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ABSTRACT. In this paper, we study the shadowing property for induced set-valued dynamical

systems of some expansive maps. We show that if f is a positively expansive open map, then the

induced map F has shadowing property. We introduce the notion of ball expansive maps, and show

that such maps have shadowing property.
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1. INTRODUCTION

The notion of pseudo-orbit goes back at least to Birkhoff [2], and plays an im-

portant role in the investigation of properties of discrete dynamical systems. In the

study of dynamical systems, people often make computer simulations in which there

are always no real trajectories of dynamical systems. Then it arises naturally that

what is the relationship between the computer output and the underlying dynamics?

Bowen [3] and Conley [5] independently discovered that pseudo-orbit could be used

as a conceptual tool for discussing this relationship. Can the numerically obtained

pseudo-orbits reflect the behavior of the real ones? So it is important to find out in

which cases a pseudo-orbit can be shadowed (traced) by a real trajectory. This prob-

lem has been well studied in the last several decades, for example, the shadowing near

a hyperbolic set of a homeomorphism (see [1, 10, 17]) and the shadowing in struc-

turally stable systems (see [14, 13]). In [8], Gedeon and Kuchta find a necessary and

sufficient condition under which continuous maps of type 2n can possess shadowing

property.

Another important topic is the induced set-valued map. Given a continuous map

f on the metric space X, the set-valued map induced by f , denoted by F , is the

natural extension of f to K (X), the space of all non-empty compact subsets of X.
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As is well known, the dynamical behavior of the points of X is important and has

caught the attention of many scholars. However, in many fields such as computer

simulation, biological species, demography, etc, it is not sufficient to know how the

points of X move, but it is necessary to understand the dynamical behavior of the

subsets of X. So it makes sense to study the set-valued dynamical system (F, K (X))

associated to the system (f, X). In recent years, the connection between dynamical

properties of the base map f and the induced map F has attracted many researchers’

attention, see for instance [11, 12, 9].

The concept of positively expansive map was introduced by Williams [18] and

Eisenberg [6]. Among the dynamical properties of expanding maps is the shadowing

of the pseudo-orbits which Bowen called “the most important dynamical property of

Axiom A diffeomorphisms” [4]. In [15], Sakai investigated various shadowing prop-

erties for a positively expansive map on a compact metrizable space. In the present

paper, we will focus on shadowing property of the induced set-valued map of some ex-

pansive map. Inspired by Sakai’s work [15], we show that if f is a positively expansive

open map, then the induced map F has shadowing property (Theorem 3.2). More-

over, we propose a new class of expansive maps – ball expansive maps (see Definition

3.6), and prove that if f is ball expansive, then the induced map F has shadowing

property Theorem 3.8.

2. PRELIMINARIES

Let X be a compact metrizable space, and f : X → X be a continuous map. Fix

any metric d for X, which is compatible with the topology of X. Recall that:

• a sequence {xi}
∞

i=0 of points in X is called an orbit for f , if xi+1 = f(xi) for all

i ≥ 0;

• A sequence {xi}
∞

i=0 in X is called a δ-pseudo-orbit (δ > 0) for f , if d(f(xi), xi+1) <

δ, for all i ≥ 0.

• Let ε, δ > 0. We say that a δ-pseudo-orbit {xi}
∞

i=0 for f is ε-shadowed by an

orbit {f i(y)}∞i=0, if

d(f i(y), xi) < ε for all i ≥ 0.

Here, f i is the i-th iteration of f with itself.

Definition 2.1. Let f : X → X be a continuous map. We say that f has the

shadowing property (or pseudo-orbit tracing property) on X, if for any ε > 0, there

exists δ > 0 such that every δ-pseudo-orbit for f is ε-shadowed by some orbit for f .

Let K (X) denote the collection of all nonempty compact subsets of X, i.e.,

K (X) = {A ⊂ X : A is nonempty and compact}.
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K (X) will be referred to as an hyperspace of X. The Vietoris topology V on K (X)

is the topology generated by the basis B consisting of all sets of the form

B(U1, U2, . . . , Un) :=

{

A ∈ K (X) : A ⊂
n

⋃

i=1

Ui, A ∩ Ui 6= ∅, 1 ≤ i ≤ n

}

,

where U1, U2, . . . , Un are non-empty open subsets of X.

Let A, B ⊂ X be nonempty subsets. The distance from a point x to A is defined

by d(x, A) = inf{d(x, a) : a ∈ A}. We put

ed(A, B) := sup{d(x, B) : x ∈ A}.

The Hausdorff metric Hd on K (X) is defined by

Hd(A, B) := max{ed(A, B), ed(B, A)}.

Endowed with the Housdorff metric, K (X) becomes a complete separable metric

space. It is well known that the topology induced by the Hausdorff metric Hd on

K (X) coincides with the Vietoris topology V on K (X)(see[7]).

For a ∈ X, A ∈ K (X) and ε > 0, we define the ε-balls in (X, d) and (K (X), Hd)

by

Bd(a, ε) = {x ∈ X : d(x, a) < ε},

Bd(A, ε) = {K ∈ K (X) : Hd(A, K) < ε},

respectively.

Set P(X) = {A ⊂ X : nonempty, finite}. Since every compact set in X can

be approximated by a finite subset of X under the Hausdorff metric, we have the

following simple fact.

Proposition 2.2. For a compact metrizable space X, P(X) = K (X). More pre-

cisely, for every ε > 0, there exists an nε ∈ N such that

∀ K ∈ K (X), ∃ P = {x1, x2, . . . , xnε
} ∈ P(X) satisfying Hd(K, P ) < ε.

Definition 2.3. Let f be a continuous map on topological space X. We define

F : K (X) → K (X) as

F (A) = {f(a) : a ∈ A}, ∀ A ∈ K (X),

and F is called the natural extension of f to K (X).

One can easily prove the following proposition.

Proposition 2.4. If f : X → X is continuous under d, then F : K (X) → K (X) is

continuous under Hd.

Proposition 2.5. If the continuous map f : X → X is open under d, then F :

K (X) → K (X) is open under Hd.
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Proof. It is sufficient to prove that F (B(U1, U2, . . . , Un)) is an open set of K (X) for

any basis element B(U1, U2, . . . , Un) in B.

Since f is open, f(Ui)(i = 1, 2, . . . , n) are open sets of X. Therefore, B(f(U1),

f(U2), . . . , f(Un)) is an open set of K (X). Now it suffices to prove that

F (B(U1, U2, . . . , Un)) = B(f(U1), f(U2), . . . , f(Un)).

If K ∈ F (B(U1, U2, . . . , Un)), there exists a K0 ∈ B(U1, U2, . . . , Un) such that

F (K0) = K. As

K0 ⊂ ∪n
i=1Ui, K0 ∩ Ui 6= ∅, i = 1, 2, . . . , n,

we deduce that

F (K0) ⊂ f(∪n
i=1Ui) = ∪n

i=1f(Ui) and F (K0) ∩ f(Ui) 6= ∅, i = 1, 2, . . . , n,

so that K = F (K0) ∈ B(f(U1), f(U2), . . . , f(Un)). Therefore,

F (B(U1, U2, . . . , Un)) ⊂ B(f(U1), f(U2), . . . , f(Un)).

On the other hand, if K ∈ B(f(U1), f(U2), . . . , f(Un)), then K1 := F−1(K) is

compact. According to K ⊂ ∪n
i=1f(Ui) = f(∪n

i=1Ui), we have that K1 ⊂ ∪n
i=1Ui.

Moreover, K ∩ f(Ui) 6= ∅ means that K1 ∩ Ui 6= ∅, i = 1, 2, . . . , n. Therefore,

K = F (K1) ∈ F (B(U1, U2, . . . , Un)).

That is,

B(f(U1), f(U2), . . . , f(Un)) ⊂ F (B(U1, U2, . . . , Un)).

The proof is complete.

3. MAIN RESULTS

We begin by recalling the concept of positive expansive maps on X. A map

f : X → X is positively expansive, if there exist a metric d on X and a constant c > 0

such that for any two points x, y, x 6= y, the inequality d(fn(x), fn(y)) > c holds for

some n. Such a number c > 0 is called an expansive constant. This property does not

depend on the choice of metric on X, though may depend on c. It is well known that

every expansive differentiable map on a C∞-closed manifold are positively expansive

(see[16]).

The following result comes from Sakai [15, Theorem 1] and will play an important

role in the proof of the first main result of this paper (Theorem 3.2).

Theorem 3.1 (Sakai). Let f : X → X be a positively expansive map on a compact

metrizable space X. Then the following conditions are equivalent:

(1) f is an open map;

(2) f has the shadowing property.
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The first main result is the following.

Theorem 3.2. Let f : X → X be a continuous map on compact metrizable space

X. If f is positively expansive open map, then F : K (X) → K (X) has shadowing

property.

Proof. It follows from Theorem 3.1 that, for all ε > 0, there exists a δ1 > 0 such that

every δ1-pseudo orbit for f is ε
2
-shadowed by some orbit for f .

Take δ = 1
3
δ1 and let {K0, K1, K2, . . . } be a given δ-pseudo orbit of (K (X), F );

that is, Hd(F (Ki), Ki+1) < δ, for all i ≥ 0. We will construct a finite set W whose

trajectory ε-shadows the pseudo-orbit {K0, K1, K2, . . . }; that is,

(3.1) Hd(Kn, F
n(W )) ≤ ε, ∀n ∈ N.

By the uniform continuity of f , there exists 0 < ε1 ≤ ε such that

(3.2) d(x, y) < ε1 ⇒ d(f(x), f(y)) < δ.

Take ε0 = min{ ε
2
, ε1, δ}. Since X is compact, we can find a finite subset A =

{a1, a2, . . . , al} ∈ P(X) satisfying
⋃

ai∈A

Bd(ai, ε0) = X. Similarly, there exists an

Ai = {xij}
li
j=1 ⊂ A, (li ≤ l) such that

(3.3) Ki ⊂
li
⋃

j=1

Bd(xij , ε0) and Ki

⋂

Bd(xij, ε0) 6= ∅, j = 1, . . . , li.

It follows from (3.3) that, for all x0j0 ∈ A0 (j0 = 1, 2, . . . , l0), there exists an x̃ ∈ K0

such that d(x0j0, x̃) < ε0. Combining (3.2) with this, we have d(f(x0j0), f(x̃)) < δ.

Since Hd(F (K0), K1) < δ, we can find an z1j1 ∈ K1 satisfying d(f(x̃), z1j1) < δ. Using

(3.3) again, there exists x1j1 ∈ A1 such that z1j1 ∈ Bd(x1j1 , ε0). Therefore,

d(f(x0j0), x1j1) ≤ d(f(x0j0), f(x̃)) + d(f(x̃), z1j1) + d(z1j1 , x1j1)

< δ + δ + ε0 < 3δ = δ1.

Repeating the process, for each j0 ∈ {1, 2, . . . , l0}, we can find a sequence {x0j0 ,

x1j1 , . . . , xnjn
, . . . } such that

xnjn
∈ An ⊂ A and d(f(xnjn

), xn+1,jn+1
) < δ1.

This means that {x0j0 , x1j1 , . . . , xnjn
, . . . } is a δ1-pseudo orbit of f , so we can find an

yj0 ∈ X satisfying

(3.4) d(fn(yj0), xn,jn
) <

ε

2
.

Let W = {yj0 : j0 = 1, 2, . . . , l0}. Appealing again to (3.3), we find, for any x ∈ Kn,

some xnjn
∈ An with x ∈ Bd(xnjn

, ε0). Together with (3.4), we get

d(x, fn(yj0)) ≤ d(x, xnjn
) + d(xnjn

, fn(yj0)) ≤
ε

2
+ ε0 < ε.
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Thus, we obtain

ed(Kn, F n(W )) = max{d(x, F n(W )) : x ∈ Kn}(3.5)

≤ max{d(x, fn(yj0) : x ∈ Kn}

≤ ε.

On the other hand, for any yj0 ∈ W , by the similar argument as above, we can

easily find znjn
∈ Bd(xnjn

, ε0) ∩ Kn satisfying d(fn(yj0), xnjn
) < ε. Thus, we get

ed(F
n(W ), Kn) = max{d(fn(yj0), Kn) : yj0 ∈ W}(3.6)

≤ max{d(fn(yj0), xnjn
) : pj0 ∈ T}

≤ ε.

Finally, according to (3.5) and (3.6), it is true that

Hd(Kn, F
n(W )) ≤ ε, ∀ n ∈ N.

We complete the proof.

Remark 3.3. Recalling Theorem 3.1, one may try to prove the shadowing property

of F by verifying that F is open and positive expansive. Indeed, Proposition 2.5 tells

us that if f is open, then F also is open. However, positive expansivity of F can not

be deduced from positive expansivity of f . The following example illustrates this.

Example 3.4. Let S = {0, 1}. Set SZ+ =
∏+∞

0 S = {x = {xi}
+∞

0 : xi ∈ S}. The

metric on SZ+ is defined as

(3.7) d(x, y) =

+∞
∑

i=0

|xi − yi|

2i
∀ x, y ∈ SZ+.

We define the shift mapping σ on SZ+ as

σ : {x0, x1, . . . , xi, . . . } 7→ {x1, x2, . . . , xi+1, . . . }.

Then one can easily verify that σ : SZ+ → SZ+ is positively expansive with expansive

constant c = 1
2
. But the natural extension of σ, denoted by Σ, on K (SZ+) is not

positively expansive. We give an explanation for this. For any ε > 0, we choose

k ∈ N such that 2−k+1 < ε.

Let θ = {θi}
+∞

0 , where θi = 0, for all i = 0, 1, 2, . . . ,

α = {αi}
+∞

0 , where αi =







1, if i = (2m − 1)k for m = 1, 2, . . .

0, otherwise,

β = {βi}
+∞

0 , where βi =







1, if i = (2m)k for m = 1, 2, . . .

0, otherwise.
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Now we take A = {θ, α, β}, B = {α, β}. obviously it is true that A, B ∈ K (SZ+).

We easily obtain that

ed(Σ
n(B), Σn(A)) = 0,

and for each n ∈ N , that

ed(Σ
n(A), Σn(B)) = min{d(σn(θ), σn(α)), d(σn(θ), σn(α))} < 2−k+1 < ε.

So for any positive integers n, we get that Hd(Σ
n(A), Σn(B)) < ε, which implies that

Σ is not positively expansive.

Remark 3.5. The shift mapping σ on symbolic space SZ+ maps open balls to open

balls. In fact, for all x ∈ SZ+ and r > 0, we have that

σ(B(x, r)) =



















B(σ(x), 2r), for r ≤ 1,

B(σ(x), 2r − 2), for 1 < r ≤ 2,

SZ+, for 2 < r.

So, σ is an open map. By the above example we know that σ is positively expansive.

Therefore, the induced map Σ : K (SZ+) → K (SZ+) has shadowing property, from

Theorem 3.2.

Next, we turn to present the second main result of this paper. We first introduce

the definition of ball expansive map.

Definition 3.6. A continuous map f on a compact metric space X is said to be ball

expansive, if for every ε > 0, there is a δ > 0 such that

Bd(f(x), ε + δ) ⊂ f(Bd(x, ε)), ∀ x ∈ X.

Example 3.7. It is easy to see that the map f(z) = z2 on the unit circle S1, as

well as the tent map T : [0, 1] → [0, 1] defined by Tx = 2x when 0 ≤ x ≤ 1
2

and

Tx = 2(1 − x) when 1
2

< x ≤ 1, are both ball expansive.

Theorem 3.8. Let f be a continuous map on compact metrizable space X. If f :

X → X is ball expansive, then F : K (X) → K (X) has shadowing property.

Proof. For all ε > 0, take ε1 = 1
2
ε. There exists δ1 > 0 such that Bd(f(x), ε1 + δ1) ⊂

f(Bd(x, ε1)). Let δ2 = 1
3
δ1. By uniform continuity of f , there exists 0 < ε2 ≤ ε such

that

(3.8) d(x, y) < ε2 ⇒ d(f(x), f(y)) < δ2.

Take ε0 = min{ε1, ε2, δ2}. Since X is compact, there exists a finite subset A =

{a1, a2, . . . , al} ∈ P(X), such that
⋃

ai∈A

Bd(ai, ε0) = X. Let {K0, K1, K2, . . . } be a

given δ2-pseudo-orbit of (K (X), F ), that is,
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Hd(F (Ki), Ki+1) < δ2 for all i ≥ 0¿ We will construct a finite set T , whose trajectory

ε-shadows the pseudo-orbit {K0, K1, K2, . . . }, i.e.

(3.9) Hd(Kn, F n(T )) ≤ ε, ∀ n ∈ N.

Since each Ki is compact, there exists Ai = {xij}
li
j=1 ⊂ A(li ≤ l) such that

(3.10) Ki ⊂
li
⋃

j=1

Bd(xij , ε0) and Ki

⋂

Bd(xij , ε0) 6= ∅, j = 1, . . . , li.

By (3.10), for all x0j0 ∈ A0 (j = 1, 2, . . . , l0) there exists x̃ ∈ K0 such that d(x0j0, x̃) <

ε0. Combining (3.8), we have d(f(x0j0), f(x̃)) < δ2. Since Hd(F (K0), K1) < δ2,

we can find z1j1 ∈ K1 satisfying d(f(x̃), z1j1) < δ2. Using (3.10) again, there exists

x1j1 ∈ A1 such that z1j1 ∈ Bd(x1j1 , ε0). Therefore,

d(f(x0j0), x1j1) ≤ d(f(x0j0), f(x̃)) + d(f(x̃), z1j1) + d(z1j1 , x1j1)

< δ2 + δ2 + ε0 < 3δ2 = δ1.

Repeating the process, for each j0 ∈ {1, 2, . . . , l0}, we can find a sequence {x0j0 , x1j1 , . . . ,

xnjn
, . . . } such that xnjn

∈ An and d(f(xnjn
), xn+1,jn+1

) < δ1.

For each j0 ∈ {1, 2, . . . , l0}, define P j0
0 , P j0

1 , P j0
2 · · · as follows:

P j0
0 = Bd(x0j0 , ε1) and P j0

n = P j0
n−1 ∩ f−n(Bd(xnjn

, ε1)), n ≥ 1.

Combining the condition Bd(f(x), ε1 + δ1) ⊂ f(Bd(x, ε1)), we know that

(3.11) fn(P j0
n ) = Bd(xnjn

, ε1), n = 0, 1, 2, . . . .

This also means that
∞
⋂

n=0

P j0
n is not empty for each j0 ∈ {1, 2, . . . , l0}.

Choose pj0 ∈
∞
⋂

n=0

P j0
n (j0 = 1, 2, . . . , l0), and let T = {pj0 : j = 1, 2, . . . , l0}.

For any x ∈ Kn, by (3.10), there exists xnjn
∈ An with x ∈ Bd(xnjn

, ε0). Together

with (3.11), we get

d(x, fn(pj0)) ≤ d(x, xnjn
) + d(xnjn

, fn(pj0)) ≤ ε1 + ε0 < ε.

Thus, we obtain

ed(Kn, F n(T )) = max{d(x, F n(T )) : x ∈ Kn}(3.12)

≤ max{d(x, fn(pj0) : x ∈ Kn}

≤ ε.
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On the other hand, for any pj0 ∈ T , using the similar argument as above, we can

easily find ynjn
∈ Bd(xnjn

, ε0) ∩ Kn satisfying d(fn(pj0), ynjn
) < ε. Thus, we get

ed(F
n(T ), Kn) = max{d(F n(pj0), Kn) : pj0 ∈ T}(3.13)

≤ max{d(fn(pj0), ynjn
) : pj0 ∈ T}

≤ ε.

Finally, according to (3.12) and (3.13), it is true that

Hd(Kn, F n(T )) ≤ ε, ∀ n ∈ N.

We complete the proof.

Remark 3.9. We want to point out that the positively expansive map and ball

expansive map are qualitatively different. In fact, any one of them can not imply the

other. The following two examples are devoted to illustrate this.

Example 3.10. Let X = [0, 1] and consider a function f : X → X defined as

f(x) =



















2x + 1
2
, for 0 ≤ x ≤ 1

4
,

3
2
− 2x, for 1

4
< x ≤ 3

8
,

6
5
(1 − x), for 3

8
< x ≤ 1.

By simple calculation, we know that for all ε > 0, δ = ε
5

meets the definition of ball

expansive map. On the other hand, f is not positively expansive. Indeed, let x = 0

and y = 7
12

, then fn(x) = fn(y), for all n ≥ 1.

Example 3.11. Let X = S
1 × I, where S

1 and I denote the unit circle and interval

[0, 1], respectively. For any two points xk = (eθki, tk) ∈ X, k = 1, 2, the distance

between x1 and x2 is defined to be

d(x1, x2) = max{(θ1 − θ2) mod 2π, |t1 − t2|}.

Consider a continuous map f : X → X defined as

f(eθi, t) = (e(t+2)θi, t), ∀ (eθi, t) ∈ X.

For all n ∈ N , we have

d(fn(x1), f
n(x2)) = max{((t1 + 2)nθ1 − (t2 + 2)nθ2) mod 2π, |t1 − t2|}.

From this one easily deduce that f is positively expansive with some sufficiently small

expansive constant. However, f is not ball expansive. In fact, take ε = 1
2
, x0 = (eπi, 0),

then f(x0) = (e2πi, 0). For any δ > 0, set δ0 = min{1, 1+δ
2
}, and y0 = (e2πi, δ0). One

can see that y0 ∈ Bd(f(x), ε + δ), but y0 /∈ f(Bd(x, ε)).
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