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ABSTRACT. By using the classical fixed point index theorem for compact maps and the Leggett-

Williams fixed point theorem respectively, in this paper, some results of single and multiple positive

solutions to a class of nonlinear first-order periodic boundary value problems of impulsive dynamic

equations on time scales are obtained. Two examples are given to illustrate the main results in this

paper.

Keywords: Time scale; Boundary value problem; Positive solution; Fixed point; Impulsive dynamic

equation

AMS (MOS) Subject Classification: 39A10, 34B15

1. INTRODUCTION

Let T be a time scale, i.e., T is a nonempty closed subset of R. Let T > 0 be

fixed and 0, T be points in T, an interval (0, T )
T

denote time scales interval, that is,

(0, T )
T

:= (0, T )∩T. Other types of intervals are defined similarly. Some definitions

concerning time scales can be found in [1, 6, 7, 20, 23].

In this paper, we are concerned with the existence of positive solutions for the

following nonlinear first-order periodic boundary value problem on time scale

(1.1)


















x△(t) + p(t)x(σ(t)) = f(t, x(σ(t))), t ∈ J := [0, T ]
T

, t 6= tk, k = 1, 2, . . . , m,

x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T )),

where f ∈ C (J × [0,∞) , [0,∞)), Ik ∈ C ([0,∞) , [0,∞)), p : [0, T ]
T

→ (0,∞) is

right-dense continuous, tk ∈ (0, T )
T
, 0 < t1 < · · · < tm < T , and for each k =

1, 2, . . . , m, x(t+k ) = limh→0+ x(tk + h) and x(t−k ) = limh→0− x(tk + h) represent the

right and left limits of x(t) at t = tk.
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The theory of impulsive differential equations is emerging as an important area

of investigation, since it is a lot richer than the corresponding theory of differential

equations without impulse effects. Moreover, such equations may exhibit several real

world phenomena in physics, biology, engineering, etc. (see [3, 4, 27]). At the same

time, the boundary value problems for impulsive differential equations and impulsive

difference equations have received much attention [2, 13, 21, 22, 30–32, 34–37, 40,

43]. On the other hand, recently, the theory of dynamic equations on time scales has

become a new important branch (See, for example, [1, 6, 7, 10–12, 20, 23, 38, 39, 42]).

Naturally, some authors have focused their attention on the boundary value problems

of impulsive dynamic equations on time scales [5, 8, 9, 16-19, 33, 41]. In particular,

for the first order impulsive dynamic equations on time scales

(1.2)



















y△(t) + p(t)y(σ(t)) = f(t, y(t)), t ∈ J := [a, b] , t 6= tk, k = 1, 2, . . . ,m,

y(t+k ) = Ik(y(t−k )), k = 1, 2, . . . , m,

y(a) = η,

where T is a time scale which has at least finitely-many right-dense points, [a, b] ⊂ T,

p is regressive and right-dense continuous, f : T×R → R is given function, Ik ∈ C(R,

R). The paper [8] obtained the existence of one solution to problem (1.2) by using

the nonlinear alternative of Leray-Schauder type [15].

In [9], Benchohra et al considered the following impulsive boundary value problem

on time scales

(1.3)



























−y△△(t) = f(t, y(t)), t ∈ J := [0, 1]
T

, t 6= tk,

y(t+k ) − y(t−k ) = Ik(y(t−k )),

y△(t+k ) − y△(t−k ) = Ik(y(t−k )),

y(0) = y(1) = 0.

They proved the existence of one solution to problem (1.3) by applying Schaefer’s

fixed point theorem [28] and the nonlinear alternative of Leray-Schauder type [15].

In [33], Li and Shen studied problem (1.3). Some existence results to problem

(1.3) are established by using a fixed point theorem, which is due to Krasnoselskii

and Zabreiko [25], and the Leggett-Williams fixed point theorem [14, 26].

In [41], the first author studied problem (1.1). The existence of positive solutions

to problem (1.1) was obtained by means of the well-known Guo-Krasnoselskii fixed

point theorem [14].
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Recently, Feng et al [13] considered the following impulsive boundary value prob-

lem

(1.4)



















− [Φp(u
′(t))]′ = f(t, u(t)), t 6= tk, t ∈ (0, 1),

−△ u |t=tk= Ik(x(tk)), k = 1, 2, . . . , n,

u′(0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt.

By using the classical fixed point index theorem for compact maps [24, 29], some

sufficient conditions for the existence of multiple positive solutions to problem (1.4)

are obtained.

Motivated by the results mentioned above, in this paper, we shall show that prob-

lem (1.1) has at least one or two or three positive solutions by means of the classical

fixed point index theorem for compact maps [24, 29] and the Leggett-Williams fixed

point theorem [14, 26]. We note that for the case Ik(x) ≡ 0, k = 1, 2, . . . , m, problem

(1.1) reduces to the problem studied by [38, 39].

In the remainder of this section, we state the following theorem, which are crucial

to our proof.

Theorem 1.1 ([24, 29]). Let K be a cone in a real Banach space X. Let D be

an bounded open subset of X with DK = D ∩ K 6= φ and DK 6= K. Assume that

A : DK → K is completely continuous such that x 6= Ax for x ∈ ∂DK . Then the

following results hold:

(i) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂DK , then iK(A, DK) = 1.

(ii) If there exist e ∈ K\{0} such that x 6= Ax + λe for all x ∈ ∂DK and all λ > 0,

then iK(A, DK) = 0.

(iii) Let U be open in K such that U ⊂ DK . If iK(A, DK) = 1 and iK(A, UK) = 0,

then A has a fixed point in DK\UK . The same result holds if iK(A, DK) = 0

and iK(A, UK) = 1.

Remark 1.1. In theorem 1.1, the use of (ii) give better results than use of the

common assumption ‖Ax‖ ≥ ‖x‖ for all x ∈ ∂DK .

Let E be a real Banach space and K ⊂ E be a cone. A function β : K → [0,∞)

is called a nonnegative continuous concave functional if β is continuous and

β(tx + (1 − t)y) ≥ tβ(x) + (1 − t)β(y)

for all x, y ∈ K and t ∈ [0, 1].

Let a, b > 0 be constants, Ka = {x ∈ K : ‖x‖ < a}, K(β, a, b) = {x ∈ K : a ≤

β(x), ‖x‖ ≤ b}.

Theorem 1.2 ([14, 26]). Let A : Kc → Kc be a completely continuous map and β be

a nonnegative continuous concave functional on K such that β(x) ≤ ‖x‖, ∀x ∈ Kc.

Suppose there exist a, b, d with 0 < d < a < b ≤ c, such that:
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(i) {x ∈ K(β, a, b) : β(x) > a} 6= φ and β(Ax) > a for all x ∈ K(β, a, b);

(ii) ‖Ax‖ < d for all ‖x‖ ≤ d;

(iii) β(Ax) > a, for all x ∈ K(β, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 satisfying

‖x1‖ < d, a < β(x2) and ‖x3‖ > d with β(x3) < a.

2. PRELIMINARIES

Throughout the rest of this paper, we always assume that the points of impulse

tk are right-dense for each k = 1, 2, . . . , m.

We define

PC =
{

x ∈ [0, σ(T )]T → R : xk ∈ C(Jk, R), k = 1, 2, . . . , m and there exist

x(t+k ) and x(t−k ) with x(t−k ) = x(tk), k = 1, 2, . . . , m
}

,

where xk is the restriction of x to Jk = (tk, tk+1]T ⊂ (0, σ(T )]T, k = 1, 2, . . . , m and

J0 = [0, t1]T, Jm+1 = σ(T ).

Let

X = {x(t) : x(t) ∈ PC, x(0) = x(σ(T ))}

with the norm ‖x‖ = sup t∈[0,σ(T )]T
|x(t)|. Then X is a Banach space.

Definition 2.1. A function x ∈ PC∩C1(J\{t1, t2, . . . , tm}, R) is said to be a solution

of the problem (1.1) if and only if x satisfies the dynamic equation

x△(t) + p(t)x(σ(t)) = f(t, x(σ(t))) everywhere on J\{t1, t2, . . . , tm},

the impulsive conditions

x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

and the periodic boundary condition x(0) = x(σ(T )).

Lemma 2.1 ([41]). Suppose h : [0, T ]T → R is rd-continuous, then x is a solution of

(2.1) x(t) =

∫ σ(T )

0

G(t, s)h(s)△s +
m

∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T,

where G(t, s) =







ep(s,t)ep(σ(T ),0)
ep(σ(T ),0)−1

, 0 ≤ s ≤ t ≤ σ(T ),

ep(s,t)
ep(σ(T ),0)−1

, 0 ≤ t < s ≤ σ(T ),
if and only if x is a solution of

the boundary value problem


















x△(t) + p(t)x(σ(t)) = h(t), t ∈ J := [0, T ]
T

, t 6= tk, k = 1, 2, . . . , m,

x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x(σ(T )).
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Lemma 2.2. Let G(t, s) be defined as Lemma 2.1, then

A ,
1

ep(σ(T ), 0) − 1
≤ G(t, s) ≤

ep(σ(T ), 0)

ep(σ(T ), 0) − 1
, B for all t, s ∈ [0, σ(T )]T.

Proof. It is obvious, so we omit it here.

Let

K = {x(t) ∈ X : x(t) ≥ δ ‖x‖} ,

where δ = A
B

= 1
ep(σ(T ), 0)

∈ (0, 1). It is not difficult to verify that K is a cone in X.

We define an operator Φ : K → X by

(2.2) (Φx)(t) =

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s +

m
∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T.

Lemma 2.3 ([41]). Φ : K → K is completely continuous.

3. EXISTENCE OF ONE OR TWO POSITIVE SOLUTIONS

We define

Ωρ =

{

x ∈ K : min
t∈[0,σ(T )]T

x(t) < δρ

}

=

{

x ∈ X : δ ‖x‖ ≤ min
t∈[0,σ(T )]T

x(t) < δρ

}

.

Similar to [29, Lemma 2.5], we have the following result:

Lemma 3.1 ([42]). Ωρ has the following properties:

(1) Ωρ is open relative to K.

(2) Kδρ ⊂ Ωρ ⊂ Kρ.

(3) x ∈ ∂Ωρ if and only if mint∈[0,σ(T )]T x(t) = δρ.

(4) If x ∈ ∂Ωρ, then δρ ≤ x(t) ≤ ρ for t ∈ [0, σ(T )]T.

For convenience, we denote:

f
ρ
δρ = min

{

mint∈[0,T ]T
f(t,x)

ρ
: x ∈ [δρ, ρ]

}

,

f
ρ
0 = max

{

maxt∈[0,T ]T
f(t,x)

ρ
: x ∈ [0, ρ]

}

, I
ρ
0 (k) = max {Ik(x) : x ∈ [0, ρ]},

f i = limx→i sup maxt∈[0,T ]T
f(t,x)

x
, I i(k) = limx→i sup Ik(x)

x
,

fi = limx→i inf mint∈[0,T ]T
f(t,x)

x
, Ii(k) = limx→i inf Ik(x)

x
, where i = ∞, or 0+.

l = 1
B(σ(T )+m)

, L = 1
Aσ(T )

.

Now we state our main results

Lemma 3.2. If there exists ρ > 0 such that f
ρ
0 < l, I

ρ
0 (k) < ρl, then iK(Φ, Kρ) = 1.
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Proof. Since f
ρ
0 < l, I

ρ
0 (k) < ρl, by (2.2) and Lemma 2.2 we have for x ∈ ∂Kρ

(Φx)(t) =

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s +

m
∑

k=1

G(t, tk)Ik(x(tk))

≤ B

∫ σ(T )

0

f(s, x(σ(s)))△s + B

m
∑

k=1

Ik(x(tk))

< B(σ(T ) + m)ρl

= ρ = ‖x‖ ,

i.e., ‖Φx‖ < ‖x‖ for x ∈ ∂Kρ, then by (i) of Theorem 1.1 we have iK(Φ, Kρ) = 1.

Lemma 3.3. If there exists ρ > 0 such that f
ρ
δρ > L, then iK(Φ, Ωρ) = 0.

Proof. Let e(t) ≡ 1, t ∈ [0, σ(T )]T, then e(t) ∈ ∂K1. We claim that x 6= Φx + λe,

x ∈ ∂Ωρ, λ > 0.

In fact, if not, there exist x0 ∈ ∂Ωρ and λ0 > 0 such that x0 = Φx0 + λ0e. Then

by (2.2) and Lemma 2.2 we have

x0 = Φx0 + λ0e ≥ δ ‖Φx0‖ + λ0 ≥ Aδ

∫ σ(T )

0

f(s, x0(σ(s)))△s + λ0

> Aδσ(T )ρL + λ0 = δρ + λ0,

then from (3) of Lemma 3.1 we get δρ > δρ + λ0, which is a contradiction. Hence, by

(ii) of Theorem 1.1 we have iK(Φ, Ωρ) = 0.

Theorem 3.1. Suppose one of the following conditions holds:

(H1) There exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < δρ2 and ρ2 < ρ3 such that

f
ρ1

0 < l, I
ρ1

0 (k) < ρ1l, f
ρ2

δρ2
> L, f

ρ3

0 < l, I
ρ3

0 (k) < ρ3l.

(H2) There exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < ρ2 < δρ3 such that

f
ρ1

δρ1
> L, f

ρ2

0 < l, I
ρ2

0 (k) < lρ2, f
ρ3

δρ3
> L.

Then problem (1.1) has at least two positive solutions x1, x2 with x1 ∈ Ωρ2
\Kρ1

,

x2 ∈ Kρ3
\Ωρ2

.

Proof. Suppose (H1) holds. We claim that Φ have two fixed points x1 ∈ Ωρ2
\Kρ1

,

x2 ∈ Kρ3
\Ωρ2

. In fact, if (H1) holds then by Lemma 3.2 and Lemma 3.3 we obtain:

iK(Φ, Kρ1
) = 1, iK(Φ, Ωρ2

) = 0, iK(Φ, Kρ3
) = 1. Then from (2) of Lemma 3.1 and

ρ1 < δρ2, we have Kρ1
⊂ Kδρ2

⊂ Ωρ2
. Therefore, (iii) of Theorem 1.1 implies that the

Φ has two fixed points x1 ∈ Ωρ2
\Kρ1

, x2 ∈ Kρ3
\Ωρ2

which are the positive solutions

of problem (1.1).

If (H2) holds, the proof is similar to that of the case when (H1) holds, so we omit

here.
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As a special case of Theorem 3.1, we obtain the following result.

Corollary 3.1. If there exist ρ1, ρ2 ∈ (0,∞), with ρ1 < δρ2 such that one of the

following conditions holds:

(H3) f
ρ1

0 < l, I
ρ1

0 (k) < ρ1l, f
ρ2

δρ2
> L, 0 ≤ f∞ < l, 0 ≤ I∞(k) < l.

(H4) f
ρ1

δρ1
> L, f

ρ2

0 < l, I
ρ2

0 (k) < lρ2, L < f∞ ≤ ∞, L < I∞(k) ≤ ∞.

Then problem (1.1) has at least two positive solutions in K.

Proof. Suppose (H3) holds. We show that (H3) implies (H1). Let η ∈ (f∞, l). Then

there exists α > η such that maxt∈[0,T ]
T

f(t, x) ≤ ηx for x ∈ [α,∞) since 0 ≤ f∞ < l.

Taking

θ = max

{

max
t∈[0,T ]

T

f(t, x) : 0 ≤ x ≤ α

}

and ρ3 >

{

θ

l − η
, ρ2

}

.

Then we get

max
t∈[0,T ]

T

f(t, x) ≤ ηx + θ ≤ ηρ3 + θ < lρ3, x ∈ [0, ρ3].

This implies that f
ρ3

0 < l. Similarly, by 0 ≤ I∞(k) < l, we have I
ρ3

0 (k) < ρ3l. So,

(H3) implies (H1). Similarly (H4) implies (H2).

By an argument similar to that of Theorem 3.1 we obtain the following results.

Theorem 3.2. Suppose one of the following conditions holds:

(H5) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < δρ2 such that

f
ρ1

0 ≤ l, I
ρ1

0 (k) ≤ ρ1l, f
ρ2

δρ2
≥ L.

(H6) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < ρ2 such that

f
ρ1

δρ1
≥ L, f

ρ2

0 ≤ l, I
ρ2

0 (k) < lρ2.

Then problem (1.1) has at least one positive solutions in K.

As a special case of Theorem 3.2, we obtain the following result.

Corollary 3.2. Suppose one of the following conditions holds:

(H7) 0 ≤ f 0 < l, 0 ≤ I0(k) < l and L < f∞ ≤ ∞.

(H8) 0 ≤ f∞ < l, 0 ≤ I∞(k) < l and L < f0 ≤ ∞.

Then problem (1.1) has at least one positive solutions in K.
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4. EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS

For x ∈ K, let

β(x) = min
t∈[0,σ(T )]T

x(t),

then it is easy to see that β is a nonnegative continuous concave functional on K with

β(x) ≤ ‖x‖ for x ∈ K.

Theorem 4.1. Suppose that the following conditions are hold:

(C1) There exist positive constants ck such that Ik(x) ≤ ck, for x ≥ 0 and k =

1, 2, . . . , m.

(C2) There exist B
∑m

k=1 ck < d < a such that

(4.1) f(t, x) <
d − B

∑m
k=1 ck

Bσ(T )
, for t ∈ [0, T ]T, x ∈ [0, d],

and

(4.2) f(t, x) >
a

Aσ(T )
, for t ∈ [0, T ]T, x ∈ [a,

1

δ
a].

(C3) Assume that one of the following conditions satisfies:

(a) limx→∞ maxt∈[0,T ]T
f(t,x)

x
< 1

Bσ(T )
;

(b) There exists c > 1
δ
a such that f(t, x) <

c−B
Pm

k=1
ck

Bσ(T )
, t ∈ [0, T ]T, x ∈ [0, c].

Then problem (1.1) has at least three positive solutions.

Proof. First, we assert that there exists h > 1
δ
a such that Φ : Kh → Kh if (a) holds.

In fact, if (a) holds, then there exist M > 0 and ε < 1
Bσ(T )

such that

f(t, x) < εx, x > M.

Set

ξ = max {f(t, x) : t ∈ [0, T ]T, x ∈ [0, M ]} .

It follows that f(t, x) ≤ εx + ξ, for all x ∈ [0,∞). Take

h > max

{

1

δ
a,

B (σ(T )ξ +
∑m

k=1 ck)

1 − εBσ(T )

}

.

If x ∈ Kh, then

(Φx) (t) =

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s +

m
∑

k=1

G(t, tk)Ik(x(tk))

≤ B

∫ σ(T )

0

f(s, x(σ(s)))△s + B

m
∑

k=1

Ik(x(tk))

≤ Bσ(T )(εh + ξ) + B

m
∑

k=1

ck

< h.
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Thus ‖Φx‖ < h, i.e., Φx ∈ Kh.

Now we assert that Φ : Kh → Kh if there exists h > 1
δ
a such that f(t, x) <

h−B
Pm

k=1
ck

Bσ(T )
, t ∈ [0, T ]T, x ∈ [0, h] (that is, (b) holds).

Indeed, if x ∈ Kh, then

(Φx) (t) =

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s +
m

∑

k=1

G(t, tk)Ik(x(tk))

< Bσ(T )
h − B

∑m

k=1 ck

Bσ(T )
+ B

m
∑

k=1

ck

= h.

So, we have proved that there exist positive number c > 1
δ
a such that Φ : Kc → Kc

if condition (a) or (b) hold. Furthermore, by (4.1) we have Φ : Kd → Kd .

Second, we assert that
{

x ∈ K(β, a, 1
δ
a) : β(x) > a

}

6= φ and β(Φx) > a for all

x ∈ K(β, a, 1
δ
a).

In fact, take x ≡
a+ 1

δ
a

2
, so x ∈

{

x ∈ K(β, a, 1
δ
a) : β(x) > a

}

. Moreover, for

x ∈ K(β, a, 1
δ
a), then β(x) ≥ a and we have

1

δ
a ≥ ‖x‖ ≥ min

t∈[0,σ(T )]T
x(t) = β(x) ≥ a.

Thus, in view of (4.2) we get

β(Φx) = min
t∈[0,σ(T )]T

[

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s +

m
∑

k=1

G(t, tk)Ik(x(tk))

]

≥ min
t∈[0,σ(T )]T

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s

> Aσ(T )
a

Aσ(T )

= a.

Finally, we assert that β(Φx) > a if x ∈ K(β, a, c) and ‖Φx‖ > 1
δ
a.

To do this, if x ∈ K(β, a, c) and ‖Φx‖ > 1
δ
a , then

β(Φx) = min
t∈[0,σ(T )]T

[

∫ σ(T )

0

G(t, s)f(s, x(σ(s)))△s +

m
∑

k=1

G(t, tk)Ik(x(tk))

]

≥ δ ‖Φx‖ > δ
1

δ
a = a.

To sum up, all the hypotheses of Theorem 1.2 are satisfied by taking b = 1
δ
a. Hence

Φ has at least three fixed points, that is, problem (1.1) has at least three positive

solutions x1, x2 and x3 such that

‖x1‖ < d, a < β(x2) and ‖x3‖ > d with β(x3) < a. �
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5. EXAMPLES

Example 5.1. Let T = [0, 1] ∪ [2, 3]. We consider the following problem

(5.1)



















x△(t) + x(σ(t)) = f(t, x(σ(t))), t ∈ [0, 3]
T

, t 6= 1
2
,

x
(

1
2

+
)

− x
(

1
2

−
)

= I(x(1
2
)),

x(0) = x(3),

where p(t) ≡ 1, T = 3, m = 1, f(t, x(σ(t))) = (t + 1)(x(σ(t)))2, and I(x) = x2.

It is easy to see that

δ =
1

2e2
, l =

2e2 − 1

8e2
, L =

2e2 − 1

3
.

Taking ρ1 = 2e2−1
40e2 , ρ2 = 4e6 − 2e4, then by simple calculation we have ρ1 < δρ2,

f
ρ1

0 = 4ρ1 = 2e2−1
10e2 < 2e2−1

8e2 = l, I
ρ1

0 (1) = ρ2
1 =

(

2e2−1
40e2

)2

< 2e2−1
40e2 · 2e2−1

8e2 = ρ1l,

f
ρ2

δρ2
= δ2ρ2 = 1

4e4 · (4e
6 − 2e4) = 2e2−1

2
> 2e2−1

3
= L.

Therefore, together with Theorem 3.2, it follows that problem (5.1) has at least

one positive solution.

Example 5.2. Let T = [0, 1] ∪ [2, 3]. We consider the following problem

(5.2)



















x△(t) + x(σ(t)) = f(t, x(σ(t))), t ∈ [0, 3]
T

, t 6= 1
2
,

x
(

1
2

+
)

− x
(

1
2

−
)

= I(x(1
2
)),

x(0) = x(3),

where p(t) ≡ 1, T = 3, m = 1, I(x) = 1
x2+1

and

f(t, x) ≡ f(x) =



























1
8e2 , 0 ≤ x ≤ 2e2+1

2e2−1
,

g(x) 2e2+1
2e2−1

≤ x ≤ 2,

16e4−10e2−1
6e2 2 ≤ x ≤ 8e2,

s(x) x ≥ 8e2,

here g(x) and s(x) satisfy: g(2e2+1
2e2−1

) = 1
8e2 , g(2) = 16e4−10e2−1

6e2 , s(8e2) = 16e4−10e2−1
6e2 ,

g△△(x) = 0 for x ∈ (2e2+1
2e2−1

, 2) and s(x) : (−∞,∞) → [0,∞) is continuous.

Choose d = 2e2+1
2e2−1

, a = 2, b = 4e2, c = 8e2; then by Bc1 = B = 2e2

2e2−1
(for c1 = 1)

and δ = 1
2e2 we have Bc1 < d < a < 1

δ
a = b < c, and then f(x) satisfies

f(x) =
1

8e2
<

1

6e2
=

2e2+1
2e2−1

− 2e2

2e2−1

3 · 2e2

2e2−1

=
d − Bc1

Bσ(T )
, x ∈ [0,

2e2 + 1

2e2 − 1
] = [0, d];

f(x) =
16e4 − 10e2 − 1

6e2
>

4e2 − 2

3
=

a

Aσ(T )
, x ∈ [2, 4e2] = [a, b];

f(x) ≤
16e4 − 10e2 − 1

6e2
<

16e4 − 10e2

6e2
=

c − Bc1

Bσ(T )
, x ∈ [0, 8e2] = [0, c].
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Then by Theorem 4.1, problem (5.2) has at least three positive solutions x1, x2 and

x3 such that

‖x1‖ <
2e2 + 1

2e2 − 1
, 2 < β(x2) and ‖x3‖ >

2e2 + 1

2e2 − 1
with β(x3) < 2.
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