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ABSTRACT. In this paper, the authors consider the second-order neutral functional differential

equation

[p(t)ψ(y(t))(x′(t))γ ]′ + q(t)f(y(δ(t))) = 0, t ≥ t0,

where x(t) = y(t) + r(t)y(τ(t)) and γ > 0 is a ratio of odd positive integers. They establish some

new sufficient conditions for oscillation of all solutions that are substantial improvements to some

existing results in the literature. Some examples are included to illustrate the main results.
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1. INTRODUCTION

In this paper, we are concerned with the oscillation of solutions of the second-

order nonlinear neutral functional differential equation

(1.1)
[

p(t)ψ(y(t)) (x′(t))
γ]′

+ q(t)f(y(δ(t))) = 0, t ≥ t0,

where x(t) = y(t)+r(t)y(τ(t)) and γ > 0 is a ratio of odd positive integers. Through-

out this paper, we will assume, without further mention, that the following conditions

hold:

(h1) r, p, q, τ , and δ are real valued continuous positive functions defined for t ∈ I =

[t0,∞) and 0 ≤ r(t) < 1;

(h2) f , ψ : R → R are continuous functions such that yf(y) > 0 for all y 6= 0,

ψ(y) > 0 for y 6= 0;
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(h3) there exist positive constants k, K, and L such that

(1.2)
f(y)

yγ
≥ k and

1

K
≤ ψ(y) ≤

1

L
for y 6= 0;

(h4) τ(t) ≤ t, limt→∞ τ(t) = ∞, and limt→∞ δ(t) = ∞.

For a given function y, we set

(1.3) x(t) := y(t) + r(t)y(τ(t)), x[1] := pψ(y)(x′)γ, and x[2] :=
(

x[1]
)′

.

Let σ1 = inf{τ(t) : t ∈ R}, σ2 = inf{δ(t) : t ∈ R}, and σ = min{σ1, σ2}. By a

solution of (1.1), we mean a nontrivial real-valued function y with x ∈ C1[σ,∞),

x[1] ∈ C1[σ,∞), and such that equation (1.1) is satisfied. Our attention is restricted

to those solutions of (1.1) that exist on some half line [ty,∞) and satisfy sup{|y(t)| :

t > t1} > 0 for any t1 ≥ ty.

A discussion of the existence and uniqueness of solutions of neutral delay differ-

ential equations can be found in [15]. A solution of (1.1) is said to be oscillatory if it is

defined on some ray [t0,∞) and has an unbounded set of zeros; otherwise, it is called

nonoscillatory. An equation is called oscillatory if all its solutions are oscillatory. In

the sequel, when we write a functional inequality we will assume that it holds for all

sufficiently large values of t.

In [23], Ye and Xu considered equation (1.1) and studied the oscillation of solu-

tions under the following assumptions:

(A1) γ > 0, r, p, q, τ , and δ are real valued continuous positive functions defined for

t ∈ I = [t0,∞);

(A2) 0 ≤ r(t) < 1, δ(t) ≤ t, and δ′(t) > 0 for t ≥ t0;

(A3) f , ψ : R → R are continuous functions such that yf(y) > 0 and ψ(y) > 0 for

y 6= 0;

(A4) there exist positive constants k and L such f(y) ≥ k|y|γ−1y and 0 < ψ(y) ≤ 1/L

for y 6= 0.

They considered the two cases

(1.4)

∫

∞

t0

(

1

p(t)

)
1

γ

dt = ∞,

or

(1.5)

∫

∞

t0

(

1

p(t)

)
1

γ

dt <∞,

and established several sufficient conditions for oscillation of solutions. Some of the

results in [23] are quite interesting, however, there are mistakes in some of the main

results. In fact, their conditions are not sharp even when (1.4) does hold. It is known

that if (1.4) holds, then we have x(t)x[1](t) > 0 for t ≥ T and the other case, namely,
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x(t)x[1](t) < 0, can be disregarded. But in case (1.5) holds, we see that
(

x[1](t)
)

′

< 0,

and there are the two possible cases

(1.6) x(t)x[1](t) > 0 for t ≥ T,

and

(1.7) x(t)x[1](t) < 0 for t ≥ T.

The mistakes in [23, Theorems 2.3, 2.4, 2.5] are caused by using the inequality

(1.8) y(δ(t)) ≥ (1 − r(δ(t)))x(δ(t)),

to establish oscillation criteria when (1.5) holds. But this inequality is valid only

when (1.4) holds, i.e., if (1.6) is satisfied. Also, they proved that the inequality

(x[1])′ +Q(t)xγ(δ(t)) ≤ 0, for t ≥ T,

obtained when (1.4) holds, is the associated inequality when (1.5) holds. This, how-

ever, is not true. Hence, the results established in [23] when (1.5) holds are not valid.

They can be corrected by finding the appropriate inequality analogous to (1.8) when

(1.5) holds, and it certainly would be interesting to see this done. Also, the results

in [23] are proved only when the function δ(t) satisfies δ(t) ≤ t and δ′(t) ≥ 0. One

question we then ask is: is it possible to find new oscillation criteria for equation

(1.1) when δ(t) > t? One of our aims in this paper is to give an affirmative answer

to this question.

Oscillation criteria for different types of neutral differential equations can be

found in the papers [1, 2, 3, 4, 5, 6, 7, 16, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24,

25, 26, 27] and the reference cited therein. We note that all the results obtained in

these papers are given for neutral delay differential equations when (1.4) holds and

when δ(t) ≤ t.

Our objective in this paper is to use a technique of proof different from that used

in [23] and establish some new sufficient conditions for oscillation of (1.1). Some of

our oscillation results are of Hille and Nehari types and are essentially new even in the

case when (1.4) holds. The results also cover the case δ(t) > t (which has not been

considered before) and do not require that δ′(t) ≥ 0 as is the case in [23]. Our results

are not only different from those in the above mentioned papers, but also improve

some of them. Some examples are given to illustrate the main results.

2. MAIN RESULTS

In this section, we establish some sufficient conditions for the oscillation of all

solutions of (1.1) when (1.4) holds. In Subsection 2.1, we consider the case δ(t) > t;

the case δ(t) ≤ t will be considered in Subsection 2.2. To prove our main results,

we need the following lemmas. They will play important roles in the proofs of our
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theorems. We will only give proofs for the case where a solution y(t) is positive since

if y(t) is negative, then the transformation y(t) = −z(t) transforms the equation into

one with the same form as (1.1).

Lemma 2.1. Assume that (1.4) holds, and suppose that equation (1.1) has a nonoscil-

latory solution y on [t0,∞). Then there exists T > t0 such that x(t)x[1](t) > 0 for

t ≥ T .

Proof. Let y(t) be a positive solution of (1.1) on [t0,∞) and choose t1 > t0 so that

y(t) > 0, y(τ(t)) > 0, and y(δ(t)) > 0 on [t1,∞). Since y is positive, q(t) > 0, and

(h3) holds, we have

(2.1) (x[1](t))′ ≤ −kq(t)yγ(δ(t)) < 0, for t ∈ [t1, ∞).

Thus, x[1](t) is strictly decreasing on [t1,∞) and eventually is of one sign. We claim

that x[1](t) > 0 on [t2,∞) for some t2 > t1. If this is not the case, then there is a

t3 ≥ t1 such that x[1](t3) = c < 0. Then, from (2.1), we have x[1](t) ≤ c for t ≥ t3,

and so (1.2) implies

(2.2) x′(t) ≤
c

1

γ

p
1

γ (t)ψ
1

γ (y(t))
≤
K

1

γ c
1

γ

p
1

γ (t)
for t ∈ [t3,∞).

Integrating the last inequality from t3 to t implies

(2.3) x(t) = x(t3) +

∫ t

t3

x′(s)ds ≤ x(t3) +K
1

γ c
1

γ

∫ t

t3

ds

p
1

γ (s)
→ −∞ as t→ ∞,

by (1.4). Thus, x is eventually negative, and this contradiction completes the proof

of the lemma.

Lemma 2.2. Assume that (1.4) holds and suppose that (1.1) has a nonoscillatory

solution y on [t0,∞). Then there exists T ≥ t0 such that

(2.4) (x[1](t))′ + P (t)xγ(δ(t)) ≤ 0 for t ≥ T,

where P (t) = kq(t)(1 − r(δ(t)))γ.

Proof. Let y(t) be a positive solution of (1.1) on [t0,∞) and choose t1 > t0 so that

y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0, and y(δ(t)) > 0 on [t1, ∞). Since y is positive

and q(t) > 0, from Lemma 2.1, we see that

(2.5) x(t) > 0, x′(t) > 0, and
(

x[1](t)
)′

< 0 for t ≥ t2,

for some t2 ≥ t1. Since τ(t) ≤ t and r(t) ≥ 0, (2.5) implies

x(t) = y(t) + r(t)y(τ(t)) ≤ y(t) + r(t)x(τ(t)) ≤ y(t) + r(t)x(t) for t ≥ t2.

Thus, y(t) ≥ (1 − r(t))x(t) for t ≥ t2. Then, for t ≥ t3, where t3 > t2 is chosen large

enough, we have

(2.6) y(δ(t)) ≥ (1 − r(δ(t)))x(δ(t)).
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From (2.1) and the last inequality, we see that (2.4) holds, and this completes the

proof.

2.1. Oscillation of (1.1) with δ(t) > t. In this subsection, we establish some

sufficient conditions for oscillation of (1.1) when (1.4) holds and δ(t) > t. We start

with the following theorem.

Theorem 2.3. Assume that (1.4) holds. Let y be a nonoscillatory solution of (1.1)

and make the Riccati substitution

(2.7) u(t) :=
x[1](t)

xγ(t)
.

Then u(t) > 0 for t ≥ T , where T is given in Lemma 2.2, and

(2.8) u′(t) + P (t) +
γL

1

γ

p
1

γ (t)
(u(t))1+ 1

γ ≤ 0 for t ∈ [T,∞).

Proof. Let y be as above, and without loss of generality, assume that there is a t1 > t0

such that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0, and y(δ(t)) > 0 for t ≥ t1. Then,

from Lemma 2.1, there exists T > t1 such that x(t) > 0, x[1](t) > 0, and x[2](t) < 0

for t ≥ T . From the definition of u(t), we have

u′(t) =
xγ(t)x[2](t) − (xγ(t))′ x[1](t)

xγ(t) (x(t))γ =
x[2](t)

x(δ(t))γ

(x(δ(t))γ

(x(t))γ −
(xγ(t))′ x[1](t)

xγ(t) (x(t))γ .

From Lemma 2.2, we see that

(2.9) u′(t) ≤ −P (t)
(x(δ(t)))γ

(x(t))γ −
(xγ(t))′ x[1](t)

xγ(t) (x(t))γ for t ≥ T.

Now, (1.3) and (1.2) give

x′

x
=

(

x[1]
)

1

γ

p
1

γψ
1

γ (y)x
≥
L

1

γ

(

x[1]
)

1

γ

p
1

γ x
=
L

1

γ u
1

γ

p
1

γ

.

This implies that

(xγ(t))′ x[1](t)

xγ(t) (x(t))γ = γu(t)
x′(t)

x(t)
≥ γL

1

γ

1

p
1

γ (t)
(u(t))1+

1

γ for t ≥ T.

Substituting into (2.9), we have

(2.10) u′(t) ≤ −P (t)
(x(δ(t))γ

(x(t))γ − γL
1

γ

1

p
1

γ (t)
(u(t))1+ 1

γ for t ≥ T.

Next, consider the coefficient of P (t) in (2.10). Since δ(t) > t and x(t) is increasing,

we have

(2.11) x(δ(t)) > x(t).

Using (2.11) in (2.10), we obtain inequality (2.8), and this completes the proof of the

theorem.
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Theorem 2.4 (Leighton-Wintner type). Assume that (1.4) holds. If

(2.12)

∫

∞

t0

P (s)ds = ∞,

then every solution of (1.1) oscillates.

Proof. Suppose, to the contrary, that y is a nonoscillatory solution of equation (1.1),

say y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0, and y(δ(t)) > 0 for t ≥ T , where T is given

in Theorem 2.3. Let u be defined as in Theorem 2.3. Then, u(t) > 0 for t ≥ T and

(2.13) −u′(t) ≥ P (t) +
γL

1

γ

p
1

γ (t)
(u(t))1+ 1

γ > P (t) for t ≥ T.

From the definition of x[1](t), we see that

x′(t) =

(

x[1](t)

p(t)ψ(y(t))

)

1

γ

.

Integrating from T to t, we obtain

x(t) = x(T ) +

∫ t

T

(

1

p(s)ψ(y(s))
x[1](s)

)
1

γ

ds for t ≥ T.

Since x[1](t) is positive and decreasing, we have

x(t) ≥ x(T ) +
(

x[1](t)
)

1

γ

∫ t

T

(

1

p(s)ψ(y(s))

)
1

γ

ds > L
1

γ

(

x[1](t)
)

1

γ

∫ t

T

(

1

p(s)

)
1

γ

ds,

for t ≥ T . It follows that

u(t) =
x[1](t)

xγ(t)
<

1

L

(

∫ t

t0

(

1

p(s)

)
1

γ

ds

)

−γ

for t ∈ [T,∞),

which, in view of (1.4), implies that limt→∞ u(t) = 0. Integrating (2.13) from T to

∞, we obtain u(T ) ≥
∫

∞

T
P (s)ds, which contradicts (2.12). This completes the proof

of the theorem.

In the following results we consider the case where condition (2.12) may fail, that

is, we may have

(2.14)

∫

∞

t0

P (s)ds <∞.

Theorem 2.5. Assume that (1.4) holds. If there exists a positive continuously dif-

ferentiable function φ(t) such that

(2.15) lim sup
t→∞

∫ t

t0

[

φ(s)P (s) −
p(s)((φ′(s))γ+1

L(γ + 1)γ+1φγ(s)

]

ds = ∞,

then every solution of (1.1) oscillates.



OSCILLATION OF NEUTRAL DIFFERENTIAL EQUATIONS 461

Proof. Suppose, to the contrary, that y is a nonoscillatory solution of equation (1.1),

say y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0, and y(δ(t)) > 0 for t ≥ T , where T is given

in Theorem 2.3. Let u be defined as in Theorem 2.1. Then, u(t) > 0 for t ≥ T and

(2.8) holds. We then have

(2.16) u′(t) ≤ −P (t) −
γL

1

γ

p
1

γ (t)
(u(t))

γ+1

γ for t ≥ T.

Multiplying (2.16) by φ(s) and integrating from T to t ≥ T , we have

∫ t

T

φ(s)P (s)ds ≤ −

∫ t

T

φ(s)u′(s)ds−

∫ t

T

γL
1

γ φ(s)

p
1

γ (s)
(u(s))

γ+1

γ ds.

An integration by parts yields

∫ t

T

φ(s)P (s)ds ≤ u(T )φ(T ) +

∫ t

T

φ′(s)u(s)ds−

∫ t

t1

γL
1

γφ(s)

p
1

γ (s)
(u(s))

γ+1

γ ds.

Setting B = φ′(s), A = γL
1

γφ(s)p−1/γ(s) > 0, and applying the inequality

(2.17) Bw − Aw
γ+1

γ ≤
γγ

(γ + 1)γ+1

Bγ+1

Aγ
,

we obtain
∫ t

T

[

φ(s)P (s) −
p(s)(φ′(s))γ+1(s)

L(γ + 1)γ+1φγ(s)

]

ds < φ(T )u(T ),

which contradicts condition (2.15). Thus, every solution of (1.1) oscillates, and this

completes the proof of the theorem.

From Theorem 2.5, we can obtain different conditions for the oscillation of (1.1)

by making different choices for φ(t), For instance, if φ(t) = t, we have the following

result.

Corollary 2.6. Assume that (1.4) holds. If

(2.18) lim sup
t→∞

∫ t

t0

[

sP (s) −
p(s)

L(γ + 1)γ+1sγ

]

ds = ∞,

then every solution of (1.1) oscillates.

Another method of choosing test functions can be developed by considering func-

tions in the class ℜ consisting of kernels of two variables. We say that the function

H ∈ ℜ provided H is defined for t0 ≤ s ≤ t, H(t, s) ≥ 0, and H(t, t) = 0 for

t ≥ s ≥ t0. Important examples of H include H(t, s) = (t− s)m for m ≥ 1.

The following theorem gives new oscillation criteria for (1.1) which can be con-

sidered as an extension of the Kamenev type oscillation criterion. The proof is similar

to those in [16, 21] if we use the inequality (2.8). We omit the details.
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Theorem 2.7. Assume that (1.4) holds. Let φ(t) be defined as in Theorem 2.5 and

let H ∈ ℜ. If for t > s,

(2.19)

lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)φ(s)P (s) −
p(s)((φ′(s))γ+1( ∂

∂s
H(t, s))γ+1

L(γ + 1)γ+1φγ(s)Hγ(t, s)

]

ds = ∞,

then every solution of (1.1) oscillates.

With appropriate choices of the functions H it is possible to establish a number

of oscillation criteria for (1.1). For example, if there exists a function h(t, s) ∈ ℜ such

that
∂

∂s
H(t, s) := −h(t, s)H

γ

1+γ (t, s),

then Theorem 2.7 yields the following oscillation result.

Corollary 2.8. Assume that (1.4) holds. Let φ(t) be defined as in Theorem 2.5 and

let H ∈ ℜ. If for t > s,

lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)φ(s)P (s) −
p(s)((φ′(s))γ+1(h(t, s))γ+1

L(γ + 1)γ+1φγ(s)

]

ds = ∞,

then every solution of equation (1.1) is oscillatory.

Choosing φ(s) = 1 and H(t, s) = (t − s)m for m ≥ 1, Corollary 2.8 gives the

following Kamenev type oscillation criterion.

Corollary 2.9. Assume that (1.4) holds. If for m > 1,

lim sup
t→∞

1

tm

∫ t

t0

[

(t− s)mP (s) −
mγ+1p(s)((t− s)m−1)γ+1

L(γ + 1)γ+1(t− s)mγ

]

ds = ∞,

then every solution of (1.1) oscillates.

As an example of a result of these types, we have the following.

Example 2.10. Consider the second-order neutral equation

(2.20)

[

y(t) +
1

2
y(τ(t))

]

′′

+
λ

t2
y(δ(t)) = 0 for t ∈ [1, ∞).

Here γ = 1, p(t) = 1, ψ(y) = 1, r(t) = 1/2, f(u) = u, q(t) = λ/t2 where λ > 0

is a constant, τ(t) < t, δ(t) > t, and limt→∞ δ(t) = limt→∞ τ(t) = ∞. We have

P (t) = λ/2t2 and it is easy to see that (h1) − (h3), (1.4), and (2.14) are satisfied. To

apply Corollary 2.6, we need to examine condition (2.18). Note that

lim sup
t→∞

∫ t

t0

[

sP (s) −
p(s)

(γ + 1)γ+1sγ

]

ds = lim sup
t→∞

∫ t

1

(

λs

2s2
−

1

4s

)

ds = ∞,

provided that λ > 1/2. Hence, by Corollary 2.6, every solution of (2.20) oscillates if

λ > 1/2.
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For the second order differential equation

(2.21) x′′(t) + p(t)x(t) = 0,

Hille [14] proved that every solution of (2.21) oscillates if

(2.22) lim inf
t→∞

t

∫

∞

t

p(s)ds >
1

4
.

Nehari [19], by a different approach, proved that if

(2.23) lim inf
t→∞

1

t

∫ t

t0

s2p(s)ds >
1

4
,

then every solution of (2.21) oscillates. In the following, we present some extensions

of these results and establish new oscillation criteria of Hille and Nehari types for

equation (1.1). We will make use the following notation:

a := lim inf
t→∞

tγ

p(t)

∫

∞

t

P (s)ds and b := lim inf
t→∞

1

t

∫ t

T

sγ+1

p(t)
P (s)ds.

Theorem 2.11. Assume that (1.4) holds and that p′ ≥ 0. Let y be a nonoscillatory

solution of (1.1) and set

R∗ := lim inf
t→∞

tγu(t)

p(t)
and R∗ := lim sup

t→∞

tγu(t)

p(t)
,

where u is defined in (2.7). Then,

(2.24) a ≤ R∗ − R
1+ 1

γ

∗ L
1

γ ,

and

(2.25) a + b ≤
1

L
.

Proof. Let y be as above and assume that there is a T > t0 such that y(t) > 0,

y(τ(t)) > 0, y(τ(τ(t))) > 0, y(δ(t)) > 0, and Lemmas 2.1 and 2.2 hold for t ≥ T .

From Theorem 2.3, we have

(2.26) −u′(t) ≥ P (t) +
γL

1

γ

p
1

γ (t)
(u(t))

γ+1

γ for t ≥ T.

First, we prove (2.24). Integrating (2.26) from t to ∞ and using the fact that

limt→∞ u(t) = 0 (see the proof of Theorem 2.4), we obtain

(2.27) u(t) ≥

∫

∞

t

P (s)ds+ γL
1

γ

∫

∞

t

(u(s))
γ+1

γ ds

p
1

γ (s)
for t ≥ T.

It follows from (2.27) that

(2.28)
tγu(t)

p(t)
≥

tγ

p(t)

∫

∞

t

P (s)ds+
γL

1

γ tγ

p(t)

∫

∞

t

(u(s))
γ+1

γ ds

p
1

γ (s)
for t ≥ T.
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Let ǫ > 0 be given; then, by the definition of a and R∗ we can choose T1 ∈ [T,∞),

sufficiently large, so that

(2.29)
tγ

p(t)

∫

∞

t

P (s)ds ≥ a− ǫ and
tγu(t)

p(t)
≥ R∗ − ǫ for t ≥ T1.

From (2.28) and (2.29) and the fact that p′ ≥ 0, we have

tγuγ(t)

p(t)
≥ (a− ǫ) + γL

1

γ

tγ

p(t)

∫

∞

t

s (u(s))
1

γ sγu(s)

p
1

γ (s)sγ+1
ds

≥ (a− ǫ) + (R∗ − ǫ)1+ 1

γ

γL
1

γ tγ

p(t)

∫

∞

t

p(s)

sγ+1
ds

≥ (a− ǫ) + (R∗ − ǫ)1+ 1

γ γL
1

γ tγ
∫

∞

t

ds

sγ+1
for t ≥ T1.(2.30)

Then, from (2.30), we have

tγuγ(t)

p(t)
≥ (a− ǫ) + (R∗ − ǫ)1+ 1

γ L
1

γ .

Taking the lim inf of both sides as t → ∞, we have R∗ ≥ a − ǫ + L
1

γ (R∗ − ǫ)1+ 1

γ .

Since ǫ > 0 is arbitrary, this implies

(2.31) a ≤ R∗ − R
1+ 1

γ

∗ L
1

γ ,

and this proves (2.24).

To prove (2.25), first multiply both sides of (2.26) by tγ+1/p(t) and integrate from

T to t ≥ T to obtain

∫ t

T

sγ+1

p(s)
u′(s)ds ≤ −

∫ t

T

sγ+1

p(s)
P (s)ds− γL

1

γ

∫ t

T

(

sγu(s)

p(s)

)
γ+1

γ

ds.

Integrating by parts, we have

tγ+1u(t)

p(t)
≤
T γ+1u(T )

p(T )
+

∫ t

T

(

sγ+1

p(s)

)

′

u(s)ds

−

∫ t

T

sγ+1P (s)ds

p(s)
− γL

1

γ

∫ t

T

(

sγu(s)

p(s)

)
γ+1

γ

ds.

Since p′(t) ≥ 0,

(2.32)

(

sγ+1

p(s)

)

′

≤
(γ + 1)sγ

p(s)
,

so

tγ+1u(t)

p(t)
≤
T γ+1u(T )

p(T )
+

∫ t

T

(γ + 1)

(

sγu(s)

p(s)

)

ds

−

∫ t

T

sγ+1

p(s)
P (s)ds− γL

1

γ

∫ t

T

(

sγu(s)

p(s)

)
γ+1

γ

ds.
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Hence,

tγ+1u(t)

p(t)
≤
T γ+1u(T )

p(T )
−

∫ t

T

sγ+1

p(s)
P (s)ds

+

∫ t

T

{

(γ + 1)
sγu(s)

p(s)
− γL

1

γ

(

sγu(s)

p(s)

)
γ+1

γ

}

ds for t ≥ T.

Applying inequality (2.17) with w = sγu
p

, A = γL
1

γ , and B = γ + 1, we obtain

tγ+1u(t)

p(t)
≤
T γ+1u(T )

p(T )
−

∫ t

T

sγ+1

p(s)
P (s)ds+

∫ t

T

γγ

(γ + 1)γ+1

(γ + 1)γ+1

γγL
ds

=
T γ+1u(T )

p(T )
−

∫ t

T

sγ+1

p(s)
P (s)ds+

(t− T )

L
for t ≥ T.

It follows that

tγu(t)

p(t)
≤
T γ+1u(T )

tp(T )
−

1

t

∫ t

T

sγ+1P (s)ds

p(s)
+

1

L
(1 −

T

t
) for t ≥ T.

Taking the lim sup of both sides as t→ ∞, we obtain

R∗ ≤ −b+
1

L

Together with inequality (2.31), we have

a ≤ R∗ − R
1+ 1

γ

∗ L
1

γ ≤ R∗ ≤ R∗ ≤ −b +
1

L
.

Therefore, a+ b ≤ 1
L
, and this completes the proof of (2.25).

Using Theorem 2.5, the following result is easy to prove.

Theorem 2.12. Assume that (1.4) holds and that p′ ≥ 0. If

(2.33) lim inf
t→∞

tγ

p(t)

∫

∞

t

P (s)ds >
γγ

L(γ + 1)γ+1
,

then every solution of (1.1) oscillates.

Proof. Suppose that y is a nonoscillatory solution of equation (1.1), say, y(t) > 0,

y(τ(t)) > 0, y(τ(τ(t))) > 0, and y(δ(t)) > 0 for t ≥ T with T as in Theorem 2.3.

With u given in (2.7), Theorem 2.11 gives

a ≤ R∗ −R
γ+1

γ

∗ L
1

γ .

Applying (2.17) to this last inequality, we have

a ≤
γγ

L(γ + 1)γ+1
,

which contradicts (2.33). This completes the proof of the theorem.

Another consequence of Theorem 2.11 is the following oscillation result.
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Theorem 2.13. Assume that (1.4) holds and p′ ≥ 0. If

(2.34) lim inf
t→∞

tγ

p(t)

∫

∞

t

P (s)ds+ lim inf
t→∞

1

t

∫ t

T

sγ+1

p(t)
P (s)ds >

1

L
,

then every solution of (1.1) oscillates.

2.2. Oscillation Criteria with δ(t) ≤ t. In this subsection, we establish some

sufficient conditions for oscillation of (1.1) with δ(t) ≤ t. We will use the following

notation:

A(t) := P (t)αγ(t) and α(t) :=
L

1

γ J(δ(t), T )

K
1

γ J(t, T )
, where J(u, v) :=

∫ u

v

1

p
1

γ (s)
ds.

Theorem 2.14. Assume that (1.4) holds. Let y be a nonoscillatory solution of (1.1)

and make the Riccati substitution

(2.35) w(t) :=
x[1](t)

xγ(t)
.

Then w(t) > 0 for t ≥ T , where T is given in Lemma 2.2, and

(2.36) w′(t) + A(t) + γL
1

γ

1

p
1

γ (t)
(w(t))1+

1

γ (t) ≤ 0 for t ∈ [T,∞).

Proof. Let y be as above and assume that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0, and

y(δ(t)) > 0 for t ≥ T . From the definition of w (see the proof of Theorem 2.3), we

have

(2.37) w′(t) ≤ −P (t)
(x(δ(t))γ

(x(t))γ − γL
1

γ

1

p
1

γ (t)
(w(t))1+ 1

γ for t ≥ T.

Now, consider the coefficient of P (t) in (2.37). Since x[1](t) = pψ(y) (x′)γ (t) is de-

creasing for t ≥ T , we have

x(t) − x(δ(t)) =

∫ t

δ(t)

(x[1](s))
1

γ

p
1

γ (s)ψ
1

γ (y(s))
ds ≤ (x[1](δ(t)))

1

γ

∫ t

δ(t)

1

p
1

γ (s)ψ
1

γ (y(s))
ds

≤ K
1

γ (x[1](δ(t)))
1

γ

∫ t

δ(t)

1

p
1

γ (s)
ds,

and this implies that

(2.38)
x(t)

x(δ(t))
≤ 1 +

K
1

γ (x[1](δ(t)))
1

γ

x(δ(t))

∫ t

δ(t)

1

p
1

γ (s)
ds.

On the other hand, we have

x(δ(t)) > x(δ(t)) − x(T ) =

∫ δ(t)

T

(x[1](s))
1

γ

p
1

γ (s)ψ
1

γ (y(s))
ds ≥ L

1

γ (x[1](δ(t)))
1

γ

∫ δ(t)

T

1

p
1

γ (s)
ds,

which leads to

(x[1](δ(t)))
1

γ

x(δ(t))
<

1

L
1

γ

(

∫ δ(t)

T

1

p
1

γ (s)
ds

)

−1

,
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This and (2.38) imply

x(t)

x(δ(t))
< 1 +

K
1

γ

∫ t

δ(t)
p−

1

γ (s)ds

L
1

γ

∫ δ(t)

T
p−

1

γ (s)ds
=
L

1

γ

∫ δ(t)

T
p−

1

γ (s)ds+K
1

γ

∫ t

δ(t)
p−

1

γ (s)ds

L
1

γ

∫ δ(t)

T
p−

1

γ (s)ds

≤
K

1

γ

∫ δ(t)

T
p−

1

γ (s)ds+K
1

γ

∫ t

δ(t)
p−

1

γ (s)ds

L
1

γ

∫ δ(t)

T
p−

1

γ (s)ds
=

K
1

γ

∫ t

T
p−

1

γ (s)ds

L
1

γ

∫ δ(t)

T
p−

1

γ (s)ds
=

1

α(t)

for t ≥ T . Hence,

(2.39) x(δ(t)) ≥ α(t)x(t) for t ≥ T.

This implies that

(2.40)
(x(δ(t))γ

(x(t))γ ≥ (α(t))γ for t ≥ T.

Substituting (2.40) into (2.37) gives inequality (2.36), and this completes the proof

of the theorem.

The following result is the companion to Theorem 2.4 above.

Theorem 2.15 (Leighton-Wintner type). Assume that (1.4) holds. If

(2.41)

∫

∞

t0

A(s)ds = ∞,

then every solution of (1.1) oscillates.

Proof. Let y be a nonoscillatory solution of (1.1) with y(t) > 0, y(τ(t)) > 0,

y(τ(τ(t))) > 0, and y(δ(t)) > 0 for t ≥ T with T given in Theorem 2.14. Let w be

defined as in Theorem 2.14; then, w(t) > 0 and

(2.42) −w′(t) ≥ A(t) +
γL

1

γ

p
1

γ (t)
(w(t))1+ 1

γ > A(t) for t ≥ T.

The reminder of the proof is similar to the proof of Theorem 2.4 and hence is omitted.

Next, we consider the case where condition (2.41) may fail, that is, we may have

(2.43)

∫

∞

t0

A(s)ds <∞.

Proceeding as in the proofs of Theorems 2.5 and 2.7, we can use inequality (2.36) to

obtain the following results.

Theorem 2.16. Assume that (1.4) holds. If there exists a positive continuously

differentiable function φ(t) such that

(2.44) lim sup
t→∞

∫ t

t0

[

φ(s)A(s) −
p(s)((φ′(s))γ+1

L(γ + 1)γ+1φγ(s)

]

ds = ∞,

then every solution of (1.1) oscillates.
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Theorem 2.17. Assume that (1.4) holds. If there exists a positive continuously

differentiable function φ(t) and a function H ∈ ℜ such that for t > s,

(2.45)

lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)φ(s)A(s) −
p(s)((φ′(s))γ+1( ∂

∂s
H(t, s))γ+1

L(γ + 1)γ+1φγ(s)Hγ(t, s)

]

ds = ∞,

then every solution of (1.1) oscillates.

Analogous to Corollaries 2.8 and 2.9, we have the following results.

Corollary 2.18. Assume that (1.4) holds. Let φ(t) be defined as in Theorem 2.17

and H ∈ ℜ. If for t > s,

(2.46) lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)φ(s)A(s) −
p(s)((φ′(s))γ+1(h(t, s))γ+1

L(γ + 1)γ+1φγ(s)

]

ds = ∞,

then every solution of (1.1) oscillates.

Corollary 2.19. Assume that (1.4) holds. If for m > 1

(2.47) lim sup
t→∞

1

tm

∫ t

t0

[

(t− s)mA(s) −
mγ+1p(s)((t− s)m−1)γ+1

L(γ + 1)γ+1(t− s)mγ

]

ds = ∞,

then every solution of (1.1) oscillates.

Next, we will establish some new oscillation results for (1.1) of the Hille and

Nehari types in the delay case. We need the following notation:

A := lim inf
t→∞

tγ

p(t)

∫

∞

t

A(s)ds and B := lim inf
t→∞

1

t

∫ t

T

sγ+1

p(t)
A(s)ds.

The proof of the following theorem is similar to the proof of Theorem 2.11 by using

inequality (2.36) in place of (2.8). We omit the details.

Theorem 2.20. Assume that (1.4) holds and p′ ≥ 0. Let y be a nonoscillatory

solution of (1.1) and set

Q∗ := lim inf
t→∞

tγw(t)/p(t) and Q∗ := lim sup
t→∞

tγw(t)/p(t)

where w is defined in (2.35). Then

A ≤ Q∗ −Q
1+ 1

γ

∗ L
1

γ and A +B ≤
1

L
.

From Theorem 2.20 we can obtain the following results that are analogous to

Theorems 2.12 and 2.13 above.

Theorem 2.21. Assume that (1.4) holds and p′ ≥ 0. If

(2.48) lim inf
t→∞

tγ

p(t)

∫

∞

t

A(s)ds >
γγ

L(γ + 1)γ+1
,

then every solution of (1.1) oscillates.
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Theorem 2.22. Assume that (1.4) holds and p′ ≥ 0. If

(2.49) lim inf
t→∞

tγ

p(t)

∫

∞

t

A(s)ds+ lim inf
t→∞

1

t

∫ t

T

sγ+1

p(t)
A(s)ds >

1

L
,

then every solution of (1.1) oscillates.

We will now give some examples to illustrate our results.

Example 2.23. Consider the second-order neutral differential equation

(2.50)

(

1

t2

((

y(t) +
δ−1(t) − 1

δ−1(t)
y(τ(t))

)

′
)γ
)

′

+
λ

αγ(t)t
yγ(δ(t)) = 0, t ∈ [1,∞),

where λ > 0, γ > 0 is a ratio of odd positive integers, limt→∞ δ(t) = limt→∞ τ(t) = ∞,

τ(t) ≤ t, and δ(t) ≤ t, and assume that δ−1(t), the inverse function of δ(t), exists.

Here, α(t) := J(δ(t),T )
J(t,T )

, where J(t, T ) =
∫ t

T
(s2)

1/γ
ds, for any T ≥ 1. We have ψ(y) = 1,

p(t) =
1

t2
, r(t) =

δ−1(t) − 1

δ−1(t)
= 1 −

1

δ−1(t)
, and q(t) =

λ

αγ(t)t
.

Noting that A(t) = P (t)αγ(t) = αγ(t)q(t)(1− r(δ(t))γ = λ/tγ+1, it is easy to see that

(h1)−(h4), (1.4), and (2.43) hold. Finally, we need to examine condition (2.44). Note

that by choosing φ(t) = tγ , we have

lim sup
t→∞

∫ t

t0

[

φ(s)A(s) −
p(s)((φ′(s))γ+1

(γ + 1)γ+1φγ(s)

]

ds

= lim sup
t→∞

∫ t

t0

[

λ

s
−

γγ+1

(γ + 1)γ+1s3

]

ds = ∞.

Therefore, by Theorem 2.16, every solution of (2.50) oscillates.

Example 2.24. Consider the neutral delay differential equation

(2.51)

(

2 + y2(t)

1 + y2(t)

((

y(t) +
1

t2
y (t− π/2)

)

′
)3
)

′

+
(t− 1)6

t7
y3(t− 1) = 0, t ≥ 2.

Then, we have

p(t) = 1, r(t) =
1

t2
, q(t) =

(t− 1)6

t7
, τ(t) = t−

π

2
, δ(t) = t− 1,

f(u) = u3, and 1 ≤ ψ(u) =
2 + u2(t)

1 + u2(t)
≤ 2,

so (h1) − (h4) and (1.4) hold with k = 1 and γ = 3. Thus,

1 − r(δ(t)) = 1 −
1

(t− 1)2
=
t (t− 2)

(t− 1)2 ,

α(t) :=
L

1

3 (t− 3)

K
1

3 (t− 2)
=

(t− 3)

2
1

3 (t− 2)
,

P (t) = kq(t) (1 − r(δ(t)))3 =
(t− 2)3

t4
,
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and we have

A(t) = P (t)α3(t) =
(t− 3)3

2t4
.

It is easy to see that
∞
∫

t0

A(s)ds = ∞.

All the assumption of Theorem 2.15 are satisfied, so every solution of (2.51) oscillates.

Example 2.25. Consider the delay differential equation

(2.52)

(

2 + y2(t)

1 + y2(t)

((

y(t) +
1

t2
y (t− π/2)

)

′
)3
)

′

+
λ(t− 1)6

t10
y3(t− 1) = 0, t ≥ 2.

This is the same equation as in Example 2.24 except that

q(t) =
λ(t− 1)6

t10
.

Here,

P (t) =
λ(t− 2)3

t7
and A(t) =

λ(t− 3)3

2t7
.

Clearly,
∞
∫

2

A(s)ds <∞.

To apply Theorem 2.21 we need to examine condition (2.48). In this case we see that

lim inf
t→∞

tγ

p(t)

∫

∞

t

A(s)ds = lim inf
t→∞

t3
∫

∞

t

A(s)ds

= lim inf
t→∞

t3
∫

∞

t

λ

(

1

2t4
−

9

2t5
+

27

2t6
−

27

2t7

)

dt

=
λ

6
.

All the hypotheses of Theorem 2.21 are satisfied provided that

λ >
γγ

(γ + 1)γ+1
=

81

64
,

i.e., every solution of (2.52) oscillates if λ > 81/64.
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