−α if N = 0,

(1 −N)

(

1−(1−N)
α−1

α

N

)α

if 0 < N < 1,

0 if N = 1.

Remark 3.4. In view of monotone properties of x 7→ γC(x) on [0, 1], we have

(3.9) (1 −N)

(

1 − (1 −N)
α−1

α

N

)α

< β−α

for N ∈ (0, 1]. Therefore we see that the critical constant is not invariant with respect

to time scales and it may be strictly less than the constant known from the continuous

theory.

Corollary 3.5. Let N := N∗ = N∗ and α = 2 in Theorem 3.1. Then γC(N) is the

critical constant satisfying

γC(N) =



















1
4

if N = 0,

1−N

(
√

1−N+1)
2 if 0 < N < 1,

0 if N = 1.

Remark 3.6. Using Theorem 2.2 with α = 2 and a transformation of depen-

dent variable, in [26, Theorem 3.3] we showed the linear version of Theorem 3.1

(i.e., all is considered with α = 2), where the expression RC(λ)(t) is replaced by

the expression R̃C(λ)(t) = λ(t)r−1(t)/Rσ
C(t) and the function γC(x) is replaced by

γ̃C(x) = limt→x

(√
t+ 1 + 1

)−2
. We have RC(µ) = 1/

(

1 + 1/R̃C(µ)
)

for µ > 0 and
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γC ◦ϑ = γ̃C with ϑ(x) = 1/(1+1/x). From this it follows that Theorem 3.1 reduces to

[26, Theorem 3.3] for α = 2. In particular, if there exists Ñ = limt→∞ R̃C(µ)(t), then

Ñ ∈ [0,∞)∪{∞}, N = limt→∞ RC(µ)(t) exists, and γC(N) = γ̃C(Ñ). Note that also

for our general case, i.e., α > 1, the critical constant γ(N) can be expressed in terms of

R̃C , Ñ and γ̃, and reads as γ̃C(Ñ) = limt→Ñ

((

(t+ 1)
α−1

α − 1
)

/t
)α

= (γC ◦ ϑ)(Ñ) =

γC(N), where Ñ = limt→∞ R̃C(λ)(t) with R̃C(λ)(t) = λ(t)r1−β(t)/Rσ
C(t).

4. APPLICATIONS, EXAMPLES, AND CONCLUDING REMARKS

(i) Critical and oscillation constant. If the constants on the right-hand sides of

(3.1) and (3.2) are the same and equal to γC(N) (in our case this happens when

N = N∗ = N∗), then γC(N) is called a critical constant (or a critical oscillation

constant). Sometimes in similar situations in the literature, this constant is said

to be an oscillation constant. However, we prefer to use the former terminology

since the latter one is usually used in a different meaning and concerns a conditional

oscillation, see the next subsection. The term “critical constant” reflects the fact that

this constant cannot be improved and forms a sharp border between oscillation and

nonoscillation. Note that the strict inequalities in (3.1) and (3.2) cannot be replaced

by nonstrict ones since no conclusion can be drawn if either lim inft→∞AC(t) or

lim supt→∞AC(t) equals the critical constant; both oscillation and nonoscillation may

happen, as shown already in the continuous linear theory. On the other hand, under

additional conditions, the equality is “closer” to nonoscillation, see Remark 3.2. Our

result also show that if lim inft→∞AC(t) > β−α, then (1.1) is oscillatory no matter

what time scale is, because of (3.9). However, in addition, Theorem 3.1 says that β−α

is not the best possible constant which is universal for all time scales. In particular,

it may not be critical at all. In fact, it depends on a time scale and with µ(t) 6≡ 0

it depends also on the coefficient r. In general it may happen γC(N) ∈ [0, β−α];

later we give examples where γC(N) < β−α. We conclude this subsection with the

note that oscillation of (1.1) is still possible even when lim inft→∞AC(t) < γC(N).

This is implied the following theorem, and we emphasize that there is no need of an

additional condition on a time scale.

Theorem 4.1 ([19]). Let p(t) ≥ 0 for large t and (1.4) hold. If lim supt→∞AC(t) > 1,

then (1.1) is oscillatory.

(ii) Strong and conditional oscillation. Consider the equation

(4.1) (r(t)Φ(y∆))∆ + λp(t)Φ(yσ) = 0,

where r(t) > 0, p(t) > 0, and λ is a real parameter. In the linear continuous case,

the concept of strong and conditional oscillation was introduced by Nehari [22]. We

say that (4.1) is conditionally oscillatory if there exists a constant 0 < λ0 < ∞
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such that (4.1) is oscillatory for λ > λ0 and nonoscillatory for λ < λ0. The value

λ0 is called the oscillation constant of (4.1). If equation (4.1) is oscillatory (resp.

nonoscillatory) for every λ > 0, then this equation is said to be strongly oscillatory

(resp. strongly nonoscillatory). Next we apply the results from the previous section

to derive necessary and sufficient conditions for strong (non)oscillation in the case

when (1.4) hold.

Theorem 4.2. Let p(t) ≥ 0 for large t and (1.4) hold. Assume that N∗ < 1. Then

(4.1) is strongly oscillatory if and only if lim supt→∞AC(t) = ∞, and it is strongly

nonoscillatory if and only if limt→∞AC(t) = 0.

Proof. If lim supt→∞ AC(t) = ∞, then lim supt→∞R−1
C (t)

∫∞
t

(Rσ
C(s))αλp(s) ∆s > 1

for every λ > 0, and so (4.1) is oscillatory for every λ > 0 by Theorem 4.1. Conversely,

if (4.1) is strongly oscillatory, then

(4.2) lim sup
t→∞

R−1
C (t)

∫ ∞

t

(Rσ
C(s))αλp(s) ∆s ≥ γC(N∗) > 0

for every λ > 0 by Theorem 3.1. This implies lim supt→∞ AC(t) = ∞, otherwise (4.2)

would be violated for sufficiently small λ. The proof of the part concerning strong

nonoscillation is based on similar arguments. The details are left to the reader.

One could ask whether the condition N∗ < 1 in the last theorem may be dropped.

In general, the answer is no. Realize that strong oscillation [strong nonoscillation]

of (4.1) is nothing but λ0 = 0 [λ0 = ∞], where λ0 is the oscillation constant. Now

assume that N∗ = 1 = N∗ and limt→∞ AC(t) = L ∈ (0,∞) exists. Then γC(N∗) = 0

and limt→∞R−1
C (t)

∫∞
t

(Rσ
C(s))αλp(s) ∆s = λL > 0 for every λ > 0. This implies

strong oscillation of (4.1), however the condition lim supt→∞ AC(t) = ∞ does not

hold. A particular example of such strongly oscillatory equation will be given later.

(iii) Euler type equation. Consider the equation

(4.3) (r(t)Φ(y∆))∆ +
λr1−β(t)

(Rσ
C(t))α

Φ(yσ) = 0,

where λ is a positive parameter. We are interested only in positive λ’s since for λ = 0,

equation (4.3) is readily explicitly solvable, it is nonoscillatory, and thus for λ < 0

is nonoscillatory as well by the Sturm type comparison theorem. Equation is called

of Euler type since for α = 2, T = R, and after certain transformations it yields

the well known Euler linear differential equation. Applying Theorem 3.1 we get that

(4.3) is oscillatory provided λ > γC(N∗) and nonoscillatory provided λ < γC(N∗). If

N := N∗ = N∗, then γC(N) is the critical constant and λ0 = γC(N) is the oscillation

constant for (4.3), i.e., (4.3) is oscillatory provided λ > γC(N) and it is nonoscillatory

provided λ < γC(N). In view of Remark 3.2, if RC(t) ≡ N eventually, then (4.3)

is nonoscillatory also for λ = γC(N). As shown below, the condition RC(t) ≡ N is
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satisfied in many important cases, e.g., T = R, or T = hZ with h > 0 and r(t) = ϑk

with ϑ > 1, or T = qN0 with q > 1 and r(t) = tδ with δ > α−1, or T = qN0 with q > 1

and r(t) = ξlogq(1/t) with 0 < ξ < q1−α. Finally recall that the Euler type equation

corresponding to the case (1.3) takes the form

(4.4) (r(t)Φ(y∆))∆ + λ(−R1−α
D (t))∆Φ(yσ) = 0

with the oscillation constant λ0 = γD(M), where M = limt→∞ RD(µ)(t).

(iv) Nonstandard behavior. Let T = 2δN0 := {2δk
: k ∈ N0} with δ > 1. Then

σ(t) = tδ and µ(t) = tδ − t. Assume r(t) = (tσ(t))α−1. Then RC(t) = 1/t and

RC(t) = (tδ − t)/tδ → 1 as t → ∞. Thus N∗ = N∗ = N = 1, and so γC(N) = 0.

Applying Theorem 3.1 we get that (4.3) is oscillatory for all λ > 0, i.e., it is strongly

oscillatory, in spite of the fact that lim supt→∞ AC(t) = ∞ does not hold.

(v) Kneser type criteria. An application of the Sturm type theorem [23, The-

orem 3], where (1.1) and (4.3) are compared, yields the following theorem (where

we do not need to assume any sign restriction on p and
∫∞

(Rσ
C(s))αp(s) ∆s being

convergent.)

Theorem 4.3. Let the limit N = limt→∞ RC(t) exist. If

lim inf
t→∞

rβ−1(t)(Rσ
C(t))αp(t) > γC(N),

then (1.1) is oscillatory. If

lim sup
t→∞

rβ−1(t)(Rσ
C(t))αp(t) < γC(N),

then (1.1) is nonoscillatory.

Clearly, γC(N) is again non-improvable. A slight modification of this approach

yields Kneser type criteria in the case whenN∗ < N∗. Similarly as the Sturm type the-

orem is applied to obtain Kneser type criteria, the Hille-Wintner comparison theorem

([19, Theorem 7]) can be used to obtain (back) Hille-Nehari type criteria provided

we know the behavior of (4.3). In contrast to the Sturm type theorem where the

coefficients are compared pointwise, the Hille-Wintner type theorem is based on an

integral comparison. Thus this is an alternative approach how to prove Corollary 3.3

or Theorem 3.1. However, such an approach has a considerable disadvantage: It re-

quires the knowledge of the oscillation constant of equation (4.3). But starting with

equation (4.3), the oscillation constant can be acquired only in very special cases. In

general, it is not known how to get it. On the other hand, the approach described

in Section 3 does not require a knowledge of such constant; what’s more, our Theo-

rem 3.1 factually provides it. Recall that in [15], see also [9], the proof of Hille-Nehari

criteria under conditions (1.4) and T = R is based just on a knowledge of oscillation
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behavior of certain generalized Euler differential equation, Hille-Wintner type com-

parison theorem, and a transformation of independent variable, which however is not

at disposal in “non-continuous” (T 6= R) cases.

(vi) Examples from q-calculus. Let T = qN0 := {qk : k ∈ N0} with q > 1. Then

σ(t) = qt, µ(t) = (q−1)t, and f∆ reduces to the Jackson type derivative Dqf . We will

compute the values of the critical constants for two different coefficients r(t) to obtain

important examples of conditionally oscillatory Euler type q-difference equations of

the form

(4.5) Dq(r(t)Φ(Dqy(t))) +
λr1−β(t)

(RC(qt))α
Φ(y(qt)) = 0

with the known oscillation constant that can be further used for comparison purposes.

First assume that r(t) = tδ with δ ∈ R, δ > α − 1. Then, with t = qn, n ∈ N0, we

have

N = lim
t→∞

RC(t) = lim
t→∞

(q − 1)qn((qn)δ)1−β

∑∞
j=n µ(qj)((qj)δ)1−β

= lim
t→∞

qn(1+δ(1−β))

∑∞
j=n q

j(1+δ(1−β))
= lim

t→∞

qn(1+δ(1−β))(q1+δ(1−β) − 1)

−qn(1+δ(1−β))

= 1 − q1+δ(1−β).

We have used the q-L’Hospital rule. Alternatively we can immediately sum the

geometric series
∑∞

j=n q
j(1+δ(1−β)), which then proves that RC(t) ≡ 1 − q1+δ(1−β).

Thus the associated oscillation (and critical) constant to equation (4.5) is equal

to γC(1 − q1+δ(1−β)) ∈ (0, β−α). Moreover, in view of Remark 3.2, equation (4.5)

is nonoscillatory provided λ = γC(1 − q1+δ(1−β)). Note that the complementary

case δ ≤ α − 1 corresponds to condition (1.3) (and equation (4.4)) and was dis-

cussed in [27]. Now assume that r(t) = ξlogq(1/t) with 0 < ξ < q1−α. Then, with

t = qn, n ∈ N0, we have r(t) = ξ−n. Applying similar arguments as above, we get

N = 1− qξβ−1 ≡ RC(t). So the associated oscillation (and critical) constant to equa-

tion (4.5) is equal to γC(1 − qξβ−1) and (4.5) is nonoscillatory provided λ is equal to

the oscillation constant. The complementary case ξ ≥ q1−α corresponds to condition

(1.3) (and equation (4.4)) and was discussed in [27]. Observe how the “limits” as

q → 1 in these results correspond to the continuous counterparts. If we set α = 2,

then as a special case we get observations presented in [6]; the results in that paper

are based on explicit solving of a linear Euler type q-difference equation. Of course,

that approach cannot be used in a general case.

(vii) Example from h-calculus. Let T = hZ := {hk : k ∈ Z} with h > 0.

Then σ(t) = t + h, µ(t) ≡ h, and the delta-derivative reduces to the usual forward

h-difference operator ∆h. Assume r(t) = ϑt with ϑ > 1. Then

RC(t) =
hϑt(1−β)

h
∑∞

j= t
h
ϑjh(1−β)

≡ 1 − ϑh(1−β),
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using the fact that the series is geometric. Now it is easy to see that the Euler type

h-difference equation

∆h(r(t)Φ(∆hy(t))) +
λr1−β(t)

(RC(t+ h))α
Φ(y(t+ h)) = 0

is oscillatory for λ > γC(1 − ϑh(1−β)) and nonoscillatory for λ ≤ γC(1 − ϑh(1−β)), in

view of Theorem 3.1 and Remark 3.2. Observe how the “limit” as h→ 0 in this result

corresponds to the continuous counterpart.

(viii) Inequalities. Our result can be utilized also in the theory of inequalities:

We will derive an inequality which can be understood as a variant of the Hardy type

inequality with weight functions involving the best possible constant. We have seen

that equation (4.3) is nonoscillatory provided λ < γC(N) with N = limt→∞ RC(t).

Using now the variational principle established in [23], we conclude that there is a ∈ T

such that

(4.6)

∫ ∞

a

r(t)|ξ∆(t)|α∆t > λ

∫ ∞

a

r1−β(t)

(Rσ
C(t))α

|ξσ(t)|α∆t,

where λ < γC(N), for every nontrivial ξ, where ξ is a piecewise rd-continuously delta-

differentiable function on [a,∞), and there is b ∈ (a,∞) with ξ(t) = 0 if t 6∈ (a, b).

The constant γC(N) is the best possible. If RC(t) ≡ N , then λ in (4.6) can be replaced

by γC(N). Note that inequality (4.6) can be viewed also as a generalization of the

Wirtinger type inequality, see, e.g., [9, Chapters 2.1.2 and 9.5.1] and [14]. Using again

the variational principle (but this time its opposite implication), simple inequalities

involving integrals and absolute values, and our new result concerning equation (4.3),

we can also show the following statement: If the Hardy type inequality

(4.7)

∫ ∞

a

r(t)fα(t) ∆t > γC(N)

∫ ∞

a

r1−β(t)

(Rσ
C(t))α

(

∫ σ(t)

a

f(s) ∆s

)α

∆t

holds for all nonnegative nontrivial rd-continuous f (thus here we have a different

boundary conditions with respect to those in (4.6)), then γC(N) is the best possible

constant, cf. [24]. Indeed, inequality (4.7) where γC(N) is replaced by a bigger

constant λ would imply nonoscillation of (4.3), which however is oscillatory for such

λ.

(ix) Conclusions and future directions. The observations presented in this paper

solve the open problem posed in [27]: To establish a generalized sharp Hille-Nehari

criteria for equation (1.1) under condition (1.4). Our new results along with the

ones from [27] provide somehow complete discussion on Hille-Nehari type criteria for

(1.1). The theorems are new even in some special well-studied cases, and in view

of the presence of the critical constant, they are non-improvable in a certain sense.

The proofs utilize a new method developed recently in [19]. A demand after a new
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approach arose out because of the failing of the approaches known from the linear or

the continuous theories.

We remark that the results in the above applications and examples may not be

obtained by any existing criteria, as far as the author is aware.

There are several delicate open problems that are immediately related to our

results: First, how about oscillation or nonoscillation of (1.1) when N∗ < N∗, i.e.,

γC(N∗) < γC(N∗), and the limit values of the expression AC(t) as t → ∞ remains

between γC(N∗) and γC(N∗)? Such a situation is not very common in applications

but generally it may occur. Second, does the condition AC(t) ≤ γC(N) for large t

imply nonoscillation of (1.1) also in the case when N 6≡ RC(µ)(t) for large t, where

N = limt→∞ RC(µ)(t) (cf. Remark 3.2)? Third, is it possible to relax sign condition

on the coefficient p(t) in Theorem 3.1? Finally, except of some very special cases, it

is practically impossible to find an exact solution to Euler type equation (4.3). But

having information about its oscillation constant, there could be a chance to find at

least a solution of the related inequality (r(t)Φ(y∆))∆ +λr1−β(t)(Rσ
C(t))−αΦ(yσ) ≤ 0.

Why is this useful when we already know the oscillation constant? If we find an

eventually positive solution to this inequality with λ equaling the oscillation constant,

then original equation (4.3) is nonoscillatory, see [23], and thus the above described

open problem with N 6≡ RC(µ)(t) could be solved, in view of Hille-Wintner type

comparison theorem. Moreover, if we know that such a solution is positive on [a,∞),

then we have obtained a concrete value of the lower limit a of integration in Hardy

inequality (4.6).

As another future direction which can be pursued in the context of our research

is finding suitable modifications of the function sequence technique along with ap-

plications. For instance, we believe that following the general ideas of the proof of

Theorem 3.1, but with a modified function sequence, may lead to (non-improvable)

generalized criteria of Willett type, see e.g. [9].
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