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ABSTRACT. We study the initial boundary value problem and Cauchy problem for the semilinear

heat equation with power nonlinearity and spatially dependent coefficient. First, for the initial

boundary value problem, we establish several conditions that ensure the origin is not a blow-up

point. Then the Cauchy problem for a special case is also studied. Finally, we derive the blow-up

rate when the origin is not a blow-up point.
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1. INTRODUCTION

In this paper, we consider the following initial boundary value problem:

(1.1)



















ut = ∆u+ |x|σ|u|p−1u, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u = u0, x ∈ Ω̄,

where p > 1, σ > 0, u0 is a bounded smooth function with u0 > 0 in Ω and u0 = 0 on

∂Ω, and Ω is a bounded smooth domain in R
N with the boundary ∂Ω. Here Ω̄ is the

closure of Ω. Note that a unique solution u of (1.1) exists locally (in time), say for

t ∈ [0, τ ] for some constant τ > 0, such that u > 0 in Ω×[0, τ ], by the standard theory

of parabolic equations. Moreover, by the Hopf boundary point lemma, ∂u/∂ν < 0

on ∂Ω × (0, τ ], where ν is the unit outward normal on ∂Ω. By re-defining the initial

time, we may assume without loss of generality that ∂u0/∂ν < 0 on ∂Ω.
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We say that the solution u of (1.1) blows up if there is some T = T (u0) < ∞
such that lim suptրT ‖u(·, t)‖L∞(Ω) = ∞. Here T (u0) is called the blow-up time of the

solution u with the initial value u0. We say that the solution is global if the solution

u exists for all t ∈ [0,∞) as a classical solution. For a given solution u that blows up

at t = T <∞, we define its blow-up set by

B(u0) =
{

a ∈ Ω̄ | ∃ {(xn, tn)} such that xn → a, tn ↑ T, |u(xn, tn)| → ∞ as n→ ∞
}

.

Each element of B(u0) is called a blow-up point of u. We note that there is no

reaction for the problem (1.1) at x = 0. One of the main purposes of this paper is to

see whether x = 0 is a blow-up point or not.

The phenomena of blow-up have attracted a lot of attention in past years. Most

research papers dealing with blow-up are concerned with equations without spatially

dependent coefficient. Interesting questions, for example, are about criteria of blow-

up, blow-up points, blow-up rate, spatial blow-up profile and continuation after blow-

up. For example, for the spatially homogeneous equation, we refer the reader to

[1, 2, 4, 7, 8, 9, 11, 12, 13, 22, 24, 25, 27, 28] and so on. The authors of [35, 16, 30, 6]

considered the Cauchy problem for the spatially inhomogeneous equation in (1.1).

They studied the existence and nonexistence of global nonnegative solutions. In

particular, the existence of self-similar solutions that blow up at the origin for the

Cauchy problem was obtained in [6]. As far as we know, this is the only work which

demonstrates blow-up at the origin. In this paper, we shall give some sufficient

conditions under which blow-up does not occur at x = 0 and prove that such solution

always satisfies

(1.2) lim sup
tրT

(T − t)
1

p−1‖u(·, t)‖L∞(Ω) <∞,

as far as radially symmetric solutions are concerned.

The blow-up rate estimate is well studied for the problem with spatially homo-

geneous nonlinearity. It is called that the blow-up is of Type I if u satisfies (1.2).

Otherwise, it is called Type II. Indeed, for the spatially homogeneous equation

ut = ∆u+ up,

it is known that blow-up is of Type I, if 1 < p < (N + 2)/(N − 2)+ (see, e.g.,

[11, 12, 13, 28]). Furthermore, blow-up is of Type I for any p > 1, if ut ≥ 0 (cf. [7]).

If we restrict ourselves to the radially symmetric solutions, then blow-up is also of

Type I even for p > ps := (N + 2)/(N − 2)+ under some additional conditions. More

precisely, [24, 25] showed that blow-up is of Type I, if ps < p < pJL, where

pJL :=







1 + 4
N−4−2

√
N−1

, N ≥ 11,

∞, N ≤ 10.
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The results of [26, 24, 25] imply that blow up is of Type I, if x = 0 is not a blow-up

point. For Type II blow-up, see [20, 29] for example. They constructed solutions with

Type II blow-up in the range N ≥ 11 and p > pJL. See also [25] for Type II blow-up.

Now, let us state our results more precisely. In this paper, we mostly deal with

radially symmetric solutions on Ω = BR, where BR denotes the ball with center 0

and radius R > 0. If u is a radially symmetric solution of (1.1) on Ω = BR, then

u(x, t) = u(|x|, t) satisfies

ut = urr +
N − 1

r
ur + rσ|u|p−1u, 0 < r := |x| < R.

First, we give some sufficient conditions such that blow-up does not occur at

x = 0. Let u be a radially symmetric blow-up solution of (1.1) on Ω = BR. Then

x = 0 is not a blow-up point, if one of the following holds:

(1) N = 3, σ ≥ p− 1,

(2) N ≥ 4, σ > (p− 1)(N − 1)/2.

For the special case when N = 3 and σ = p− 1, we also study the corresponding

Cauchy problem. We provide some conditions on the initial data so that the solutions

do not blow up at the origin. Also, a criterion for which blow-up occurs only at

space infinity is given. We note that blow-up only occurs at space infinity was first

considered by Lacey [21] for a one-dimensional problem on the half-line about the

semilinear equation ut = ∆u + f(u). The similar problem in R
N was discussed in

[14, 15, 33, 9] for the same semilinear equation and in [9, 31, 32] for the porous media

equation.

Next, we assume that blow-up does not occur at x = 0. We want to prove that

the solution u always satisfies (1.2). Moreover, if r = rb ∈ (0, R) is a blow-up point,

then

(1.3) lim
t→T

(T − t)1/(p−1)u(rb + (T − t)1/2ξ, t) = ± r
−σ/(p−1)
b (p− 1)−1/(p−1)

uniformly on |ξ| ≤ C for any C > 0.

This paper is organized as follows. In section 2, we give some conditions such

that blow-up does not occur at the origin for boundary value problem. Also, the

shape of global blow-up profile is given. Then we study the corresponding Cauchy

problem when N = 3 and σ = p− 1 in section 3. Finally, in section 4, we derive the

blow-up rate under the assumption that x = 0 is not a blow-up point.

2. BLOW-UP DOES NOT OCCUR AT THE ORIGIN

This section is mainly devoted to finding some criteria that blow-up does not

occur at the origin. In this section, we shall focus on radially symmetric solutions
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of (1.1) on Ω = BR ⊂ R
N with N ≥ 3. By using the transformation z(r, t) :=

r
N−1

2 u(r, t), the problem (1.1) becomes

(2.1)



















zt = zrr + zp

ra + bz
r2
, r ∈ (0, R), t > 0,

z(R, t) = z(0, t) = 0, t > 0,

z(r, 0) = z0(r) := r
N−1

2 u0(r), r ∈ [0, R],

where

a :=
(N − 1)(p− 1)

2
− σ, b :=

(N − 1)(3 −N)

4
.

Let T (z0) be the blow-up time of the solution z. In general, we have the inequality

T (z0) ≥ T (u0), since the following inequality holds:

z(r, t) ≤ R
N−1

2 u(r, t), r ∈ [0, R], t ∈ [0,min{T (u0), T (z0)}).

If r = 0 is not a blow-up point of u, by using the fact that blow-up set is closed, there

exists a small ε > 0 such that Bε does not include any blow-up point of u. From

ε
N−1

2 u(r, t) ≤ z(r, t) ≤ R
N−1

2 u(r, t), r ∈ [ε, R], t ∈ [0,min{T (u0), T (z0)}),

it follows that T (z0) = T (u0). Moreover, from the identity

z′0(r) = r(N−3)/2

[

N − 1

2
u0(r) + ru′0(r)

]

,

it follows that z′0(r) > 0 near the origin. Also, z′0(R) < 0, since u0(R) = 0 and

u′0(R) < 0.

The following lemma is useful in the subsequent argument.

Lemma 2.1. Let z be the solution of (2.1) that blows up in finite time T = T (z0).

(i) If a ≥ 0, b = 0, then z is bounded in a neighborhood of r = R for all t ∈ (0, T ).

(ii) If a, b ≤ 0, then z is bounded in a neighborhood of r = 0 for all t ∈ (0, T ).

Proof. The assertions follow from the combination of the following two steps.

Step 1. This step is based on the reflection argument as the proof of Theorem 5.2

in [10]. Let λ ∈ (R/2, R) and define Iλ := [λ,R]. Also, let zλ be the reflection of

z with respect to r = λ. If a, b ≥ 0, then 1/ra and b/r2 is monotone decreasing

in r. Using this monotonicity and the initial-boundary conditions z(λ, t) = zλ(λ, t),

0 = z(R, t) ≤ zλ(R, t) for t ∈ (0, T (z0)), and

z(·, 0) ≤ zλ(·, 0) on Iλ,

provided that λ ≥ r0 for some r0 ∈ (0, R) (using z′0(R) < 0), we obtain z(·, t) ≤ zλ(·, t)
on Iλ × [0, T (z0)). Since z 6≡ zλ from the initial condition, the Hopf boundary point

lemma implies that zr(λ, t) < 0 for all t ∈ [0, T (z0)). Hence zr < 0 on [r0, R] ×
[0, T (z0)).
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When a, b ≤ 0, 1/ra and b/r2 is monotone increasing in r. Arguing as the above

and using z′0(r) > 0 near r = 0, we can conclude that zr > 0 in a fixed neighborhood

of r = 0 for all t ∈ (0, T (z0)).

Step 2. To prove (i), we assume on the contrary that r = R is a blow-up point.

Then, by using the monotonicity of z in r on [r0, R], we can find constants c, d with

r0 ≤ c < d < R such that [c, d] ⊂ [r0, R) and z(·, t) → ∞ as t→ T (z0) uniformly over

the interval [c, d].

Following [7], we consider the function J := zr + εζzγ with ζ(r) = sin
(

π(r−c)
(d−c)

)

,

γ ∈ (1, p) and some small positive constant ε to be determined. Then we compute

Jt = zrt + γεζzγ−1zt,

Jr = zrr + γεζzγ−1zr + εζ ′zγ ,

Jrr = zrrr + γεζzγ−1zrr + 2γεζ ′zγ−1zr + γ(γ − 1)εζzγ−2z2
r + εζ ′′zγ .

Using ζ ′′ = −[π/(d− c)]2ζ , γ > 1 and a, b ≥ 0, we obtain that

Jt − Jrr − AJ ≤ −εζzγB,

where

A := pr−azp−1 + br−2 − 2γεζ ′zγ−1,

B := (p− γ)r−azp−1 + br−2 − bγr−2 − 2γεζ ′zγ−1 − [π/(d− c)]2.

Since 1 < γ < p and z → ∞ as t → T (z0) uniformly on [c, d], we can find a

t0 ∈ (0, T (z0)) such that B > 0 on [c, d]× [t0, T (z0)). Note that J < 0 on r = c, d. By

choosing ε > 0 sufficiently small, we have J < 0 on [c, d]×{t0}. Thus the comparison

principle yields J < 0 on [c, d] × [t0, T (z0)), i.e.,

zr
zγ

< −εζ.

Integrating this inequality from c to d for t ∈ [t0, T (z0)) and letting t → T (z0), we

reach a contradiction. Hence (i) is proved.

The proof for (ii) is similar, we omit it here. Hence the lemma is proved.

Remark 2.2. Lemma 2.1 (i) still holds when b > 0, that is, N = 2.

We can deduce the following result for the original problem (1.1) from Lemma

2.1.

Proposition 2.3. Let N ≥ 3 and let u be a radially symmetric solution of (1.1) that

blows up in finite time.

(1) Suppose N = 3 and σ ≤ p− 1. Then r = R is not a blow-up point of u.

(2) Suppose N ≥ 3, σ ≥ (N − 1)(p− 1)/2. If r = 0 is a blow-up point of u, then it

is an isolated blow-up point.
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(3) If N = 3 and σ ≥ p− 1, then r = 0 is not a blow-up point of u.

Proof. First, part (1) follows from Lemma 2.1(i) and the relation u = r−
N−1

2 z imme-

diately. To prove part (2), we recall that T (u0) ≤ T (z0). If r = 0 is a blow-up point

of u, then it is an isolated blow-up point, by using Lemma 2.1(ii) and the relation

u = r−
N−1

2 z.

We now consider part (3). Since b = 0 implies N = 3, (2.1) becomes

(2.2)



















zt = zrr + r−azp, r ∈ (0, R), t > 0,

z(R, t) = z(0, t) = 0, t > 0,

z(r, 0) = z0(r) := ru0, r ∈ [0, R].

The problem (2.2) can be regarded as a one dimensional problem and we can use the

regularity estimate to the solution z(·, t) around r = 0 using Lemma 2.1. Thus we get

an estimate ru(r, t) = z(r, t) ≤ Cr for all sufficiently small r and t ∈ [0, T (z0)], where

C > 0 is some finite constant. Combining this with T (u0) ≤ T (z0), we conclude that

u cannot blow up at the origin. This proves the proposition.

Remark 2.4. By Remark 2.2, Proposition 2.3 (1) also holds when N = 2 and σ ≤
(p− 1)/2.

Remark 2.5. In the proof of part (3) in Proposition 2.3, we do not use the boundary

condition of u. Thus r = 0 is not a blow-up point even for the problem with nonzero

Dirichlet boundary condition or Neumann boundary condition.

When N = 3, we have the following result.

Theorem 2.6. Let Ω = BR, N = 3 and let u be a radially symmetric solution of

(1.1) that blows up in finite time.

(i) If σ ≥ p− 1, then r = 0 is not a blow-up point.

(ii) If σ = p−1, then the blow-up set of u consists of finitely many concentric spheres

with positive radii.

Proof. It is easy to see that part (i) follows from Proposition 2.3(3).

For part (ii), we first note that (2.2) becomes

(2.3)



















zt = zrr + zp, r ∈ (0, R), (t > 0,

z(0, t) = z(R, t) = 0, t > 0,

z(r, 0) = ru0(r) := z0(r), r ∈ [0, R],

when σ = p − 1. By Theorem E of [4] and Theorem 3.3 of [7], the blow-up set of

z consists of finitely many points in (0, R). Combining this with T (u0) = T (z0) and

u(r, t) = r−1z(r, t) yields the finiteness of blow-up radii. The theorem follows.
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Remark 2.7. From Remark 2.5, Theorem 2.6(ii) holds even for the problem with

nonzero Dirichlet boundary condition or Neumann boundary condition.

For N ≥ 4, we have b < 0. Then

Theorem 2.8. Let Ω = BR, N ≥ 4 and σ > (p− 1)(N − 1)/2. We assume that u is

a radially symmetric solution of (1.1) that blows up in finite time T . Then r = 0 is

not a blow-up point of u.

Proof. First, it follows from (ii) of Lemma 2.1 and the relation u(r, t) = r−
N−1

2 z(r, t)

that

(2.4) u(r, t) ≤ Cr−
N−1

2 , r ∈ (0, r1], t ∈ [0, T ).

for some constants C > 0 and r1 > 0.

We shall choose r0 ∈ (0, r1/2] sufficiently small and define

h(x) = δ cos2
(π|x|

2r0

)

, B0 := {x : |x| ≤ r0},

where δ < 1 is a positive constant to be determined later. We also define

w(x, t) :=
A(r0)

[h(x) + (T − t)]
1

p−1

, A = A(r0) := Cr
−N−1

2
0 T

1
p−1 .

Since u0 is bounded and A(r0) → ∞ as r0 → 0, we can easily check that

w(x, 0) =
A(r0)

[h(x) + T ]
1

p−1

≥ A(r0)

(δ + T )
1

p−1

≥ u0(x), x ∈ B0,

if r0 > 0 is sufficiently small. Also, it follows from (2.4) that

w(x, t) =
A(r0)

(T − t)
1

p−1

≥ Cr
−N−1

2
0 ≥ u(x, t), ∂B0 × (0, T ),

where ∂B0 := {x : |x| = r0}. The inequality

wt − ∆w − |x|σwp ≥ 0 on B0 × (0, T )

is equivalent to

(2.5) 1 + ∆h(x) − p

p− 1

|∇h(x)|2
h(x) + (T − t)

≥ (p− 1)Ap−1|x|σ on B0 × (0, T ).

Note that

Ap−1rσ ≤ Ap−1rσ0 = Cp−1Tr
σ− (N−1)(p−1)

2
0

Hence (2.5) holds if

(2.6) 1 + ∆h(x) − p

p− 1

|∇h(x)|2
h(x)

≥ (p− 1)Cp−1Tr
σ−(N−1)(p−1)/2
0

for all x ∈ B0.

On the other hand, it is easy to see that ∆h and |∇h|2/h are bounded inB0×(0, T )

and linear in δ. We first choose r0 sufficiently small such that the right-hand side of
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(2.6) is less than 1/3. For this fixed r0, we then choose δ sufficiently small such that

the above inequality (2.6) holds in B0. Hence the comparison principle yields

w(x, t) =
A

[h(x) + (T − t)]
1

p−1

≥ u(x, t), x ∈ B0, t ∈ (0, T ).

In particular, x = 0 is not a blow-up point of u. The theorem is proved.

Recall that the blow-up set B(u0) is a closed set and that a 6∈ B(u0) if and

only if the solution remains bounded as t ր T in a neighborhood of a. Therefore,

by the standard regularity theory of parabolic equations, u(·, t) remains bounded in

C2+α
loc (Ω \ B(u0)) as t ր T for some 0 < α < 1, which then implies the boundedness

of ut(·, t) in Cα
loc(Ω \ B(u0)). By integrating for t from 0 to T , the pointwise limit

u(x, T ) := limtրT u(x, t) exists for every x ∈ Ω \ B(u0) and it belongs to C2+α
loc (Ω \

B(u0)). We call this limit the global blow-up profile of u.

Concerning the spatial blow-up profile, we have the following proposition.

Proposition 2.9. Let Ω = BR, N = 3 and σ = p − 1. Suppose that u is a radially

symmetric solution of (1.1) that blows up at T = T (u0). For any blow-up point

r = rb 6= 0, one of the following holds:

lim
r→rb

( |r − rb |2
| ln |r − rb | |

)
1

p−1

r u(r, T ) =
( 8p

(p− 1)2

)
1

p−1

,

lim
r→rb

|r − rb |
m

p−1 r u(r, T ) = C,

where C is some constant and m ≥ 4 is an even integer.

Proof. The proof is just the combination of the fact that z = ru satisfies (2.3) and

Theorem 3 of [34] for the one dimensional blow-up problem with spatially homoge-

neous nonlinearity.

Remark 2.10. The similar result to this proposition holds for Cauchy problem when

N = 3 and σ = p− 1, by using Theorem 3.1 of this paper and the main theorem of

[19] or Theorem 3 of [34]. See also [17, 18, 2, 28] for related problem.

Also, we can construct some solutions with prescribed blow-up set as follows.

Proposition 2.11. Let Ω = BR, N = 3 and σ = p−1. Let u be a radially symmetric

solution of (1.1). For any finitely many concentric spheres in BR, there exists an

initial datum u0 ≥ 0 such that the corresponding solution u blows up on these spheres.

Proof. By Theorem 1 of [27], for any given finite points {r1, . . . , rk} in (0, R), there

exists a solution z of the problem (2.3) such that z blows up at these points. Hence

the proposition follows.
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3. CAUCHY PROBLEM

In this section, we shall study the following Cauchy problem related to (1.1) when

N = 3 and σ = p− 1:

(3.1)







ut = ∆u+ |x|p−1up, x ∈ R
3, t > 0,

u(x, 0) = u0(x), x ∈ R
3,

where u0 is a nonnegative bounded smooth function in R
3. First, we shall show that

blow-up does not occur at the origin if the support of u0 is compact and u0 is radially

symmetric.

Theorem 3.1. Suppose that u0 is radially symmetric with compact support. Let u

be a blow-up solution of (3.1) with the blow-up time T . Then u does not blow up at

x = 0. Furthermore, its blow-up set consists of finite number of spheres centered at

x = 0.

Proof. From the assumption, the solution u(r, t) satisfies

(3.2)







ut = urr + 2
r
ur + rp−1up, r ∈ (0,∞), t ∈ (0, T ),

u(r, 0) = u0(r), r ∈ [0,∞).

We again consider z(r, t) := ru(r, t). Then, by using (3.2), z satisfies

(3.3)



















zt = zrr + zp, r ∈ (0,∞), t ∈ (0, T0),

z(r, 0) = z0(r) := ru0(r), r ∈ [0,∞),

z(0, t) = 0, t ∈ (0, T0),

where T0 is the maximum existence time of z.

First, since the support of z0 is compact, Lemma B1 of [25] or the proof of

Proposition 5.8 of [13] yields that the blow-up set of z is also compact. From z = ru,

it follows that T0 ≥ T . Indeed, if r = 0 is not a blow-up point of u, then T0 = T .

Otherwise, if r = 0 is the only blow-up point of u, then T0 ≥ T . This is due to the fact

that {rnu(rn, tn) | n ∈ N} may be bounded when u(rn, tn) → ∞ and (rn, tn) → (0, T )

as n→ ∞.

Next, note that by the strong maximum principle zr(0, t) > 0 for all t ∈ (0, T0).

By applying the moving plane argument near the boundary in the proof of Theorem

3.3 in [7], we can prove that there is no blow-up point of z in [0, ε] for some small

positive constant ε. Then by the standard parabolic estimates and the boundary

condition, there exists some constant C > 0 such that ru(r, t) = z(r, t) < Cr for

all (r, t) ∈ [0, ε/2] × [0, T0]. Hence r = 0 is not a blow-up point of u and T0 = T .

Moreover, by the main theorem of [19] or by following the same argument of Section

6 in [4] to the function z, we can conclude that there are only finitely many blow-up
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points of z. Thus the blow-up set of u consists of finite number of spheres centered

at x = 0. This proves the theorem.

Next, we consider the case when the initial function decays very slowly at space

infinity. We shall construct a solution that blows up only at space infinity. Here we

say that the solution u of (3.1) blows up only at space infinity if the following hold:

(a) u blows up in finite time T (u0);

(b) lim suptրT (u0) ‖u(·, t)‖L∞(K) <∞ holds for any compact set K ⊂ R
N .

We define the following functions

ϕ(s) := κs−
1

p−1 , 0 < s <∞; ψ(v) :=
v−(p−1)

p− 1
, 0 < v <∞,

where κ := (p− 1)−
1

p−1 . Then the solution of (3.2) with initial data M
r

is written as

ϕ
(

ψ(M)−t
)

r
. Note that this solution has singularity at the origin for all t ∈ [0, ψ(M)]

and it blows up on the whole space at time t = ψ(M).

Theorem 3.2. Let u be a solution of (3.1). Assume u0(x) satisfies

0 ≤ u0(x) ≤
M

|x| , u0(x) 6≡
M

|x|
and there exists R0 ∈ (0,∞) such that u0(x) = M/|x| for all |x| ≥ R0. Then

T (u0) = ψ(M) and blow-up occurs only at space infinity.

Proof. First, we prove this theorem for radially symmetric initial data. It follows

from the main result of [21, Section 3] that, under the assumption of this theorem,

the solution z of the problem (3.3) blows up only at space infinity. More precisely,

for any given ε > 0, there exist positive constants c1, c2 such that

c1 exp
( r2

4(p− 1) (T (z0) + ε)

)

≤ z(r, T (z0)) ≤ c2 exp
( r2

4(p− 1)T (z0)

)

for all r > 0. This estimate and the relation u = r−1z imply that T (u0) ≤ T (z0).

Since z blows up only at space infinity, there exists C > 0 such that z(r, t) ≤ Cr

near r = 0 for all t ∈ (0, T (z0)] from the standard parabolic estimates. This and

the relation u = r−1z imply that u does not blow up at r = 0. Therefore, T (u0) =

T (z0) = ψ(M) and u(r, t) blows up only at space infinity.

Next, we consider general initial datum u0(x). For this initial datum, we can find

two radially symmetric initial data u0,1(|x|) and u0,2(|x|) satisfying the assumption

of this theorem and u0,1(|x|) ≤ u0(x) ≤ u0,2(|x|). We shall denote the corresponding

solutions of these initial data by u1(|x|, t) and u2(|x|, t). The first step imply T (u0,1) =

T (u0,2) = ψ(M) and both u1(|x|, t) and u2(|x|, t) blow up only at space infinity. By

a simple comparison argument, we obtain the desired result for u(x, t).
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4. BLOW-UP RATE

In this section, we shall study the blow-up rate of the solution whose blow-up

does not occur at the origin. We do not need to assume that u is nonnegative and so

solutions are allowed to be sign-changing. The first theorem implies that the blow-up

of the above solution is of Type I. We also obtain its local limiting property at a

blow-up point.

Theorem 4.1. Let Ω = BR and let u be a radially symmetric solution of (1.1). Let

T ∈ (0,∞) be the blow-up time of the solution u. If x = 0 is not a blow-up point of u,

then u satisfies (1.2). Furthermore, if r = rb ∈ (0, R) is a blow-up point, then (1.3)

holds uniformly on |ξ| ≤ C for any C > 0.

Remark 4.2. Similar results to Theorem 4.1 were also obtained in [3, 5] for spatially

inhomogeneous equations. More precisely, they considered the equation ut = ∆u +

V (x)up with V (x) ≥ c > 0 and p > 1. Note that the potential |x|σ in (1.1) vanishes

at the origin.

Since u is radially symmetric, the nature of blow-up outside the origin must be

similar to that of one dimensional. In order to see this, we set β := 1/(p − 1) and

introduce the transformation v(r, t) = rβσu(r, t). Then u satisfies (1.1) if and only if

v satisfies

(4.1)



















vt = vrr + k−1
r
vr + |v|p−1v − l

r2
v, r ∈ (0, R), t > 0,

v(R, t) = v(0, t) = 0, t > 0,

v(r, 0) = v0(r) := rβσu0(r), r ∈ [0, R].

where

k := N − 2βσ, l := βσ(N − 2 − βσ).

Let T (v0) be the blow-up time of the solution v. In general, we have an inequality

T (v0) ≥ T (u0), since the following inequality holds:

|v(r, t)| ≤ Rβσ|u(r, t)|, r ∈ [0, R], t ∈ [0,min{T (u0), T (v0)}).

If x = 0 is not a blow-up point, by using the fact that blow-up set is closed, there

exists a small ε > 0 such that Bε does not include any blow-up point. From

εβσ|u(r, t)| ≤ |v(r, t)| ≤ Rβσ|u(r, t)|, r ∈ [ε, R], t ∈ [0,min{T (u0), T (v0)}),

it follows that T (v0) = T (u0).

Therefore, Theorem 4.1 follows immediately from the following proposition.

Proposition 4.3. Let R ∈ (0,∞) and let v be a solution of (4.1). Let T ∈ (0,∞) be

the blow-up time of v(r, t). If r = 0 is not a blow-up point of v, then

(4.2) lim sup
tրT

(T − t)
1

p−1‖v(·, t)‖L∞(0,R) <∞.
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Furthermore, if r = rb ∈ (0, R) is a blow-up point of v, then

lim
t→T

(T − t)
1

p−1 v(rb + (T − t)1/2ξ, t) = ±(p− 1)−1/(p−1)

uniformly on |ξ| ≤ C for any C > 0.

To prove Proposition 4.3, we need some preparations. First, since u satisfies the

inequality

|ut − ∆u| ≤ Rσ|u|p,
the following lemma can be easily deduced from Theorem 2.1 of [13].

Lemma 4.4. Let Bδ(a) ⊂ Ω be an open ball with radius δ > 0 and center a ∈ Ω. Let

u be a solution of (1.1) on Qδ(a) := Bδ(a) × (T − δ2, T ). Suppose that u satisfies

(1.2) and

lim
tրT

(T − t)
1

p−1u(a+ (T − t)1/2y, t) = 0

uniformly on any compact set |y| ≤ C for any C > 0. Then x = a is not a blow-up

point of u.

In order to analyze the limiting behavior of blow-up solution v, we introduce a

rescaling of coordinates. Suppose that r = 0 is not a blow-up point of v. Then there

exist r0 ∈ (0, R/3) and ε ∈ (0, r0) such that Br0+2ε does not contain any blow-up

point. Set r∗ := r0 − ε/2. For any η ∈ [r0, R) and T > 0, we define w := wη,T by

wη,T (ξ, s) = (T − t)1/(p−1)v(r, t), ξ =
r − η√
T − t

, s = − ln(T − t)

for ξ ∈ (ξ1(s), ξ2(s)) with ξ1(s) = (r∗−η)es/2, ξ2(s) = (R−η)es/2 and s > s0 := − lnT .

Then w satisfies

(4.3) ws = wξξ −
ξ

2
wξ +

k − 1

ξ + ηes/2
wξ −

w

p− 1
+ |w|p−1w − lw

|ξ + ηes/2|2 .

We also have initial data w(ξ, s0) = T 1/(p−1)v0(η + ξ
√
T ) and boundary conditions

w(−ηes/2, s) = w(ξ2(s), s) = 0. We consider (4.3) on the space-time domain

Wη,r∗ = {(ξ, s) : s > s0, ξ1(s) < ξ < ξ2(s)}.

The equation (4.3) is equivalent to

ws =
1

ρ(ξ)
(ρ(ξ)wξ)ξ +

k − 1

ξ + ηes/2
wξ −

w

p− 1
+ |w|p−1w − lw

|ξ + ηes/2|2 ,

where ρ(ξ) := e−ξ
2/4.

Let us choose η0 ∈ (r0 + ε, r0 + 2ε) arbitrary. Since Br0+2ε does not contain any

blow-up point of v, we can see that w̄(ξ, s) := w0,T (ξ, s) converges to zero as s→ ∞
uniformly on ξ ≤ es/2η0 and satisfies

(4.4) w̄s = w̄ξξ−
ξ

2
w̄ξ +

k − 1

ξ
w̄ξ−

w̄

p− 1
+ |w̄|p−1w̄− l

ξ2
w̄, 0 < ξ < Res/2, s > s0.
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Applying the regularity estimates to (4.4) yields the L∞-bound for spatial derivatives

w̄ξ and w̄ξξ on (δ, η0e
s/2 − δ) × (s0 + δ,∞) for any δ > 0. Combining the relation

wη,T (ξ, s) = w0,T (ξ + ηes/2, s)

with these bounds, we obtain

(4.5) |w(ξ, s)|+ |wξ(ξ, s)| + |wξξ(ξ, s)| ≤M, |ws(ξ, s)| ≤M(1 + |ξ|)

for s ≥ s̄, r∗ ≤ η+ e−s/2ξ < r0 + ε, where s̄ := − ln(T − t̄) with a fixed t̄ ∈ (0, T ) and

the constant M = M(r∗, p, σ,N, s̄).

Following [26], we introduce the following energy functional:

E[w](s) =

∫ ξ2(s)

ξ1(s)

(

1

2
|wξ|2 +

|w|2
2(p− 1)

− |w|p+1

p+ 1

)

ρ dξ

and we shall next establish some estimates for this energy functional.

Proposition 4.5. Let η ≥ r0. For any δ ∈ (0, p− 1), there exists sδ > 0 such that

1

2

d

ds

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ ≥
∫ ξ2(s)

ξ1(s)

wwsρ dξ(4.6)

≥ −(2 + δ)E[w](s)

+
p− 1 − δ

p + 1

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ −M2ρ(ξ1(s))

for all s ≥ sδ, where sδ depends on r∗, p, σ and δ. In addition, there exist positive

constants C1, C2 > 0 such that

(4.7)
dE[w](s)

ds
≤ −1

2

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ + C1e
−s(E[w](s) + C2)

for s ≥ s∗, where s∗, C1, C2 > 0 depend on r∗, N, p, σ,M , where M > 0 is the constant

given in (4.5).

Proof. Since ξ1(s) ≤ −εes/2/2 < 0, we have

1

2

d

ds

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ =

∫ ξ2(s)

ξ1(s)

wwsρ dξ −
1

4
|w(ξ1(s), s)|2ρ(ξ1(s))ξ1(s)

≥
∫ ξ2(s)

ξ1(s)

wwsρ dξ

for all s ≥ s0. This proves the first inequality in (4.6).

Next, we show the second inequality in (4.6). Multiplying (4.3) by wρ, by an

integration, for each s ≥ s̄ we have
∫ ξ2(s)

ξ1(s)

wwsρ dξ = −2E[w](s) +
p− 1

p+ 1

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ +

∫ ξ2(s)

ξ1(s)

(k − 1)wξw

ξ + ηes/2
ρ dξ

− w(ξ1(s), s)wξ(ξ1(s), s)ρ(ξ1(s)) −
∫ ξ2(s)

ξ1(s)

lw2

|ξ + ηes/2|2ρ dξ.
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This and (4.5) yield

∫ ξ2(s)

ξ1(s)

wwsρ dξ ≥ −2E[w](s) +
p− 1

p+ 1

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ −M2ρ(ξ1(s))

(4.8)

+

∫ ξ2(s)

ξ1(s)

(k − 1)wξw

ξ + ηes/2
ρ dξ −

∫ ξ2(s)

ξ1(s)

lw2

|ξ + ηes/2|2ρ dξ.

Now, we estimate the integral terms in (4.8). For each ε1 > 0, there exists a positive

constant C(ε1) such that

∣

∣

∣

∣

∣

∫ ξ2(s)

ξ1(s)

(k − 1)wξw

ξ + ηes/2
ρ dξ

∣

∣

∣

∣

∣

≤ ε1

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ + C(ε1)e
−s
∫ ξ2(s)

ξ1(s)

∣

∣

∣

wξ
η + e−s/2ξ

∣

∣

∣

2

ρ dξ

≤ ε1

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ +
C(ε1)e

−s

r2
∗

∫ ξ2(s)

ξ1(s)

|wξ|2ρ dξ.

Hence by a similar calculation,

∣

∣

∣

∣

∣

∫ ξ2(s)

ξ1(s)

(k − 1)wξw

ξ + ηes/2
ρ dξ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ ξ2(s)

ξ1(s)

lw2

|ξ + ηes/2|2ρ dξ
∣

∣

∣

∣

∣

≤
(

ε1 +
C(p, σ)e−s

r2
∗

)

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ +
C(ε1)e

−s

r2
∗

∫ ξ2(s)

ξ1(s)

|wξ|2ρ dξ

for some positive constant C(p, σ). By choosing t̄ sufficiently close to T , we can

assume that

ε1 +
C(p, σ)e−sδ

r2
∗

≤ δ

2(p− 1)
,

C(ε1)e
−sδ

r2
∗

<
δ

2

for some sδ > s̄. Note that ε1, sδ only depend on δ, r∗, p and σ. Using this relation,

we obtain

∣

∣

∣

∣

∣

∫ ξ2(s)

ξ1(s)

(k − 1)wξw

ξ + ηes/2
ρ dξ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ ξ2(s)

ξ1(s)

lw2

|ξ + ηes/2|2ρ dξ
∣

∣

∣

∣

∣

≤ δ

(

E[w](s) +

∫ ξ2(s)

ξ1(s)

1

p+ 1
|w|p+1ρ dξ

)

.

Hence, from (4.8), the second inequality in (4.6) follows.

Before starting the proof of the inequality (4.7), we prepare one Lp+1-bound.

Using (4.6) and the inequality

|wws| ≤ ε2(|w|p+1 + |ws|2) + c with ε2 <
p− 1 − δ

2(p+ 1)
,
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where c = c(ε2) is a positive constant depending on the small constant ε2 > 0, we

obtain the following Lp+1-bound

1

2

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ(4.9)

≤ 1

2

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ +
(2 + δ)(p+ 1)

p− 1 − δ
E[w](s) +

p+ 1

p− 1 − δ
[M2ρ(ξ1(s)) + c]

for all s ≥ sδ. From now on, we fix δ = (p− 1)/2.

The definition of E[w], (4.3), and integrating by part give us

dE[w]

ds
(s) = −

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ

+

[{( |wξ|2
2

+
|w|2

2(p− 1)
− |w|p+1

p+ 1

)

ξ

2
+ wξws

}

ρ(ξ)

]

∣

∣

∣

∣

∣

ξ2(s)

ξ1(s)

+

∫ ξ2(s)

ξ1(s)

(k − 1)wξws
ξ + ηes/2

ρ dξ −
∫ ξ2(s)

ξ1(s)

lwws
|ξ + ηes/2|2ρ dξ

for s ≥ s0. Note that the boundary conditions vt(R, t) = v(R, t) = 0 give us

ws(ξ2(s), s) +
ξ2(s)

2
wξ(ξ2(s), s) = 0, w(ξ2(s), s) = 0,

where the following identity is used

vt = e
ps

p−1

{

ws +
ξ

2
wξ +

w

p− 1

}

.

Therefore, we conclude

dE[w]

ds
(s) ≤−

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ + C1|ξ1(s)|ρ(ξ1(s))

+

∫ ξ2(s)

ξ1(s)

(k − 1)wξws
ξ + ηes/2

ρ dξ −
∫ ξ2(s)

ξ1(s)

lwws
|ξ + ηes/2|2ρ dξ

for s ≥ s̄, where the constant C1 = C1(r∗, N, p,M) > 0. By a similar calculation as

above, for each ε3, ε4 > 0, there exist C(ε3), C(ε4) > 0 such that

∣

∣

∣

∫ ξ2(s)

ξ1(s)

(k − 1)wξws
ξ + ηes/2

ρ dξ
∣

∣

∣
≤ ε3

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ +
C(ε3)e

−s

r2
∗

∫ ξ2(s)

ξ1(s)

|wξ|2ρ dξ,

∣

∣

∣

∫ ξ2(s)

ξ1(s)

lwws
|ξ + ηes/2|2ρ dξ

∣

∣

∣
≤ ε4

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ +
C(ε4)e

−2s

r4
∗

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ.
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By choosing s∗ > sδ sufficiently large such that C(ε4)e−2s

r4
∗

≤ C(ε3)e−s

(p−1)r2
∗

for all s ≥ s∗, we

get

∣

∣

∣

∫ ξ2(s)

ξ1(s)

(k − 1)wξws
ξ + ηes/2

ρ dξ −
∫ ξ2(s)

ξ1(s)

lwws
|ξ + ηes/2|2ρ dξ

∣

∣

∣

≤ (ε3 + ε4)

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξ +
C(ε3)e

−s

r2
∗

(

2E[w](s) +
2

p+ 1

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ
)

.

Combining the above estimates, we obtain

d

ds
E[w](s) ≤− 3

4

∫ ξ2(s)

ξ1(s)

w2
sρ dξ + C1|ξ1(s)|ρ(ξ1(s))

+
C(ε3)e

−s

r2
∗

(

2E[w](s) +
2

p+ 1

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ
)

by choosing ε3, ε4 > 0 sufficiently small. Applying the Lp+1-bound (4.9), we get the

desired inequality (4.7) for s ≥ s∗. This completes the proof of the proposition.

By using Proposition 4.5, we can get the following lemma.

Lemma 4.6. There exists K > 0 such that −C2 ≤ E[w](s) ≤ K and

∫ ∞

s∗

∫ ξ2(s)

ξ1(s)

|ws|2ρ dξds ≤ K,(4.10)

∫ ξ2(s)

ξ1(s)

|w|2ρ dξ ≤ K,(4.11)

∫ s+1

s

(

∫ ξ2(s)

ξ1(s)

|w|p+1ρ dξ

)2

ds ≤ K(4.12)

for all s ≥ s∗, where s∗ and C2 are constants given in Proposition 4.5 and K depends

only on r∗, N, p, σ,M and E[w](s∗) and M is the constant given in (4.5).

Proof. In this proof, we extend the function w = wη,T (·, s) to the whole space R, by

defining w = 0 on (−∞, ξ1(s)) ∪ (ξ2(s),∞).

First we prove the energy bound. Assume on the contrary that there exists

s1 ≥ s∗ such that E[w](s1) < −C2. Then (4.7) implies that E[w](s) is monotone

decreasing for s ≥ s1, in particular, E[w](s) ≤ −C2 for s ≥ s1. This, (4.6) and

Jensen’s inequality yield

1

2

d

ds

∫

R

|w|2ρ dξ ≥ p− 1 − δ

p+ 1

(
∫

R

|w|2ρ dξ
)

p+1
2

+ (2 + δ)C2 −M2ρ(ξ1(s)).

Then, for s sufficiently large, we have

1

2

d

ds

∫

R

|w|2ρ dξ ≥ p− 1 − δ

p+ 1

(
∫

R

|w|2ρ dξ
)

p+1
2
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and so w blows up in finite time in L2-sense. This contradicts the global existence of

w. On the other hand, (4.7) also implies that

dE[w]

ds
(s) ≤ C1e

−s(E[w](s) + C2).

By integrating this inequality, we get the following upper bound estimate

E[w](s) ≤ K1 := −C2 + (E[w](s∗) + C2)e
C1e−s∗

.

Moreover, (4.10) immediately follows by integrating (4.7) and using the bound for

E[w](s).

Next, we prove (4.11). Upper bound of E[w], (4.6) and Jensen’s inequality yield

(4.13)
1

2

d

ds

∫

R

|w|2ρ dξ ≥ p− 1 − δ

p+ 1

(
∫

R

|w|2ρ dξ
)

p+1
2

−M2ρ(ξ1(s)) − (2 + δ)K1.

In order that w exists globally, the right-hand side of (4.13) cannot be positive at any

s ≥ s∗. Hence

p− 1 − δ

p + 1

(
∫

R

|w|2ρ dξ
)

p+1
2

≤M2ρ(ξ1(s)) + (2 + δ)K1.

must hold for all s ≥ s∗. This proves (4.11).

Finally, we prove the estimate (4.12). Again by (4.6), (4.7) and upper bound of

E[w],

p− 1 − δ

p+ 1

(
∫

R

|w|p+1ρ dξ

)

≤
∫

R

wwsρ dξ + (2 + δ)K1 +M2ρ(ξ1(s))

≤
(
∫

R

|w|2ρ dξ
)1/2(∫

R

|ws|2ρ dξ
)1/2

+K2

≤ K3

(

2
dE[w]

ds
+ 2C1e

−s(E[w](s) + C2)

)1/2

+K2

for some positive constants K2, K3. By taking a square and integrating it for time, we

obtain the desired inequality (4.12). The proof of the lemma is thus completed.

Proof of Proposition 4.3. Recall w = wη,T . Note that (4.3) can be rewritten as

ws = wξξ +
( k − 1

ξ + ηes/2
− ξ

2

)

wξ + L(ξ, s)w,

L(ξ, s) := |w|p−1 − 1

p− 1
− l

|ξ + ηes/2|2 .

We can easily derive that
∫ s+1

s

(
∫

|ξ|≤1

|L(ξ, s)|(p+1)/(p−1)ρ dξ

)2

ds ≤ K5, s ≥ s∗.

This estimate, (4.11) and Theorem 8.1 of [23] give us an L∞-bound

(4.14) |wη,T (ξ, s)| ≤ K for |ξ| ≤ 1

2
, s ≥ s∗ + δ
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for some constants δ > 0 and K > 0 so that all the above estimates in Proposition 4.5

and Lemma 4.6 hold. Also, the constants δ and K can be chosen independent of the

rescaling point r = η for η ∈ [r0, R]. Hence (4.2) follows.

We observe that (4.14) yields

‖∇u(·, t)‖L∞(BR) ≤M1(T − t)−
1

p−1
− 1

2 , T/2 ≤ t < T

for some constant M1 = M1(K, p, σ, R, T ) > 0. This gradient estimate and wξ(ξ, s) =

(T−t) 1
p−1

+ 1
2ur(r, t) give us the boundedness of wξ. From these and (4.10) we conclude

that the ω-limit set of wη,T is a compact connected subset included in the set of

bounded solutions of the problem

Uξξ −
ξ

2
Uξ −

U

p− 1
+ |U |p−1U = 0, ξ ≥ 0, Uξ(0) = 0.

It is known from Theorem 1 of [11] that the only bounded solution of this one dimen-

sional elliptic problem is constant, i.e., it is either ±κ or 0. Thus the ω-limit set of

wη,T is contained in the set {κ,−κ, 0}. Furthermore, for a blow-up point η = rb, 0 is

excluded in the ω-limit set by using Lemma 4.4. This completes the proof.
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