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ABSTRACT. In this paper we propose a new approach to fuzzy stochastic integrals of Itô and

Aumann type. Then a fuzzy equation with fuzzy stochastic integrals is investigated. The existence

and uniqueness of solution is proven. Some typical properties of the solution are also obtained.
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1. INTRODUCTION

The theory of fuzzy differential equations has focused much attention in the last

decades since it provides good models for dynamic systems under uncertainty. In [18]

this theory has been started with a concept of H-differentiability for fuzzy mappings

introduced in [42]. Currently the literature on this topic is very rich. For a significant

collection of the results and further references we refer the reader to the monographs

[9, 27] and to the research articles e.g. [1, 2, 7, 8, 15, 26, 28, 37, 38, 39, 40].

Recently some results have been published concerning random fuzzy differential

equations (see [11, 12, 31]). The random approach can be adequate in modelling of

the dynamics of real phenomena which are subjected to two kinds of uncertainty:

randomness and fuzziness, simultaneously. Here fuzzy random variables and fuzzy

stochastic processes play a crucial role.

The next natural step in modelling of dynamic systems under uncertainty should

be the theory of fuzzy stochastic differential equations (understood in their integral

form). Here, a main problem is the notion of stochastic fuzzy Itô integral. A first

background for such a kind of research has been made in [19, 17, 30]. Although these

papers differ from each other in the considered settings, the main idea is always the

same: to define a stochastic set-valued Itô integral (as a measurable set-valued map-

ping) and then, by using the Stacking Theorem, to introduce a concept of stochastic
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fuzzy integral (as a fuzzy stochastic process). The authors of [19, 30] emphasize their

motivations to such studies as the beginning of fundations to the theory of fuzzy

stochastic differential equations and inclusions.

As far as we know there are two papers concerning this new area, i.e. [20] and [41].

However the approaches presented there are different. In [20] all the considerations are

made in the setup of fuzzy sets space of a real line, and the main result on the existence

and uniqueness of the solution is obtained under very particular conditions imposed on

the structure of integrated fuzzy stochastic processes such that a maximal inequality

for fuzzy stochastic Itô integrals holds. Unfortunately the paper [20] contains the gaps.

In view of [44] we find out that the intersection property of a set-valued Itô integral

(defined as a measurable set-valued mapping) may not hold true in general. Thus

a definition of fuzzy stochastic integral, which is used in [20], seems to be incorrect.

On the other hand, in [41] a proposed approach does not contain a notion of a fuzzy

stochastic Itô integral. The method presented there is based on sets of appropriately

chosen selections. In [32] we proposed a third approach to stochastic fuzzy differential

equations. We gave a result of existence and uniqueness of the solution to stochastic

fuzzy differential equation where the diffusion term (appropriate fuzzy stochastic Itô

integral) was of some special form, i.e. it was the embedding of real d-dimensional Itô

integral into fuzzy numbers space.

In this paper we propose completely different approach to the notions of fuzzy

stochastic integrals. We employ here the notion of set-valued stochastic integral which

was widely used in the theory of stochastic inclusions and their applications (see e.g.

[3, 4, 5, 6, 22, 23, 24, 25, 33, 34, 35] and references therein). As distinct from the

approaches in [19, 29, 30, 32, 41] we treat the fuzzy stochastic integrals as the fuzzy

sets of the space of square-integrable random vectors. Then we consider the fuzzy

integral equations in which these fuzzy stochastic integrals appear.

The paper is organized as follows. In Section 2 we recall some facts from the

set-valued stochastic analysis. We give also the definitions and some properties of

set-valued trajectory stochastic integrals of Itô and Aumann type. The Section 3 is

started with a short résumé about fuzzy sets and fuzzy stochastic processes. Next

the results of preceding section are used to establish the notions of fuzzy trajectory

stochastic integrals of Itô and Aumann type. Some properties of these fuzzy stochastic

integrals are also stated. Finally a fuzzy stochastic integral equation, with fuzzy

trajectory stochastic Itô integral and fuzzy trajectory stochastic Aumann integral, is

investigated. We present the results on existence and uniqueness of the solution as

well as on boundedness of the solution, on continuous dependence on initial conditions

and on the stability of the solution. In Section 4 we formulate the parallel results

which are established for set-valued stochastic integral equations.
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2. PRELIMINARIES

Let X be a separable Banach space, Kb(X ) the family of all nonempty closed

and bounded subsets of X . Similarly by Kb
c(X ) we denote the family of all nonempty

closed, bounded and convex subsets of X . The Hausdorff metric HX in Kb(X ) is

defined by

HX (A, B) = max

{

sup
a∈A

distX (a, B), sup
b∈B

distX (b, A)

}

,

where distX (a, B) = inf
b∈B

‖a − b‖X and || · ||X denotes a norm in X .

It is known that (Kb(X ), HX ) is a complete metric space, Kb
c(X ) is its closed

subspace. For nonempty subsets A1, A2, B1, B2 of X it holds (see [14])

HX (A1 + A2, B1 + B2) ≤ HX (A1, B1) + HX (A2, B2),

where A1 + A2 denotes the Minkowski sum of A1 and A2.

Let (U,U , µ) be a measure space. Recall that a set-valued mapping F : U →
Kb(X ) is said to be measurable if it satisfies:

{u ∈ U : F (u) ∩ C 6= ∅} ∈ U for every closed set C ⊂ X .

A measurable multifunction F is said to be Lp-integrably bounded (p ≥ 1), if there

exists h ∈ Lp(U,U , µ; R+) such that the inequality ‖|F |‖ ≤ h holds µ-a.e., where

‖|A|‖ = HX (A, {0}) = sup
a∈A

||a||X for A ∈ Kb(X ),

and R+ = [0,∞). Consequently, it is known (see [13]) that F is Lp-integrably bounded

if and only if ‖|F |‖ ∈ Lp(U,U , µ; R+).

Let M be a set of U-measurable mappings f : U → X . The set M is said to be

decomposable if for every f1, f2 ∈ M and every A ∈ U it holds f11A + f21U\A ∈ M.

Denote I = [0, T ], where T < ∞. Let (Ω,A, {At}t∈I , P ) be a complete filtered

probability space satisfying the usual hypotheses, i.e. {At}t∈I is an increasing and

right continuous family of sub-σ-algebras of A and A0 contains all P -null sets.

Let {B(t)}t∈I be an {At}-adapted Wiener process. We put U = I × Ω, U = N ,

where N denotes the σ-algebra of the nonanticipating elements in I × Ω, i.e.

N = {A ∈ βI ⊗A : At ∈ At for every t ∈ I},

where βI is the Borel σ-algebra of subsets of I and At = {ω : (t, ω) ∈ A} for t ∈ I.

Finally we set µ = λ × P as a measure, where λ is the Lebesgue measure on (I, βI).

A d-dimensional stochastic process f : I × Ω → R
d is called nonanticipating if f

is N -measurable. Clearly N ⊂ βI ⊗ A. It is known that f is N -measurable if and

only if f is βI ⊗A-measurable and {At}-adapted.

Consider the space

L2
N (λ × P ) := L2(I × Ω,N , λ × P ; Rd).
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Then for every f ∈ L2
N (λ × P ) and τ, t ∈ I, τ < t the Itô stochastic integral

∫ t

τ
f(s)dB(s) exists and one has

∫ t

τ
f(s)dB(s) ∈ L2(Ω,At, P ; Rd) ⊂ L2(Ω,A, P ; Rd).

Moreover

E

∣

∣

∣

∫ t

τ

f(s)dB(s)
∣

∣

∣

2

= E

(
∫ t

τ

|f(s)|2ds

)

=

∫

[τ,t]×Ω

|f |2ds × dP,

where | · | denotes usual Euclidean norm in R
d (see [16] for details).

Let F : I ×Ω → Kb(Rd) be a set-valued stochastic process, i.e. a family {F (t)}t∈I

of A-measurable set-valued mappings F (t) : Ω → Kb(Rd), t ∈ I. We call F nonantic-

ipating if it is N -measurable. Let us define the set

S2
N (F, λ × P ) := {f ∈ L2

N (λ × P ) : f ∈ F, λ × P -a.e.}.

If F is L2
N (λ×P )-integrably bounded, then by Kuratowski and Ryll-Nardzewski

Selection Theorem (see e.g. [21]) it follows that S2
N (F, λ × P ) 6= ∅. Hence for every

τ, t ∈ I, τ < t we can define the set-valued trajectory Itô stochastic integral

J t
τ (F ) :=

{
∫ t

τ

f(s)dB(s) : f ∈ S2
N (F, λ × P )

}

.

Remark 2.1. By the above definition we have J t
τ (F ) ⊂ L2(Ω,A, P ; Rd).

In the rest of the paper, for the sake of convenience, we will write L2 instead of

L2(Ω,A, P ; Rd).

Proposition 2.2. Let F : I × Ω → Kb(Rd) be a nonanticipating and L2
N (λ × P )-

integrably bounded set-valued stochastic process. Then

(i) S2
N (F, λ × P ) is nonempty, bounded, closed, weakly compact and decomposable

subset of L2
N (λ × P ),

(ii) J t
τ (F ) is nonempty, bounded, closed and weakly compact subset of L2(Ω,At, P ; Rd)

for every τ, t ∈ I, τ < t.

Proof. The proof of part (i) follows immediately from the assumptions imposed on

F . The decomposability of S2
N (F, λ × P ) follows by Theorem 3.1 in [13].

For the proof of the part (ii) let us take u ∈ J t
τ (F ). Then there exists f ∈

S2
N (F, λ × P ) such that u =

∫ t

τ
f(s)dB(s). Thus by Doob’s maximal inequality we

have

E|u|2 ≤ E

(

sup
v∈[τ,t]

∣

∣

∣

∫ v

τ

f(s)dB(s)
∣

∣

∣

2
)

≤ 2E

∣

∣

∣

∫ t

τ

f(s)dB(s)
∣

∣

∣

2

=

∫

[τ,t]×Ω

|f |2ds × dP
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≤
∫

I×Ω

‖|F |‖2ds × dP.

Thus we have that J t
τ (F ) is a bounded subset of L2(Ω,At, P ; Rd) for τ, t ∈ I, τ < t.

Under the assumptions, the set S2
N (F, λ × P ) is also norm-closed. Moreover, from

the above estimations it follows that the sets S2
N (F, λ × P ) and J t

τ (F ) are bounded

in reflexive spaces L2
N (λ × P ) and L2(Ω,At, P ; Rd), respectively. Thus the set J t

τ (F )

is conditionally weakly compact and S2
N (F, λ × P ) is weakly compact (see [10]). Let

{un} ⊂ J t
τ (F ) and let us suppose un → u in L2(Ω,At, P ; Rd). Then there exist a

sequence {fn} ⊂ S2
N (F, λ×P ) such that un =

∫ t

τ
fn(s)dB(s) for n ∈ N. Hence, by Itô

isometry for Itô integral, we infer that {fn} is a Cauchy sequence in L2
N (λ×P ). Thus

it has to be convergent to some element f ∈ L2
N (λ × P ). Since the set S2

N (F, λ × P )

is closed, we conclude that u =
∫ t

τ
f(s)dB(s). This proves the closedness of the set

J t
τ (F ) and consequently its weak compactness. �

Remark 2.3. If F : I ×Ω → Kb
c(R

d) is a nonanticipating and L2
N (λ × P )-integrably

bounded set-valued stochastic process, then S2
N (F, λ×P ) and J t

τ (F ) are convex sets.

Theorem 2.4. For each n ∈ N, let Fn : I × Ω → Kb(Rd) be a nonanticipating set-

valued stochastic processes such that F1 is L2
N (λ × P )-integrably bounded and

F1 ⊃ F2 ⊃ . . . ⊃ F λ × P -a.e.,

where F :=
∞
⋂

n=1

Fn λ × P -a.e. Then for every τ, t ∈ I, τ < t it holds

J t
τ (F ) =

∞
⋂

n=1

J t
τ (Fn).

Proof. Firstly, let us note that by Theorem 3.3 in [21] a set-valued mapping F is

nonanticipating and L2
N (λ × P )-integrably bounded. Since

S2
N (F1, λ × P ) ⊃ S2

N (F2, λ × P ) ⊃ . . . ⊃ S2
N (F, λ × P ),

we infer that S2
N (F, λ × P ) ⊂

∞
⋂

n=1

S2
N (Fn, λ × P ). Let us suppose that there exists

f ∈
∞
⋂

n=1

S2
N (Fn, λ × P ) \ S2

N (F, λ × P ). Then for every n ∈ N it holds f ∈ Fn

λ × P -a.e., and consequently f ∈ F λ × P -a.e. Since f ∈ L2
N (λ × P ), it has

to belong to the set S2
N (F, λ × P ) too. This leads to the contradiction. Hence

S2
N (F, λ × P ) =

∞
⋂

n=1

S2
N (Fn, λ × P ). Thus for every fixed τ, t ∈ I, τ < t we have

{
∫ t

τ

f(s)dB(s) : f ∈ S2
N (F, λ × P )

}

=

∞
⋂

n=1

{
∫ t

τ

f(s)dB(s) : f ∈ S2
N (Fn, λ × P )

}

,
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what completes the proof. �

Theorem 2.5. Let F1, F2 : I × Ω → Kb(Rd) be the nonanticipating and L2
N (λ × P )-

integrably bounded set-valued stochastic processes. Then for every τ, t ∈ I, τ < t it

holds

H2
L2

(

J t
τ (F1), J

t
τ (F2)

)

≤
∫

[τ,t]×Ω

H2
Rd(F1, F2)ds × dP.

Proof. Let us fix τ, t ∈ I such that τ < t. Then, for a fixed selection f1 ∈ S2
N (F1, λ×P )

let us define a function ϕ : I × Ω × R
d → R+ by

ϕ(t, ω, x) := |f1(t, ω) − x|2.

Then ϕ(·, ·, x) is N -measurable for every fixed x ∈ R
d and the mapping ϕ(t, ω, ·) is

continuous for every fixed (t, ω) ∈ I × Ω. Hence by Theorem 2.2 in [13] we obtain

dist2
L2

(
∫ t

τ

f1(s)dB(s), J t
τ(F2)

)

= inf
f2∈S2

N
(F2,λ×P )

∥

∥

∥

∫ t

τ

f1(s)dB(s) −
∫ t

τ

f2(s)dB(s)
∥

∥

∥

2

L2

= inf
f2∈S2

N
(F2,λ×P )

∫

[τ,t]×Ω

ϕ(s, ω, f2(s, ω))ds× dP

=

∫

[τ,t]×Ω

inf
x∈F2(s,ω)

ϕ(s, ω, x)ds × dP

≤
∫

[τ,t]×Ω

H2
Rd(F1, F2)ds × dP.

Therefore we claim that

sup
j1∈Jt

τ (F1)

dist2
L2

(

j1, J
t
τ (F2)

)

≤
∫

[τ,t]×Ω

H2
Rd(F1, F2)ds × dP.

In a similar way one can show that

sup
j2∈Jt

τ (F2)

dist2
L2

(

j2, J
t
τ (F1)

)

≤
∫

[τ,t]×Ω

H2
Rd(F1, F2)ds × dP.

�

Lemma 2.6. Let F : I ×Ω → Kb(Rd) be a nonanticipating and L2
N (λ×P )-integrably

bounded set-valued stochastic process. Then for every τ, a, t ∈ I such that τ ≤ a ≤ t

it holds

(2.1) J t
τ (F ) = Ja

τ (F ) + J t
a(F ).
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Proof. It is clear that J t
τ (F ) ⊂ Ja

τ (F ) + J t
a(F ). We want to show that the opposite

inclusion holds. Let us fix the random variables j1, j2 that belong to Ja
τ (F ) and J t

a(F ),

respectively. Then there exist f1, f2 ∈ S2
N (F, λ × P ) such that j1 =

∫ a

τ
f1(s)dB(s),

j2 =
∫ t

a
f2(s)dB(s). Let us take any f3 ∈ S2

N (F, λ × P ). Since S2
N (F, λ × P ) is

decomposable with respect to σ-algebra N , we infer that

f(s, ω) = f1(s, ω)1[τ,a]×Ω(s, ω) + f2(s, ω)1(a,t]×Ω(s, ω)

+ f3(s, ω)1(t,T ]×Ω(s, ω)

belongs to S2
N (F, λ × P ), too. Observe that j1 + j2 =

∫ t

τ
f(s)dB(s). This completes

the proof. �

Application of (2.1) together with Theorem 2.5 yields the following result.

Theorem 2.7. Let F : I×Ω → Kb(Rd) be a nonanticipating and L2
N (λ×P )-integrably

bounded set-valued stochastic process. Then the mapping

[τ, T ] ∋ t 7→ J t
τ (F ) ∈ Kb(L2)

is continuous with respect to the metric HL2.

Now we consider the set-valued trajectory Aumann stochastic integral. Similarly

as in the preceding considerations, let F : I × Ω → Kb(Rd) be a nonanticipating

and L2
N (λ × P )-integrably bounded set-valued stochastic process. Then for τ, t ∈ I,

τ < t we define set-valued trajectory Aumann stochastic integral Lt
τ (F ) as a subset

of L2(Ω,At, P ; Rd) and described by

Lt
τ (F ) :=

{
∫ t

τ

f(s)ds : f ∈ S2
N (F, λ × P )

}

.

Then for every f ∈ S2
N (F, λ × P ) one has

E

∣

∣

∣

∫ t

τ

f(s)ds
∣

∣

∣

2

≤ (t − τ)

∫

[τ,t]×Ω

|f |2ds × dP.

Proposition 2.8. Let F : I × Ω → Kb(Rd) be a nonanticipating and L2
N (λ × P )-

integrably bounded set-valued stochastic process. Then set-valued trajectory stochastic

integral Lt
τ (F ) is nonempty, bounded, closed and weakly compact subset of L2(Ω,At, P ;

R
d).

Proof. The boundedness property follows by the inequality above. The conditional

weak compactness follows as in the proof of Proposition 2.2. Let {un} ⊂ Lt
τ (F ) and

let un → u in L2(Ω,At, P ; Rd). Then there exists a sequence {fn} ⊂ S2
N (F, λ × dP )

such that un =
∫ t

τ
fn(s)ds. Since the set S2

N (F, λ×P ) is weakly compact, there exists

a subsequence {fnk
} of {fn} such that fnk

⇀ f in L2
N (λ×P ), where ⇀ denotes weak

convergence. But S2
N (F, λ × P ) is weakly closed, thus f ∈ S2

N (F, λ× P ). For a fixed
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τ, t ∈ I, τ < t, let us consider a linear operator T t
τ : L2

N (λ × P ) → L2(Ω,At, P ; Rd)

defined by T t
τ (g) :=

∫ t

τ
g(s)ds. By the inequality above, it follows that T t

τ is norm-

to-norm continuous. Hence by Dunford–Schwartz Theorem (see [10]) it is equivalent

to the fact that T t
τ is continuous with respect to weak topologies. Therefore unk

=

T t
τ (fnk

) ⇀ T t
τ (f) in L2(Ω,At, P ; Rd), and hence u = T t

τ (f). This proves the closedness

of the set Lt
τ (F ) in the norm topology of the space L2(Ω,At, P ; Rd), and consequently

also its weak compactness. �

Remark 2.9. If F : I ×Ω → Kb
c(R

d) is a nonanticipating and L2
N (λ × P )-integrably

bounded set-valued stochastic process, then Lt
τ (F ) is a convex set.

Clearly we have also that for every τ, a, t ∈ I, τ ≤ a ≤ t it holds

Lt
τ (F ) = La

τ (F ) + Lt
a(F ).

Moreover, if F1, F2 : I × Ω → Kb(Rd) are the nonanticipating and L2
N (λ × P )-

integrably bounded set-valued stochastic processes, then for every τ, t ∈ I, τ < t,

similarly as in the proof of Theorem 2.5, one can derive the following:

for every f1 ∈ S2
N (F1, λ × P ) we have

dist2
L2

(
∫ t

τ

f1(s)ds, Lt
τ (F2)

)

= inf
f2∈S2

N
(F2,λ×P )

E

∣

∣

∣

∫ t

τ

(f1(s) − f2(s))ds
∣

∣

∣

2

≤ (t − τ) inf
f2∈S2

N
(F2,λ×P )

∫

[τ,t]×Ω

|f1(s) − f2(s)|2ds × dP

= (t − τ)

∫

[τ,t]×Ω

inf
x∈F2(s,ω)

ϕ(s, ω, x)ds × dP

≤ (t − τ)

∫

[τ,t]×Ω

H2
Rd(F1, F2)ds × dP,

where ϕ : I × Ω × R
d → R+ is defined as ϕ(s, ω, x) := |f1(s, ω)− x|2. Hence we have

the following result.

Theorem 2.10. Let F1, F2 : I ×Ω → Kb(Rd) be the nonanticipating and L2
N (λ×P )-

integrably bounded set-valued stochastic processes. Then for every τ, t ∈ I, τ < t it

holds

H2
L2

(

Lt
τ (F1), L

t
τ (F2)

)

≤ (t − τ)

∫

[τ,t]×Ω

H2
Rd(F1, F2)ds × dP.

Remark 2.11. Similarly as in Theorem 2.7 one obtains that the mapping

[τ, T ] ∋ t 7→ Lt
τ (F ) ∈ Kb(L2)

is continuous with respect to HL2.
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Finally, using the same arguments as in the proof of Theorem 2.4 one can show

the following result.

Theorem 2.12. For each n ∈ N, let Fn : I × Ω → Kb(Rd) be a nonanticipating

set-valued stochastic processes such that F1 is L2
N (λ × P )-integrably bounded and

F1 ⊃ F2 ⊃ · · · ⊃ F λ × P -a.e.,

where F :=
∞
⋂

n=1

Fn λ × P -a.e. Then for every τ, t ∈ I, τ < t it holds

Lt
τ (F ) =

∞
⋂

n=1

Lt
τ (Fn).

3. FUZZY TRAJECTORY STOCHASTIC INTEGRALS AND FUZZY

STOCHASTIC INTEGRAL EQUATION

As it was announced in the Introduction, in this section we recall some fundamen-

tal facts concerning fuzzy sets and fuzzy stochastic processes. Then we formulate the

results of existence of fuzzy trajectory stochastic integrals of Itô and Aumann type.

Finally we consider the fuzzy stochastic integral equations with the fuzzy trajectory

stochastic integrals.

Let X be a given separable, reflexive Banach space. By a fuzzy set u of the space

X we mean a function u : X → [0, 1]. We denote this fact as u ∈ F(X ). For α ∈ (0, 1]

denote [u]α := {x ∈ X : u(x) ≥ α} and let [u]0 := clX{x ∈ X : u(x) > 0}, where clX

denotes the closure in (X , ‖ · ‖X ). The sets [u]α are called the α-level sets of fuzzy set

u, and 0-level set is called the support of u.

We will use the following Representation Theorem of Negoita–Ralescu [36].

Theorem 3.1. Let M ⊂ X be a set and let {Cα : α ∈ [0, 1]} be a family of subsets

of M such that

(i) C0 = M ,

(ii) C0 ⊃ Cα ⊃ Cβ for 0 ≤ α ≤ β,

(iii) if αn ր α then Cα =
∞
⋂

n=1

Cαn
.

Then there exists u ∈ F(X ) such that [u]α = Cα for every α ∈ [0, 1]. Moreover

u(x) =







sup{α : x ∈ Cα}, if x ∈ M ,

0, if x 6∈ M .

In the sequel we will deal with fuzzy sets which have some additional properties.

Therefore we introduce the notation

F b(X ) = {u ∈ F(X ) : [u]α ∈ Kb(X ) for every α ∈ [0, 1]},
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F b
c (X ) = {u ∈ F b(X ) : [u]α ∈ Kb

c(X ) for every α ∈ [0, 1]}.

The following metric DX in F b(X ) is often used:

DX (u, v) := sup
α∈[0,1]

HX ([u]α, [v]α) for u, v ∈ F b(X ).

This metric generalizes the Hausdorff metric HX , and has the property

DX (u1 + u2, v1 + v2) ≤ DX (u1, v1) + DX (u2, v2) for u1, u2, v1, v2 ∈ F b
c (X ),

where the addition of fuzzy sets is defined levelwise, i.e.

[u1 + u2]
α = [u1]

α + [u2]
α for α ∈ [0, 1].

It is known (see [43]) that (F b(X ), DX ) is a complete metric space. It is also easy

to see that F b
c (X ) is a closed subset of F b(X ).

For our aims we will consider two cases of X . Namely we will take X = R
d or

X = L2, where we assume (from now on) that σ-algebra A is separable with respect

to probability measure P .

By a fuzzy random variable we mean a function u : Ω → F b(X ) such that

[u(·)]α : Ω → Kb(X ) is an A-measurable set-valued mapping for every α ∈ (0, 1].

A fuzzy set-valued mapping f : I×Ω → F b(X ) is called a fuzzy stochastic process

if f(t, ·) : Ω → F b(X ) is a fuzzy random variable for every t ∈ I.

The fuzzy stochastic process f : I × Ω → F b(X ) is said to be nonanticipating if

the set-valued mapping [f ]α : I × Ω → Kb(X ) is N -measurable for every α ∈ (0, 1].

A fuzzy stochastic process f is called {At}-adapted, if f(t, ·) is an At-measurable

fuzzy random variable for every t ∈ I.

Let f : I×Ω → F b(X ) be a nonanticipating fuzzy stochastic process. The process

f is said to be L2
N (λ × P )-integrably bounded, if ‖|[f ]0|‖ ∈ L2

N (λ × P ).

Consider now f : I × Ω → F b(Rd) and assume that it is nonanticipating and

L2
N (λ × P )-integrably bounded fuzzy stochastic process. For α-levels (α ∈ [0, 1]) of

such a fuzzy stochastic process f one can consider set-valued trajectory stochastic

integrals J t
τ ([f ]α) and Lt

τ ([f ]α) for every τ, t ∈ I, τ < t.

Then by Theorem 2.4, Theorem 2.12 and Theorem 3.1 for every τ, t ∈ I, τ < t

there exist fuzzy sets in F b(L2) denoted by

(F)

∫ t

τ

f(s)dB(s) and (F)

∫ t

τ

f(s)ds

such that for every α ∈ [0, 1]
[

(F)

∫ t

τ

f(s)dB(s)

]α

= J t
τ ([f ]α),

[

(F)

∫ t

τ

f(s)ds

]α

= Lt
τ ([f ]α).
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Definition 3.2. The fuzzy sets

(F)

∫ t

τ

f(s)dB(s) ∈ F b(L2), (F)

∫ t

τ

f(s)ds ∈ F b(L2)

described above are called the fuzzy trajectory stochastic Itô integral and fuzzy tra-

jectory stochastic Aumann integral (respectively) of nonanticipating and L2
N (λ×P )-

integrably bounded fuzzy stochastic process f : I × Ω → F b(Rd).

Note that the sum of these integrals not necessarily is the fuzzy set from F b(L2).

Remark 3.3. If we assume additionally that f has convex α-level sets, i.e. f : I×Ω →
F b

c (R
d) then

(F)

∫ t

τ

f(s)dB(s) ∈ F b
c (L

2), (F)

∫ t

τ

f(s)ds ∈ F b
c (L

2),

and as a consequence

(F)

∫ t

τ

f(s)ds + (F)

∫ t

τ

f(s)dB(s) ∈ F b
c (L

2).

This fact we will use later in (3.3).

One can show that for every τ, a, t ∈ I, τ ≤ a ≤ t it holds

(3.1) (F)

∫ t

τ

f(s)dB(s) = (F)

∫ a

τ

f(s)dB(s) + (F)

∫ t

a

f(s)dB(s),

(3.2) (F)

∫ t

τ

f(s)ds = (F)

∫ a

τ

f(s)ds + (F)

∫ t

a

f(s)ds.

Directly by Theorem 2.5 and Theorem 2.10 we have the following result.

Corollary 3.4. Let f, g : I × Ω → F b(Rd) be a nonanticipating and L2
N (λ × P )-

integrably bounded fuzzy stochastic processes. Then for every τ, t ∈ I, τ < t

D2
L2

(

(F)

∫ t

τ

f(s)dB(s), (F)

∫ t

τ

g(s)dB(s)

)

≤
∫

[τ,t]×Ω

D2
Rd(f, g)ds × dP,

and

D2
L2

(

(F)

∫ t

τ

f(s)ds, (F)

∫ t

τ

g(s)ds

)

≤ (t − τ)

∫

[τ,t]×Ω

D2
Rd(f, g)ds × dP.

Applying (3.1) and (3.2) we obtain:

Corollary 3.5. Let f : I×Ω → F b(Rd) be a nonanticipating and L2
N (λ×P )-integrably

bounded fuzzy stochastic process. Then the mappings

[τ, T ] ∋ t 7→ (F)

∫ t

τ

f(s)dB(s) ∈ F b(L2),
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[τ, T ] ∋ t 7→ (F)

∫ t

τ

f(s)ds ∈ F b(L2),

are continuous with respect to the metric DL2.

In the sequel we want to consider some fuzzy equation in which the fuzzy trajec-

tory stochastic integrals appear.

Denote L2
0 = L2(Ω,A0, P ; Rd). Let f, g : I × Ω × F b

c (L
2) → F b

c (R
d) and let

X0 ∈ F b
c (L

2
0). By a fuzzy stochastic integral equation we mean the following relation

in the space F b
c (L

2):

(3.3) X(t) = X0 + (F)

∫ t

0

f(s, X(s))ds + (F)

∫ t

0

g(s, X(s))dB(s) for t ∈ I.

Definition 3.6. By a solution to (3.3) we mean a continuous mapping X : I →
F b

c (L
2) that satisfies (3.3). A solution X : I → F b

c (L
2) to (3.3) is unique if

X(t) = Y (t) for every t ∈ I,

where Y : I → F b
c (L

2) is any solution of (3.3).

Below we write down the detailed conditions which will be imposed on the coef-

ficients of the equation.

Assume that f, g : I × Ω ×F b
c (L

2) → F b
c (R

d) satisfy:

(f1) for every u ∈ F b
c (L

2) the mappings

f(·, ·, u), g(·, ·, u) : I × Ω → F b
c (R

d)

are the nonanticipating fuzzy stochastic processes,

(f2) there exists a constant K > 0 such that

DRd

(

f(t, u), f(t, v)
)

+ DRd

(

g(t, u), g(t, v)
)

≤ KDL2(u, v)

for every (t, ω) ∈ I × Ω, and every u, v ∈ F b
c (L

2),

(f3) there exists a constant C > 0 such that

DRd

(

f(t, u), θ̂
)

+ DRd

(

g(t, u), θ̂
)

≤ C
(

1 + DL2(u, Θ̂)
)

,

for every (t, ω) ∈ I × Ω, and every u ∈ F b
c (L

2).

To describe the symbols θ̂, Θ̂ let θ, Θ denote the zero elements in R
d and L2, re-

spectively. Then the symbols θ̂, Θ̂ are their fuzzy counterparts, i.e. [θ̂]α = {θ} and

[Θ̂]α = {Θ} for every α ∈ [0, 1].

Theorem 3.7. Let X0 ∈ F b
c (L

2
0), and f, g : I × Ω × F b

c (L
2) → F b

c (R
d) satisfy the

conditions (f1)-(f3). Then the equation (3.3) has a unique solution.
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Proof. Let us define a sequence Xn : I → F b
c (L

2), n = 0, 1, . . . of successive approxi-

mations as follows:

X0(t) = X0, for every t ∈ I,

and for n = 1, 2, . . .

Xn(t) = X0 + (F)

∫ t

0

f(s, Xn−1(s))ds + (F)

∫ t

0

g(s, Xn−1(s))dB(s)

for every t ∈ I.

Due to Corollary 3.5, the mappings Xn are continuous.

By Corollary 3.4 and assumptions (f1), (f3) one gets

D2
L2

(

(F)

∫ t

0

f(s, X0)ds, Θ̂
)

= D2
L2

(

(F)

∫ t

0

f(s, X0)ds, (F)

∫ t

0

θ̂ds
)

≤ T

∫

I×Ω

D2
Rd

(

f(s, X0), θ̂
)

ds × dP ≤ ηT 2,

where η = 2C2(1 + D2
L2(X0, Θ̂)). Similarly we have

D2
L2

(

(F)

∫ t

0

g(s, X0)dB(s), Θ̂
)

= D2
L2

(

(F)

∫ t

0

g(s, X0)dB(s), (F)

∫ t

0

θ̂ds
)

≤
∫

I×Ω

D2
Rd

(

g(s, X0), θ̂
)

ds × dP ≤ ηT.

Therefore for every t ∈ I

D2
L2

(

X1(t), X0(t)
)

≤ 2D2
L2

(

(F)

∫ t

0

f(s, X0)ds, Θ̂
)

+ 2D2
L2

(

(F)

∫ t

0

g(s, X0)dB(s), Θ̂
)

≤ 2ηT (T + 1).

Observe further that for n = 2, 3, . . ., using Corollary 3.4 and assumptions (f1)-(f2),

one has

D2
L2

(

Xn(t), Xn−1(t)
)

≤ 2D2
L2

(

(F)

∫ t

0

f(s, Xn−1(s))ds, (F)

∫ t

0

f(s, Xn−2(s))ds
)

+ 2D2
L2

(

(F)

∫ t

0

g(s, Xn−1(s))dB(s), (F)

∫ t

0

g(s, Xn−2(s))dB(s)
)

≤ 2T

∫

I×Ω

D2
Rd

(

f(s, Xn−1(s)), f(s, Xn−2(s))
)

ds × dP

+ 2

∫

I×Ω

D2
Rd

(

g(s, Xn−1(s)), g(s, Xn−2(s))
)

ds × dP
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≤ 2K2(T + 1)

∫ T

0

D2
L2

(

Xn−1(s), Xn−2(s)
)

ds.

Thus we obtain

sup
t∈I

D2
L2

(

Xn(t), Xn−1(t)
)

≤ ηK−2 [2K2T (T + 1)]n

n!
.

Let us consider the space C(I,F b
c (L

2)) of continuous mappings X : I → F b
c (L

2) with

a distance ρ defined by

ρ(X, Y ) = sup
t∈I

DL2(X(t), Y (t)) for X, Y ∈ C(I,F b
c (L

2)).

It is clear that
(

C(I,F b
c (L

2)), ρ
)

is a complete metric space. Since {Xn} ⊂ C(I,F b
c (L

2))

and for m < n

ρ(Xn, Xm

)

= sup
t∈I

DL2(Xn(t), Xm(t)) ≤ √
ηK−1

n
∑

k=m+1

√

(2K2T (T + 1))k

k!
,

we infer that {Xn}∞n=0 is a Cauchy sequence in
(

C(I,F b
c (L

2)), ρ
)

. Thus there is

X ∈ C(I,F b
c (L

2)) such that ρ(Xn, X) → 0, as n → ∞.

We shall show that X is a solution to (3.3). Let t ∈ I be fixed. We have

D2
L2

(

X(t), X0 + (F)

∫ t

0

f(s, X(s))ds + (F)

∫ t

0

g(s, X(s))dB(s)
)

≤ 3D2
L2

(

Xn(t), X(t)
)

+ 3D2
L2

(

Xn(t), X0 + (F)

∫ t

0

f(s, Xn−1(s))ds

+ (F)

∫ t

0

g(s, Xn−1(s))dB(s)
)

+ 6D2
L2

(

(F)

∫ t

0

f(s, Xn−1(s))ds, (F)

∫ t

0

f(s, X(s))ds
)

+ 6D2
L2

(

(F)

∫ t

0

g(s, Xn−1(s))dB(s), (F)

∫ t

0

g(s, X(s))dB(s)
)

,

The first term on the right-hand side of the inequality converges to zero, whereas the

second is equal to zero. Since

D2
L2

(

(F)

∫ t

0

f(s, Xn−1(s))ds, (F)

∫ t

0

f(s, X(s))ds
)

≤ TK2

∫ T

0

D2
L2

(

Xn−1(s), X(s)
)

ds,

≤ T 2K2 sup
t∈I

D2
L2

(

Xn−1(t), X(t)
)

→ 0, as n → ∞,

and

D2
L2

(

(F)

∫ t

0

g(s, Xn−1(s))dB(s), (F)

∫ t

0

g(s, X(s))dB(s)
)
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≤ K2

∫ T

0

D2
L2

(

Xn−1(s), X(s)
)

ds,

≤ TK2 sup
t∈I

D2
L2

(

Xn−1(t), X(t)
)

→ 0, as n → ∞,

we infer that

DL2

(

X(t), X0 + (F)

∫ t

0

f(s, X(s))ds + (F)

∫ t

0

g(s, X(s))dB(s)
)

= 0

for every t ∈ I.

For the uniqueness assume that X : I → F b
c (L

2) and Y : I → F b
c (L

2) are two

solutions to (3.3). Then let us notice that

D2
L2

(

X(t), Y (t)
)

≤ 2K2(T + 1)

∫ t

0

D2
L2

(

X(s), Y (s)
)

ds.

Thus, by Gronwall’s lemma, we obtain

D2
L2

(

X(t), Y (t)
)

≤ 0 for every t ∈ I.

Therefore the uniqueness of the solution follows. �

The next result presents some estimation for the solution to (3.3).

Theorem 3.8. Let X0 ∈ F b
c (L

2
0) and f, g : I × Ω × F b

c (L
2) → F b

c (R
d) satisfy the

assumptions of Theorem 3.7. Then the solution X of (3.3) satisfies

sup
t∈I

D2
L2

(

X(t), Θ̂
)

≤
(

3D2
L2

(

X0, Θ̂
)

+ 6C2T (T + 1)
)

e6C2T (T+1).

Proof. Let us fix t ∈ I. Using Corollary 3.4 and assumption (f3) we obtain

D2
L2

(

X(t), Θ̂
)

≤ 3D2
L2(X0, Θ̂) + 3D2

L2

(

(F)

∫ t

0

f(s, X(s))ds, Θ̂
)

+ 3D2
L2

(

(F)

∫ t

0

g(s, X(s))ds, Θ̂
)

≤ 3D2
L2(X0, Θ̂) + 3t

∫

[0,t]×Ω

D2
Rd

(

f(s, X(s)), θ̂
)

ds × dP

+ 3

∫

[0,t]×Ω

D2
Rd

(

g(s, X(s)), θ̂
)

ds × dP

≤ 3D2
L2(X0, Θ̂) + 6C2t(t + 1) + 6C2(t + 1)

∫ t

0

D2
L2

(

X(s), Θ̂
)

ds

Now it is enough to apply the Gronwall lemma to get the result. �

Next we will show a continuous dependence on initial conditions of the solution

to (3.3). Let X, Y denote the solutions of the equations

(3.4) X(t) = X0 + (F)

∫ t

0

f(s, X(s))ds + (F)

∫ t

0

g(s, X(s))dB(s) for t ∈ I,
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(3.5) Y (t) = Y0 + (F)

∫ t

0

f(s, Y (s))ds + (F)

∫ t

0

g(s, Y (s))dB(s) for t ∈ I,

respectively. Assume that X0, Y0 and f, g satisfy the conditions as in Theorem 3.7.

Theorem 3.9. For the solutions X, Y of the equations (3.4), (3.5) it holds

sup
t∈I

D2
L2(X(t), Y (t)) ≤ 3D2

L2(X0, Y0)e
3K2T (T+1).

Proof. It is enough to notice that for every t ∈ I one has

D2
L2

(

X(t), Y (t)
)

≤ 3D2
L2(X0, Y0) + 3t

∫

[0,t]×Ω

D2
Rd

(

f(s, X(s)), f(s, Y (s))
)

ds × dP

+ 3

∫

[0,t]×Ω

D2
Rd

(

g(s, X(s)), g(s, Y (s))
)

ds × dP

≤ 3D2
L2(X0, Y0) + 3K2(t + 1)

∫ t

0

D2
L2

(

X(s), Y (s)
)

ds.

Now application of the Gronwall lemma gives the result. �

Finally we present the stability property of solutions to the system of fuzzy sto-

chastic integral equations.

Let us consider the following equations:

X(t) = X0 + (F)

∫ t

0

f(s, X(s))ds + (F)

∫ t

0

g(s, X(s))dB(s) for t ∈ I,

and for n = 1, 2, . . .

Xn(t) = X0,n + (F)

∫ t

0

fn(s, Xn(s))ds + (F)

∫ t

0

gn(s, Xn(s))dB(s)

for t ∈ I.

Theorem 3.10. Let f, g, fn, gn : I × Ω × F b
c (L

2) → F b
c (R

d) satisfy the conditions

(f1)-(f3) with the same constants K, C. Let also X0, X0,n ∈ F b
c (L

2
0) for every n ∈ N.

Assume that

(i) DL2

(

X0,n, X0

)

→ 0,

(ii) DRd

(

fn(t, u), f(t, u)
)

→ 0, for every (t, ω, u) ∈ I × Ω × F b
c (L

2),

(iii) DRd

(

gn(t, u), g(t, u)
)

→ 0, for every (t, ω, u) ∈ I × Ω × F b
c (L

2).

Then

sup
t∈I

DL2

(

Xn(t), X(t)
)

→ 0, as n → ∞.
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Proof. By virtue of Corollary 3.4, assumptions (f1)-(f3), let us note that for every

t ∈ I one can show the following estimations:

D2
L2

(

Xn(t), X(t)
)

≤ 3D2
L2

(

X0,n, X0

)

+ 3t

∫

[0,t]×Ω

D2
Rd

(

fn(s, Xn(s)), f(s, X(s))
)

ds × dP

+ 3

∫

[0,t]×Ω

D2
Rd

(

gn(s, Xn(s)), g(s, X(s))
)

ds × dP

≤ 3D2
L2

(

X0,n, X0

)

+ 6t

∫

[0,t]×Ω

D2
Rd

(

fn(s, X(s)), f(s, X(s))
)

ds × dP

+ 6

∫

[0,t]×Ω

D2
Rd

(

gn(s, X(s)), g(s, X(s))
)

ds × dP

+ 6K2(t + 1)

∫ t

0

D2
L2

(

Xn(s), X(s)
)

ds.

Application of Gronwall’s lemma yields

D2
L2

(

Xn(t), X(t)
)

≤
(

3D2
L2

(

X0,n, X0

)

+ 6t

∫

[0,t]×Ω

D2
Rd

(

fn(s, X(s)), f(s, X(s))
)

ds × dP

+ 6

∫

[0,t]×Ω

D2
Rd

(

gn(s, X(s)), g(s, X(s))
)

ds × dP
)

e6K2t(t+1).

Using the assumptions and the Lebesgue Dominated Convergence Theorem we end

the proof. �

4. SET-VALUED STOCHASTIC INTEGRAL EQUATIONS

In this section we consider set-valued stochastic integral equations. The moti-

vation of the study of such equations comes from the deterministic case, where the

study of them has been used as an alternative approach to the issue of fuzzy differ-

ential equations (see e.g. [26, 28]). The idea used there was to repleace an original

fuzzy differential equation by the system of set-valued differential equations gener-

ated from the original fuzzy setup. Such procedure avoided the main disadvantage

of studying directly the fuzzy differential equation in the original formulation, i.e,

the lack of a reflection of the rich behaviour of corresponding differential equations

without fuzziness. As it was shown, it had been caused by the fact that the diameter

of any solution of a fuzzy differential equation increases as time increases because

of the necessity of the fuzzification of the derivative involved. Taking these remarks

into consideration, let F, G : I × Ω × Kb
c(L

2) → Kb
c(R

d) and let X0 ∈ Kb
c(L

2
0). By a
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set-valued stochastic integral equation we mean the following relation in the space

Kb
c(L

2):

(4.1) X(t) = X0 + Lt
0(F (X)) + J t

0(G(X)) for t ∈ I,

where F (X), G(X) : I × Ω → Kb
c(R

d) are defined by F (X)(t, ω) = F (t, ω, X(t)),

G(X)(t, ω) = G(t, ω, X(t)) for (t, ω) ∈ I × Ω.

Definition 4.1. By a solution to (4.1) we mean a continuous mapping X : I → Kb
c(L

2)

that satisfies (4.1). A solution X : I → Kb
c(L

2) to (4.1) is unique if

X(t) = Y (t) for every t ∈ I,

where Y : I → Kb
c(L

2) is any solution of (4.1).

Now we formulate the conditions required from the equation coefficients.

Assume that F, G : I × Ω ×Kb
c(L

2) → Kb
c(R

d) satisfy:

(s1) for every u ∈ Kb
c(L

2) the mappings

F (·, ·, u), G(·, ·, u) : I × Ω → Kb
c(R

d)

are the nonanticipating set-valued stochastic processes,

(s2) there exists a constant K > 0 such that

HRd

(

F (t, u), F (t, v)
)

+ HRd

(

G(t, u), G(t, v)
)

≤ KHL2(u, v)

for every (t, ω) ∈ I, and every u, v ∈ Kb
c(L

2),

(s3) there exists a constant C > 0 such that

HRd

(

F (t, u), θ
)

+ HRd

(

G(t, u), θ
)

≤ C
(

1 + HL2(u, Θ)
)

,

for every (t, ω) ∈ I × Ω, and every u ∈ Kb
c(L

2).

Using arguments which are similar to those from Section 3, we obtain the results

for set-valued stochastic integral equations.

Theorem 4.2. X0 ∈ Kb
c(L

2
0), and F, G : I ×Ω×Kb

c(L
2) → Kb

c(R
d) satisfy the condi-

tions (s1)-(s3). Then equation (4.1) has a unique solution.

Theorem 4.3. Let X0 ∈ Kb
c(L

2
0) and F, G : I × Ω × Kb

c(L
2) → Kb

c(R
d) satisfy the

assumptions of Theorem 4.2. Then the solution X of (4.1) satisfies

sup
t∈I

H2
L2

(

X(t), Θ
)

≤
(

3H2
L2

(

X0, Θ
)

+ 6C2T (T + 1)
)

e6C2T (T+1).

Also a continuous dependence on initial conditions of solution to (4.1) holds: let

X, Y denote the solutions of the equations

(4.2) X(t) = X0 + Lt
0(F (X)) + J t

0(G(X)) for t ∈ I,

(4.3) Y (t) = Y0 + Lt
0(F (Y )) + J t

0(G(Y )) for t ∈ I,
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respectively. Assume that X0, Y0 and f, g satisfy the conditions as in Theorem 4.2.

Theorem 4.4. For the solutions X, Y of the equations (4.2), (4.3) it holds

sup
t∈I

H2
L2(X(t), Y (t)) ≤ 3H2

L2(X0, Y0)e
3K2T (T+1).

Notice that a stability property of solutions to the system of set-valued stochastic

integral equations holds. Indeed, let us consider the following equations:

X(t) = X0 + Lt
0(F (X)) + J t

0(G(X)) for t ∈ I,

and for n = 1, 2, . . .

Xn(t) = X0,n + Lt
0(Fn(Xn))ds + J t

0(Gn(Xn)) for t ∈ I,

Theorem 4.5. Let F, G, Fn, Gn : I ×Ω×Kb
c(L

2) → Kb
c(R

d) satisfy the the conditions

(s1)-(s3) with the same constants K, C. Let also X0, X0,n ∈ Kb
c(L

2
0) for every n ∈ N.

Assume that

(i) HL2

(

X0,n, X0

)

→ 0,

(ii) HRd

(

Fn(t, u), F (t, u)
)

→ 0, for every (t, ω, u) ∈ I × Ω ×Kb
c(L

2),

(iii) HRd

(

Fn(t, u), F (t, u)
)

→ 0, for every (t, ω, u) ∈ I × Ω ×Kb
c(L

2).

Then

sup
t∈I

HL2

(

Xn(t), X(t)
)

→ 0, as n → ∞.
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[38] J.J. Nieto and R. Rodŕıguez-López, Analysis of a logistic differential model with uncertainty,

Int. J. Dynamical Systems and Differential Equations, 1:164–176, 2008.
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