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ABSTRACT. Existence results for positive solutions of a coupled system of nonlinear singular two

point boundary value problems of the type

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),

a1x(0) − b1x
′(0) = x′(1) = 0,

a2y(0) − b2y
′(0) = y′(1) = 0,

are established. The nonlinearities f, g : [0, 1] × [0,∞) × (0,∞) → [0,∞) are allowed to be singular

at x′ = 0 and y′ = 0. The functions p, q ∈ C(0, 1) are positive on (0, 1) and the constants ai, bi (i =

1, 2) > 0. An example is included to show the applicability of our result.

AMS (MOS) Subject Classification. 34B15, 34B16, 34B18.

1. INTRODUCTION

Existence theory for nonlinear boundary value problems (BVPs) has attracted the

attention of many researchers; see for example, [9, 10, 20] for scalar equations, and for

system of BVPs, see [5, 16]. Recently, the study of singular BVPs has also attracted

some attention, see for example, [3, 11, 12, 13, 15, 19] and the references therein.

An excellent resource with an extensive bibliography was produced by Agarwal and

O’Regan [1].

In [1], Agarwal and O’Regan studied existence of at least one positive solution

for the following BVP

−y′′(t) = q(t)f(t, y(t), y′(t)), t ∈ (0, 1),

y(0) = y′(1) = 0,
(1.1)
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where f : [0, 1] × [0,∞) × (0,∞) → [0,∞) is continuous and allowed to be singular

at y′ = 0, q ∈ C(0, 1) and is positive on (0, 1) and the real constants α, β > 0. Under

similar assumptions, existence of at least one positive solution for (1.1) is also studied

in [17, 18]. Existence of multiple positive solutions of the following BVP (1.1) is

studied by Yan et al. [17] by using fixed point index theory.

Yan et al. [18] extended the results studied in [17] to the following two-point

singular BVP

−y′′(t) = q(t)f(t, y(t), y′(t)), t ∈ (0, 1),

αy(0) − βy′(0) = y′(1) = 0,

where f : [0, 1] × [0,∞) × (0,∞) → [0,∞) is continuous and allowed to be singular

at y′ = 0, q ∈ C(0, 1) and is positive on (0, 1) and the real constants α, β > 0. They

used fixed point index theory in cone of an ordered Banach space to prove existence

of multiple positive solutions.

Inspired by the above mentioned works, in this paper, we study existence of

C1-positive solutions for the following coupled system of two-point singular BVPs

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),

a1x(0) − b1x
′(0) = x′(1) = 0,

a2y(0) − b2y
′(0) = y′(1) = 0,

(1.2)

where the nonlinearities f, g : [0, 1] × [0,∞) × (0,∞) → [0,∞) are continuous and

are allowed to be singular at x′ = 0, y′ = 0, p, q ∈ C(0, 1) are positive on (0, 1) and

the real constants ai (i = 1, 2) > 0, bi (i = 1, 2) > 0. There are several results on

existence of positive solutions for system of BVPs; see for example, [6, 7, 11, 12, 13,

8, 16]. However, there are only a few results on the existence of positive solutions for

systems with nonlinearities dependent on first derivative. The present manuscript is

an attempt in this regard.

By a C1-positive solution of the system (1.2), we mean (x, y) ∈ (C1[0, 1] ∩

C2(0, 1)) × (C1[0, 1] ∩ C2(0, 1)) satisfying (1.2), x > 0, y > 0 on [0, 1], and x′ > 0,

y′ > 0 on [0, 1). By singularity we mean that the functions f(t, x, y) or g(t, x, y) are

allowed to be unbounded at y = 0.

Throughout the paper, assume the following conditions hold:

(A1) p, q ∈ C(0, 1), p, q > 0 on (0, 1),
∫ 1

0
p(t)dt < +∞ and

∫ 1

0
q(t)dt < +∞;

(A2) f, g : [0, 1]× [0,∞)× (0,∞) → [0,∞) are continuous and are positive on [0, 1]×

(0,∞) × (0,∞);

(A3) f(t, x, y) ≤ k1(x)(u1(y) + v1(y)) and g(t, x, y) ≤ k2(x)(u2(y) + v2(y)), where

ui (i = 1, 2) > 0 are continuous and nonincreasing on (0,∞), ki (i = 1, 2), vi (i =

1, 2) ≥ 0 are continuous and nondecreasing on [0,∞);
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(A4)

sup
x∈(0,∞)

x

(1 + b1
a1

)I−1(k1((1 + b2
a2

)J−1(k2(x)
∫ 1

0
q(t)dt))

∫ 1

0
p(t)dt)

> 1,

sup
x∈(0,∞)

x

(1 + b2
a2

)J−1(k2((1 + b1
a1

)I−1(k1(x)
∫ 1

0
p(t)dt))

∫ 1

0
q(t)dt)

> 1,

where I(z) =
∫ z

0
dy

u1(y)+v1(y)
, J(z) =

∫ z

0
dy

u2(y)+v2(y)
, for z ∈ (0,∞);

(A5) I(∞) = ∞ and J(∞) = ∞;

(A6) for real constant E > 0 and F > 0, there exist continuous functions ϕEF and

ψEF defined on [0, 1] and positive on (0, 1), and constants 0 ≤ δ1, δ2 < 1 such

that

f(t, x, y) ≥ ϕEF (t)xδ1 , g(t, x, y) ≥ ψEF (t)xδ2 on [0, 1] × [0, E] × [0, F ];

(A7)
∫ 1

0
p(t)u1(C

∫ 1

t
p(s)ϕEF (s)ds)dt < +∞ and

∫ 1

0
q(t)u2(C

∫ 1

t
q(s)ψEF (s)ds)dt <

+∞ for any real constant C > 0.

Remark 1.1. Since I, J are continuous, I(0) = 0, I(∞) = ∞, J(0) = 0, J(∞) = ∞,

and they are monotone increasing. Hence, I and J are invertible. Moreover, I−1 and

J−1 are also monotone increasing.

2. MAIN RESULT: EXISTENCE OF AT LEAST ONE POSITIVE

SOLUTION

Theorem 2.1. Assume that (A1)–(A7) hold. Then, the system (1.2) has at least one

C1-positive solution.

Proof. In view of (A4), we can choose real constants M1 > 0 and M2 > 0 such that

(2.1)
M1

(1 + b1
a1

)I−1(k1((1 + b2
a2

)J−1(k2(M1)
∫ 1

0
q(t)dt))

∫ 1

0
p(t)dt)

> 1,

(2.2)
M2

(1 + b2
a2

)J−1(k2((1 + b1
a1

)I−1(k1(M2)
∫ 1

0
p(t)dt))

∫ 1

0
q(t)dt)

> 1.

From the continuity of k1, k2, I and J , we choose ε > 0 small enough such that

(2.3)
M1

(1 + b1
a1

)I−1(k1((1 + b2
a2

)J−1(k2(M1)
∫ 1

0
q(t)dt+ J(ε)))

∫ 1

0
p(t)dt+ I(ε))

> 1,

(2.4)
M2

(1 + b2
a2

)J−1(k2((1 + b1
a1

)I−1(k1(M2)
∫ 1

0
p(t)dt+ I(ε)))

∫ 1

0
q(t)dt+ J(ε))

> 1.

Choose real constants L1 > 0 and L2 > 0 such that

(2.5) I(L1) > k1(M2)

∫ 1

0

p(t)dt+ I(ε),
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(2.6) J(L2) > k2(M1)

∫ 1

0

q(t)dt+ J(ε).

Choose n0 ∈ {1, 2, . . .} such that 1
n0
< ε. For each fixed n ∈ {n0, n0 + 1, . . .},

define retractions θi : R → [0,Mi] and ρi : R → [ 1
n
, Li] by

θi(x) = max{0,min{x,Mi}} and ρi(x) = max

{

1

n
,min{x, Li}

}

, i = 1, 2.

Consider the modified system of BVPs

−x′′(t) = p(t)f(t, θ2(y(t)), ρ1(x
′(t))), t ∈ (0, 1),

−y′′(t) = q(t)g(t, θ1(x(t)), ρ2(y
′(t))), t ∈ (0, 1),

a1x(0) − b1x
′(0) = 0, x′(1) =

1

n
,

a2y(0) − b2y
′(0) = 0, y′(1) =

1

n
.

(2.7)

Since f(t, θ2(y(t)), ρ1(x
′(t))), g(t, θ1(x(t)), ρ2(y

′(t))) are continuous and bounded on

[0, 1]×R×R, by Schauder’s fixed point theorem, it follows that the modified system

of BVPs (2.7) has a solution (xn, yn) ∈ (C1[0, 1] ∩ C2(0, 1)) × (C1[0, 1] ∩ C2(0, 1)).

Using (2.7) and (A2), we obtain

x′′n(t) ≤ 0 and y′′n(t) ≤ 0 for t ∈ (0, 1),

which on integration from t to 1, and using the boundary conditions (BCs), yields

(2.8) x′n(t) ≥
1

n
and y′n(t) ≥

1

n
for t ∈ [0, 1].

Integrating (2.8) from 0 to t, using the BCs and (2.8), we have

(2.9) xn(t) ≥

(

t+
b1

a1

)

1

n
and yn(t) ≥

(

t+
b2

a2

)

1

n
for t ∈ [0, 1].

From (2.8) and (2.9), it follows that

‖xn‖ = xn(1) and ‖yn‖ = yn(1), where ‖z‖ = max
t∈[0,1]

|z(t)|.

Now, we show that

(2.10) x′n(t) < L1, y
′

n(t) < L2, t ∈ [0, 1].

First, we prove x′n(t) < L1 for t ∈ [0, 1]. Suppose x′n(t1) ≥ L1 for some t1 ∈ [0, 1].

Using (2.7) and (A3), we have

−x′′n(t) ≤ p(t)k1(θ2(yn(t)))(u1(ρ1(x
′

n(t))) + v1(ρ1(x
′

n(t)))), t ∈ (0, 1),

which implies that

−x′′n(t)

u1(ρ1(x′n(t))) + v1(ρ1(x′n(t)))
≤ k1(M2)p(t), t ∈ (0, 1).
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Integrating from t1 to 1, using the BCs, we obtain
∫ x′

n(t1)

1
n

dz

u1(ρ1(z)) + v1(ρ1(z))
≤ k1(M2)

∫ 1

t1

p(t)dt,

which can also be written as
∫ L1

1
n

dz

u1(ρ1(z)) + v1(ρ1(z))
+

∫ x′

n(t1)

L1

dz

u1(ρ1(z)) + v1(ρ1(z))
≤ k1(M2)

∫ 1

0

p(t)dt.

Using the increasing property of I, we obtain

I(L1) +
x′n(t1) − L1

u1(L1) + v1(L1)
≤ k1(M2)

∫ 1

0

p(t)dt+ I(ε),

a contradiction to (2.5). Hence, x′n(t) < L1 for t ∈ [0, 1].

Similarly, we can show that y′n(t) < L2 for t ∈ [0, 1].

Now, we show that

(2.11) xn(t) < M1, yn(t) < M2, t ∈ [0, 1].

Suppose xn(t2) ≥M1 for some t2 ∈ [0, 1]. From (2.7), (2.10) and (A3), it follows that

−x′′n(t) ≤ p(t)k1(θ2(yn(t)))(u1(x
′

n(t)) + v1(x
′

n(t))), t ∈ (0, 1),

−y′′n(t) ≤ q(t)k2(θ1(xn(t)))(u2(y
′

n(t)) + v2(y
′

n(t))), t ∈ (0, 1),

which implies that

−x′′n(t)

u1(x′n(t)) + v1(x′n(t))
≤ k1(θ2(‖yn‖))p(t), t ∈ (0, 1),

−y′′n(t)

u2(y′n(t)) + v2(y′n(t))
≤ k2(M1)q(t), t ∈ (0, 1).

Integrating from t to 1, using the BCs, we obtain
∫ x′

n(t)

1
n

dz

u1(z) + v1(z)
≤ k1(θ2(‖yn‖))

∫ 1

t

p(s)ds, t ∈ [0, 1],

∫ y′

n(t)

1
n

dz

u2(z) + v2(z)
≤ k2(M1)

∫ 1

t

q(s)ds, t ∈ [0, 1],

which implies that

I(x′n(t)) − I(
1

n
) ≤ k1(θ2(‖yn‖))

∫ 1

0

p(s)ds, t ∈ [0, 1],

J(y′n(t)) − J(
1

n
) ≤ k2(M1)

∫ 1

0

q(s)ds, t ∈ [0, 1].

The increasing property of I and J leads to

(2.12) x′n(t) ≤ I−1(k1(θ2(‖yn‖))

∫ 1

0

p(s)ds+ I(ε)), t ∈ [0, 1],

(2.13) y′n(t) ≤ J−1(k2(M1)

∫ 1

0

q(s)ds+ J(ε)), t ∈ [0, 1].
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Integrating (2.12) from 0 to t2 and (2.13) from 0 to 1, using the BCs, (2.12) and

(2.13), we obtain

(2.14) M1 ≤ xn(t2) ≤

(

1 +
b1

a1

)

I−1(k1(θ2(‖yn‖))

∫ 1

0

p(s)ds+ I(ε)),

(2.15) ‖yn‖ ≤

(

1 +
b2

a2

)

J−1(k2(M1)

∫ 1

0

q(s)ds+ J(ε)).

Either we have ‖yn‖ < M2 or ‖yn‖ ≥M2. If ‖yn‖ < M2, then from (2.14), we have

(2.16) M1 ≤

(

1 +
b1

a1

)

I−1(k1(‖yn‖)

∫ 1

0

p(s)ds+ I(ε)),

Now, by using (2.15) in (2.16) and the increasing property of k1 and I−1, we obtain

M1 ≤

(

1 +
b1

a1

)

I−1

(

k1

(

(

1 +
b2

a2

)

× J−1

(

k2(M1)

∫ 1

0

q(s)ds+ J(ε)

)

)

∫ 1

0

p(s)ds+ I(ε)

)

,

which implies that

M1

(1 + b1
a1

)I−1(k1((1 + b2
a2

)J−1(k2(M1)
∫ 1

0
q(s)ds+ J(ε)))

∫ 1

0
p(s)ds+ I(ε))

≤ 1,

a contradiction to (2.3).

On the other hand, if ‖yn‖ ≥M2, then from (2.14) and (2.15), we have

(2.17) M1 ≤

(

1 +
b1

a1

)

I−1

(

k1(M2)

∫ 1

0

p(s)ds+ I(ε)

)

,

(2.18) M2 ≤

(

1 +
b2

a2

)

J−1

(

k2(M1)

∫ 1

0

q(s)ds+ J(ε)

)

.

In view of (2.18) in (2.17) and the increasing property of k1 and I−1, we obtain

M1 ≤

(

1 +
b1

a1

)

I−1

(

k1

(

(

1 +
b2

a2

)

× J−1

(

k2(M1)

∫ 1

0

q(s)ds+ J(ε)

)

)

∫ 1

0

p(s)ds+ I(ε)

)

,

which implies that

M1

(1 + b1
a1

)I−1(k1((1 + b2
a2

)J−1(k2(M1)
∫ 1

0
q(s)ds+ J(ε)))

∫ 1

0
p(s)ds+ I(ε))

≤ 1,

a contradiction to (2.3). Hence, xn(t) < M1 for t ∈ [0, 1].

Similarly, we can show that yn(t) < M2 for t ∈ [0, 1].
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Thus, (xn, yn) is a solution of the following coupled system of BVPs

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),

a1x(0) − b1x
′(0) = 0, x′(1) =

1

n
,

a2y(0) − b2y
′(0) = 0, y′(1) =

1

n
,

(2.19)

satisfying
(

t+
b1

a1

)

1

n
≤ xn(t) < M1,

1

n
≤ x′n(t) < L1, t ∈ [0, 1],

(

t+
b2

a2

)

1

n
≤ yn(t) < M2,

1

n
≤ y′n(t) < L2, t ∈ [0, 1].

(2.20)

Now, in view of (A6), there exist continuous functions ϕM2L1 and ψM1L2 defined on

[0, 1] and positive on (0, 1), and real constants 0 ≤ δ1, δ2 < 1 such that

f(t, yn(t), x
′

n(t)) ≥ ϕM2L1(t)(yn(t))δ1 , (t, yn(t), x
′

n(t)) ∈ [0, 1] × [0,M2] × [0, L1],

g(t, xn(t), y
′

n(t)) ≥ ψM1L2(t)(xn(t))δ2 , (t, xn(t), y′n(t)) ∈ [0, 1] × [0,M1] × [0, L2].

(2.21)

We claim that

(2.22) x′n(t) ≥ Cδ1
2

∫ 1

t

p(s)ϕM2L1(s)ds,

(2.23) y′n(t) ≥ Cδ2
1

∫ 1

t

q(s)ψM1L2(s)ds,

where

C1 =

(

b1

a1

)
1

1−δ1δ2

(

b2

a2

)

δ1
1−δ1δ2

(
∫ 1

0

p(t)ϕM2L1(t)dt

)

1
1−δ1δ2

(
∫ 1

0

q(t)ψM1L2(t)dt

)

δ1
1−δ1δ2

,

C2 =

(

b1

a1

)

δ2
1−δ1δ2

(

b2

a2

)
1

1−δ1δ2

(
∫ 1

0

p(t)ϕM2L1(t)dt

)

δ2
1−δ1δ2

(
∫ 1

0

q(t)ψM1L2(t)dt

)

1
1−δ1δ2

.

To prove (2.22), consider the following relation

xn(t) =

(

t+
b1

a1

)

1

n
+

1

a1

∫ t

0

(a1s+ b1)p(s)f(s, yn(s), x
′

n(s))ds

+
1

a1

∫ 1

t

(a1t+ b1)p(s)f(s, yn(s), x
′

n(s))ds, t ∈ [0, 1],

(2.24)

which implies that

xn(0) =
b1

a1

1

n
+
b1

a1

∫ 1

0

p(s)f(s, yn(s), x
′

n(s))ds.
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Using (2.21) and (2.20), we obtain

xn(0) ≥
b1

a1

∫ 1

0

p(s)ϕM2L1(s)(yn(s))
δ1ds

≥ (yn(0))δ1
b1

a1

∫ 1

0

p(s)ϕM2L1(s)ds.

(2.25)

Similarly, using (2.21) and (2.20), we obtain

(2.26) yn(0) ≥ (xn(0))δ2
b2

a2

∫ 1

0

q(s)ψM1L2(s)ds,

which in view of (2.25) implies that

yn(0) ≥ (yn(0))δ1δ2

(

b1

a1

∫ 1

0

p(s)ϕM2L1(s)ds

)δ2
b2

a2

∫ 1

0

q(s)ψM1L2(s)ds.

Hence,

(2.27) yn(0) ≥ C2.

Now, from (2.24), it follows that

x′n(t) ≥

∫ 1

t

p(s)f(s, yn(s), x
′

n(s))ds,

and using (2.21) and (2.27), we obtain (2.22).

Similarly, we can prove (2.23).

Now, using (2.19), (A3), (2.20), (2.22) and (2.23), we have

0 ≤ −x′′n(t) ≤ k1(M2)p(t)

(

u1

(

Cδ1
2

∫ 1

t

p(s)ϕM2L1(s)ds

)

+ v1(L1)

)

, t ∈ (0, 1),

0 ≤ −y′′n(t) ≤ k2(M1)q(t)

(

u2

(

Cδ2
1

∫ 1

t

q(s)ψM1(s)ds

)

+ v2(L2)

)

, t ∈ (0, 1).

(2.28)

In view of (2.20), (2.28), (A1) and (A7), it follows that the sequences {(x
(j)
n,1, y

(j)
n,1)} (j =

0, 1) are uniformly bounded and equicontinuous on [0, 1]. Hence, by the Arzelà-Ascoli

theorem there exist subsequences {(x
(j)
nk , y

(j)
nk )} (j = 0, 1) of {(x

(j)
n , y

(j)
n )} (j = 0, 1)

and (x, y) ∈ C1[0, 1] × C1[0, 1] such that (x
(j)
nk , y

(j)
nk ) converges uniformly to (x(j), y(j))

on [0, 1] (j = 0, 1). Also, a1x(0) − b1x
′(0) = a2y(0) − b2y

′(0) = x′(1) = y′(1) = 0.

Moreover, from (2.22) and (2.23), with nk in place of n and taking limnk→+∞, we have

x′n(t) ≥ Cδ1
2

∫ 1

t

p(s)ϕM2L1(s)ds,

y′n(t) ≥ Cδ2
1

∫ 1

t

q(s)ψM1L2(s)ds,
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which shows that x′ > 0 and y′ > 0 on [0, 1), x > 0 and y > 0 on [0, 1]. Further,

(xnk
, ynk

) satisfy

x′nk
(t) = x′nk

(0) −

∫ t

0

p(s)f(s, ynk
(s), x′nk

(s))ds, t ∈ [0, 1],

y′nk
(t) = y′nk

(0) −

∫ t

0

q(s)f(s, xnk
(s), y′nk

(s))ds, t ∈ [0, 1].

Passing to the limit as nk → ∞, we obtain

x′(t) = x′(0) −

∫ t

0

p(s)f(s, y(s), x′(s))ds, t ∈ [0, 1],

y′(t) = y′(0) −

∫ t

0

q(s)f(s, x(s), y′(s))ds, t ∈ [0, 1],

which implies that

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)f(t, x(t), y′(t)), t ∈ (0, 1).

Hence, (x, y) is a C1-positive solution of the system (1.2).

Example 2.2. Consider the following coupled system of singular BVPs

−x′′(t) = µ(y(t))α1(x′(t))−β1 , t ∈ (0, 1),

−y′′(t) = µ(x(t))α2(y′(t))−β2, t ∈ (0, 1),

x(0) − x′(0) = x′(1) = 0,

y(0)− y′(0) = y′(1) = 0,

(2.29)

where 0 ≤ α1 < 1, 0 ≤ α2 < 1, 0 < β1 < 1, 0 < β2 < 1 and µ > 0.

Take p(t) = q(t) = 1, k1(x) = µxα1 , k2(x) = µxα2 , u1(x) = x−β1 , u2(x) = x−β2

and v1(x) = v2(x) = 0. Then, I(z) = zβ1+1

β1+1
, J(z) = zβ2+1

β2+1
, I−1(z) = (β1 + 1)

1
β1+1z

1
β1+1

and J−1(z) = (β2 + 1)
1

β2+1z
1

β2+1 .

Choose ϕEF (t) = F−β1, ψEF (t) = F−β2, δ1 = α1 and δ2 = α2. Then,

sup
c∈(0,∞)

c

(1 + b1
a1

)I−1(k1((1 + b2
a2

)J−1(k2(c)
∫ 1

0
q(t)dt))

∫ 1

0
p(t)dt)

=

sup
c∈(0,∞)

c

2
1+

α1
β1+1µ

(1+
α1

β2+1
) 1

β1+1 (β1 + 1)
1

β1+1 (β2 + 1)
α1

(β1+1)(β2+1) c
α1α2

(β1+1)(β2+1)

= ∞

and

sup
x∈(0,∞)

c

(1 + b2
a2

)J−1(k2((1 + b1
a1

)I−1(k1(c)
∫ 1

0
p(t)dt))

∫ 1

0
q(t)dt)

=

sup
c∈(0,∞)

c

2
1+

α2
β2+1µ

(1+
α2

β1+1
) 1

β2+1 (β2 + 1)
1

β2+1 (β1 + 1)
α2

(β1+1)(β2+1) c
α1α2

(β1+1)(β2+1)

= ∞.
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Clearly, (A1)–(A7) are satisfied. Hence, by Theorem 2.1, the system (2.29) has

at least one C1-positive solution.
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