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ABSTRACT. This paper considers boundary value problems on time scales and also discusses

inequalities on time scales. We formulate sufficient conditions under which such problems have

extremal solutions in a corresponding region bounded by upper and lower solutions. Examples are

also included to illustrate the importance of the result obtained.
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1. INTRODUCTION

Stefan Hilger [4] introduced the calculus of measure chains on order to unify

continuous and discrete analysis. Major works devoted to the calculus on time scales

have been introduced in papers [1, 3, 5, 10].

Throughout this paper, we denote by T any time scale (nonempty closed subset

of the real numbers R). We assume that 0, T ∈ T and denote by J = [0, T ] a subset

of T such that [0, T ] = {t ∈ T : 0 ≤ t ≤ T}. By σ we denote the forward jump

operator σ(t) = inf{s ∈ T : s > t}. The graininess function µ : T → R+ is defined by

µ(t) = σ(t)− t with R+ = [0,∞). Let C(J, R) denote the set of continuous functions

u : J → R.

In this paper, we investigate the following first order dynamic equation on time

scales of the form

(1.1)

{

x△(t) = f(t, x(t), x(α(t))) ≡ (Fx)(t), t ∈ [0, T ],

0 = g(x(0), x(T )),

where f ∈ C(J × R × R, R), α ∈ C(J, J), g ∈ C(R × R, R).

Differential and difference equations are special cases of dynamic equations. To

find solutions of nonlinear differential equations both with initial or boundary condi-

tions we can use the monotone iterative method based on lower and upper solutions.

This technique is well known and we have many applications. Recently, it is also ap-

plied to differential equations with deviating arguments (delayed or advanced). This
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method is also used for dynamic ones (see, for example [2, 3, 6, 7, 11, 12] but it is

not so extensive as for continuous case. Dynamic equations with deviating arguments

are discussed, for example in papers [6, 9]. This paper extends the application on

problems of type (1.1). We prove the existence of minimal and maximal solutions for

problems (1.1) by using the Heikkila and Lakshmikantham theorem [4]. It is impor-

tant to indicate that the right–hand–side of our problem depends on a solution x at

an advanced argument α.

The plan of this paper is as follows. In Section 2, we discussed dynamic inequa-

tions with advanced arguments. In Section 3, we formulate sufficient conditions when

advanced nonlinear dynamic equation with an initial condition at the end point T

has a unique solution. A linear case is also discussed. The existence of solutions for

dynamic problems of type (1.1) is discussed in Section 4. The last Section 5 contains

dynamic problems having more advanced arguments α. Some examples are added to

illustrate theoretical results.

2. DYNAMIC INEQUALITIES

In this section we present some linear dynamic inequalities which are needed in

Section 4.

Lemma 2.1. Assume that m ∈ C(J, R), 1 + sup
t∈J

µ(t)m(t) > 0 and let

(2.1)

{

x△(t) ≥ m(t)x(t), t ∈ [0, T ],

x(T ) ≤ 0.

Then x(t) ≤ 0, t ∈ J .

Proof. We replace the inequality in (2.1) by

x△(t) = m(t)x(t) + Q(t), t ∈ J

with Q ∈ C(J, R+). It yields

(2.2) x(t) = em(t, 0)

[

x(0) +

∫ t

0

em(0, σ(s))Q(s)∆s

]

,

by Theorem 2.77 [3]. For a discussion of the exponential function e, see for example

Section 2.2 of [3]. Take t = T and find x(0) to obtain

x(0) = em(0, T )x(T ) −
∫ T

0

em(0, σ(s))Q(s)∆s.

Substituting the last relation to formula (2.2), we get

x(t) = em(t, T )x(T ) −
∫ T

t

em(t, σ(s))Q(s)∆s ≤ 0

because em(t, σ(s)) > 0 (by Theorem 2.48(ii) of [3], Q(s) ≥ 0, s ∈ J and x(T ) ≤ 0.

This ends the proof.



PROBLEMS FOR DYNAMIC EQUATIONS 601

Remark 2.2. Let m(t) = 0, t ∈ J . If
{

x△(t) ≥ 0, t ∈ [0, T ],

x(T ) ≤ 0,

then x(t) ≤ 0, t ∈ J , by Lemma (2.1)

Lemma 2.3. Assume that

H1 : there exist functions n ∈ C(J, R+), α ∈ C(J, J), t ≤ α(t) ≤ T and α(t) 6≡ t on

J .

In addition, we assume that

ρ1 ≡
∫ T

0

n(t)∆t ≤ 1.

Let

(2.3)

{

x△(t) ≥ n(t)x(α(t)), t ∈ [0, T ],

x(T ) ≤ 0.

Then x(t) ≤ 0, t ∈ J .

Proof. We need to prove that x(t) ≤ 0, t ∈ J . Suppose that the inequality x(t) ≤ 0,

t ∈ J is not true. Then, we can find t0 ∈ [0, T ) such that x(t0) > 0. Put

x(t1) = min
[t0,T ]

x(t) ≤ 0.

Integrating the dynamic inequality in (2.3) from t0 to t1, we obtain

x(t1) − x(t0) ≥
∫ t1

t0

n(t)x(α(t))∆t

≥ x(t1)

∫ T

0

n(t)∆t ≥ x(t1).

It contradicts the assumption that x(t0) > 0. This proves that x(t) ≤ 0 on J and the

proof is complete.

Lemma 2.4. Assume that Assumptions H1, H2 hold with

H2 : there exists a continuous function m : J → R such that

sup
t∈J

[µ(t)m(t)] > −1.

In addition, we assume that

(2.4) ρ2 ≡
∫ T

0

N (t)∆t ≤ 1 with N (t) =
n(t)

1 + µ(t)m(t)
em(α(t), t).

Let

(2.5)

{

x△(t) ≥ m(t)x(t) + n(t)x(α(t)), t ∈ [0, T ],

x(T ) ≤ 0.

Then x(t) ≤ 0, t ∈ J .
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Proof. Let p(t) = eΘm(t, 0)x(t) with Θm = − m(t)
1+µ(t)m(t)

. Then, we have

p△(t) = Θm eΘm(t, 0)x(t) + eΘm(σ(t), 0)x△(t)

= − m(t)

1 + µ(t)m(t)
eΘm(t, 0)x(t) +

[

1 − µ(t)m(t)

1 + µ(t)m(t)

]

eΘm(t, 0)x△(t)

=
1

1 + µ(t)m(t)
eΘm(t, 0)

[

−m(t)x(t) + x△(t)
]

≥ 1

1 + µ(t)m(t)
eΘm(t, 0)n(t)x(α(t))

=
1

1 + µ(t)m(t)
eΘm(t, 0)

1

eΘm(α(t), 0)
n(t)x(α(t))

= N (t)p(α(t)),

Then problem (2.5) takes the form
{

p△(t) ≥ N (t)p(α(t)), t ∈ J,

p(T ) ≤ 0.

It yields p(t) ≤ 0 on J , by Lemma (2.1). It shows that x(t) ≤ 0 on J . The proof is

complete.

Remark 2.5. If m(t) ≡ 0, then em(s, t) ≡ 1, by Theorem 2.36(i) of [3]. Then

Lemma 2.4 reduces to Lemma 2.3.

Remark 2.6. If T = R, then µ(t) = 0 and em(α(t), t) = exp
(

∫ α(t)

t
m(s)ds

)

. In this

case, ρ2 from condition (2.4) has the form

ρ2 =

∫ T

0

n(t)e
R

α(t)
t

m(s)dsdt

and in this case Lemma (2.4) reduces to Lemma 1 of [8].

Remark 2.7. Assume that m(t) ≥ 0 on J . Then em(α(t), t) ≤ em(T, t). If we assume

that

ρ3 ≡
∫ T

0

N1(t)∆t ≤ 1 with N1(t) =
n(t)

1 + µ(t)m(t)
em(T, t)

then condition (2.4) holds. Note that ρ3 does not depend on α.

Remark 2.8. Let T = R and m(t) = m > 0, n(t) = n > 0. Then ρ3 from Remark 2.7

takes the form

ρ3 =
n

m

(

emT − 1
)

.

Example 2.9. Let T = Z+, J = {0 ≤ j ≤ L, j ∈ Z+} and

(2.6)

{

x(n + 1) ≥ (1 + c)x(n) + dx(α(n)), n = 0, 1, . . . , L − 1,

x(L) ≤ 0,
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where c > −1, d ≥ 0 and α(n) is a fixed number such that α(n) ∈ {n, n + 1, . . . , L}
and α(P ) 6≡ P on the set P = {0, 1, . . . , L}. In this case µ(t) = 1, t ∈ J and

Assumption H2 holds because supt∈J [µ(t)m(t)] = c > −1.

If we assume that
d

c(1 + c)

[

(1 + c)L − 1
]

≤ 1,

then any solution x of problem (2.6) satisfies the relation x(n) ≤ 0, n ∈ P , by

Lemma 2.4 and Remark 2.7.

3. APPLICATION OF BANACH FIXED POINT THEOREM

Consider the following problem

(3.1) x△(t) = (Fx)(t), t ∈ J, x(T ) = k0 ∈ R,

where operator F is defined as in problem (1.1). In the next theorem we formulate

sufficient conditions under which problem (3.1) has a unique solution. To do it we

apply the Banach fixed point theorem.

Theorem 3.1. Suppose that

H3 : f ∈ C(J × R × R, R), α ∈ C(J, J), t ≤ α(t) ≤ T on J ,

H4 : there exist nonnegative constants L1, L2 such that

|f(t, x1, x2) − f(t, x̄1, x̄2)| ≤ L1|x1 − x̄1| + L2|x2 − x̄2|

for t ∈ J , x1, x2, x̄1, x̄2 ∈ R.

Then problem (3.1) has a unique solution x ∈ C1(J, R).

Proof. Integrating (3.1), we have

x(t) = k0 −
∫ T

t

(Fx)(s)∆s ≡ (Ax)(t), t ∈ J.

It means that solving (3.1)) is equivalent to solving a fixed point problem of operator

A. Now we use the Banach fixed point theorem. Let

X = {x ∈ Crd(J, R) with ‖x‖ = max
t∈J

eλ(t, T )|x(t)|}

with a constant λ > 0 such that λ ≥ L1 + L2. Note X is a Banach space. For

u, v ∈ X, we have

‖Au − Av‖ ≤ max
t∈J

eλ(t, T )

∫ T

t

|(Fu)(s)− (Fv)(s)|∆s

≤ max
t∈J

eλ(t, T )

∫ T

t

[L1|u(s) − v(s)| + L2|u(α(s)) − v(α(s))|]∆s

= max
t∈J

eλ(t, T )

∫ T

t

[L1eλ(T, s)eλ(s, T )|u(s) − v(s)|
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+L2eλ(T, α(s))eλ(α(s), T )|u(α(s))− v(α(s))|]∆s

≤ ‖u − v‖H,

where

H = max
t∈J

eλ(t, 0)eλ(0, T )

∫ T

t

[L1eλ(T, 0)eλ(0, s) + L2eλ(T, 0)eλ(0, α(s))]∆s

= max
t∈J

eλ(t, 0)

∫ T

t

[L1eλ(0, s) + L2eλ(0, α(s))]∆s.

Indeed, eλ(0, α(t)) ≤ eλ(0, t), t ∈ J , by Definition 2.30 of [3]. Hence

H ≤ (L1 + L2) max
t∈J

eλ(t, 0)

∫ T

t

eλ(0, s)∆s.

Now, also

∫ T

t

eλ(0, s)∆s =

∫ T

t

eΘλ(s, 0)∆s =

∫ T

t

e
△
Θλ(s, 0)

Θλ
∆s ≤ 1

λ
[eΘλ(t, 0) − eΘλ(T, 0)]

=
1

λ
[eλ(0, t) − eλ(0, T )]

because

Θλ = − λ

1 + µ(t)λ
≥ −λ.

It yields

H ≤ L1 + L2

λ
max
t∈J

eλ(t, 0)[eλ(0, t) − eλ(0, T )] =
L1 + L2

λ
[1 − eλ(0, T )]

≤ 1 − eλ(0, T ) ≡ ξ < 1.

As a result

‖Au − Av‖ ≤ ‖u − v‖ξ.

In view of the Banach fixed point theorem, problem (3.1) has a unique solution. This

ends the proof.

Remark 3.2. If T = R, then

eλ(t, T ) = eλ(t−T ), λ ≥ L1 + L2, λ > 0 and ‖x‖ = max
t∈J

eλ(t−T )|x(t)|.

Remark 3.3. Now we consider the linear dynamic equation of the form

(3.2)

{

x△(t) = (Lx)(t) + h(t), t ∈ J,

x(T ) = h̄ ∈ R,

where operator L is defined by

(3.3) (Lx)(t) = m(t)x(t) + n(t)x(α(t))
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with m, h ∈ C(J, R), n ∈ C(J, R+), α ∈ C(J, J) and t ≤ α(t) ≤ T on J . In this case,

solving (3.2) is equivalent to solving the following problem

(3.4) x(t) = h̄ −
∫ T

t

[(Lx)(s) + h(s)]∆s ≡ (Ahx)(t).

Then, in view of Theorem (3.1), problem (3.2) has a unique solution.

We can also replace problem (3.2)) in another way. Using Theorem 2.77 of [3] to

the dynamic equation (3.2) we obtain

x(t) = em(t, 0)

{

x(0) +

∫ t

0

em(0, σ(s))[n(s)x(α(s)) + h(s)]∆s

}

.

Now, using the condition x(T ) = h̄, we finally have

x(t) = em(t, 0)

{

em(0, T )h̄ −
∫ T

t

em(0, σ(s))[n(s)x(α(s)) + h(s)]∆s

}

.

4. EXISTENCE OF SOLUTIONS OF PROBLEM (1.1)

Now, we derive a fixed point result for nondecreasing mappings in ordered spaces

which play a central role in our investigations. We say that Q : [a, b] → [a, b] is

nondecreasing if Qx ≤ Qy for x, y ∈ [a, b] and x ≤ y. We say that x ∈ [a, b] is the

least fixed point of Q in [a, b] if x = Qx and if x ≤ y whenever y ∈ [a, b] and y = Qy.

The greatest fixed point of Q in [a, b] is defined similarly, by reversing the inequality.

If both least and greatest fixed point of Q in [a, b] exist, we call them extremal fixed

points of Q in [a.b].

Theorem 4.1 ([4]). Let [a, b] be an ordered interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → [a, b] be a nondecreasing mapping. If each

sequence {Qxn} ⊂ Q([a, b]) converges, whenever {xn} is a monotone sequence in

[a, b], then the sequence of Q–iteration of a converges to the least fixed point x∗ of

Q and the sequence of Q–iteration of b converges to the greatest fixed point x∗ of Q.

Moreover,

x∗ = min{y ∈ [a, b] : y ≥ Qy}, and x∗ = max{y ∈ [a, b] : y ≤ Qy}.

Let us introduce the following definitions.

Definition 4.2. A function x0 ∈ C1(J, R) is said to be a lower solution of (1.1)) if

x
△
0 (t) ≤ (Fx0)(t), g(x0(0), x0(T )) ≤ 0.

Definition 4.3. A function y0 ∈ C1(J, R) is said to be an upper solution of (1.1) if

y
△
0 (t) ≥ (Fy0)(t), g(y0(0), y0(T )) ≥ 0.

Now we formulate the main result of this paper.
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Theorem 4.4. Assume that f ∈ C(J × R × R, R), g ∈ C(R × R, R). Let x0, y0 ∈
C1(J, R) be lower and upper solutions of (1.1), respectively and y0(t) ≤ x0(t), t ∈ J .

Moreover, we assume that there exists functions m, n such that both Assumptions

H1, H2 and condition (2.4) hold and

(4.1) f(t, u1, u2) − f(t, v1, v2) ≥ −m(t)[v1 − u1] − n(t)[v2 − u2]

if y0(t) ≤ u1 ≤ v1 ≤ x0(t), y0(α(t)) ≤ u2 ≤ v2 ≤ x0(α(t)). In addition, we assume

that g is nondecreasing in the first variable and there exists a constant M > 0 such

that

g(v, u)− g(v, ū) ≤ M(ū − u) if y0(T ) ≤ u ≤ ū ≤ x0(T ).

Then problem (1.1) has minimal and maximal solutions in the region [y0, x0] =

{u ∈ C(J, R) : y0(t) ≤ u(t) ≤ x0(t), t ∈ J}.

Proof. Assume that operator F is nonincreasing in region [y0, x0] and also let Gh be

nondecreasing with respect to h. Choose h1, h2 ∈ C(J, R) such that h1(t) ≤ h2(t) on

J . Let x1, x2 denote the solutions of problem (3.2) with Fh1, Fh2 instead of h, and

with Gh1 , Gh2 instead of h̄, respectively. Since problem (3.2) has a unique solution

for each h ∈ C(J, R), h̄ ∈ R, then x1, x2 are well defined. Put x = x1 − x2. Then,

x△(t) = (Lx)(t) + (Fh1)(t) − (Fh2)(t) ≥ (Lx)(t), t ∈ J,

p(T ) = Gh1 − Gh2 ≤ 0.

In view of Lemma (2.4), we see that x1(t) ≤ x2(t) on J , so the operator Ah is

nondecreasing. It is also continuous.

For u ∈ [y0, x0], we put

Fu = Fu − Lu, Gu =
1

M
g(u(0), u(T )) + u(T ),

where the operator F is defined as in problem (1.1). It is easy to see that operator

F is nonincreasing in [y0, x0]. Moreover, Gu is nondecreasing with respect to u. We

define the operator A = AF . Let x1 = Ay0, x2 = Ax0, so
{

x
△
1 (t) = (Lx1)(t) + (Fy0)(t),

x1(T ) = Gy0,

and
{

x
△
2 (t) = (Lx2)(t) + (Fx0)(t),

x2(T ) = Gx0.

Now apply Lemma (2.4) with x(t) = x2(t) − x0(t) and its easy to show using the

definition of the lower solution x0 that x0(t) ≥ x2(t) = (A x0)(t). Similarly we can

show (A y0)(t) = x1(t) ≥ y0(t) on J . Put x(t) = x1(t) − x2(t). Then

x△(t) = (Lx1)(t) + (Fy0)(t) − (Lx2)(t) − (Fx0)(t) ≥ (Lx)(t),

x(T ) = Gy0 − Gx0 ≤ 0
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. Using again Lemma (2.4), we see that x1(t) ≤ x2(t) on J , so the operator A is

nondecreasing. It means that y0 ≤ Au ≤ x0 for u ∈ [y0, x0]. Hence A : [y0, x0] →
[y0, x0] and operator A is bounded because ‖Au‖ ≤ max(‖y0‖, ‖x0‖).

Let {yn} be a monotone sequence in [y0, x0], so y0 ≤ Ayn ≤ x0. Hence ‖Ayn‖ ≤
K. It is easy to show that {Ayn} is equicontinuous. By Arzeli–Ascoli theorem, {Ayn}
is relative compact. It proves that {Ayn} converges in A([y0, x0]). Finally, operator

A has a least and a greatest fixed point in [y0, x0], by Theorem (4.1). It results that

problem (1.1) has minimal and maximal solutions in [y0, x0]. This ends the proof.

Remark 4.5. If we assume that f is nonincreasing with respect to the last variable,

the condition (4.1) holds with n(t) = 0, t ∈ J . Note that, in this case, condition (2.4)

holds too.

Example 4.6. (see [8]). Let T = R. Consider the problem

(4.2)

{

x′(t) = 2ex(t) + (sin t)e−2e(
√

t−t)x(
√

t) − 1 ≡ (Fx)(t), t ∈ J = [0, 1],

0 = x(0) + x2(0) − x(1).

Note that α(t) =
√

t, and t ≤ α(t) ≤ T = 1. Put x0(t) = t, y0(t) = −1, t ∈ J . It

yields

(Fx0)(t) = 2et + (sin t)e−2e(
√

t−t)
√

t − 1 ≥ 1 = x′
0(t),

(Fy0)(t) = 2e−1 − (sin t)e−2e(
√

t−t) − 1 < 0 = y′
0(t),

and

g(x0(0), x0(1)) = g(0, 1) = −1 < 0, g(y0(0), y0(1)) = g(−1,−1) = 1 > 0.

It proves that x0, y0 are lower and upper solutions of problem (4.2), respectively.

Indeed, m(t) = 2et, n(t) = (sin t)e−2(
√

t−t)e, M = 1. Moreover,
∫ 1

0

n(t)e
R

α(t)
t

m(s)dsdt ≤
∫ 1

0

sin t dt = 1 − cos 1 < 1,

so condition (2.4) holds too. By Theorem (4.4), problem (4.2) has extremal solutions

in the region [−1, t].

Example 4.7. Let T = Z+, J = {0 ≤ j ≤ L, j ∈ Z+}, so x△(i) = ∆x(i) =

x(i + 1) − x(i). We consider the problem

(4.3)

{

∆x(i) = b| sin i|x(i) − | sin i|x(α(i)) ≡ (Fx)(i), i = 0, 1, . . . , L − 1,

0 = λ[x(0) + x2(0)] − βx(L) + γ,

where b ≥ 1, β > 0, λ > 0 and α(i) is a fixed number such that α(i) ∈ {i, i+1, . . . , L}
and α(P ) 6≡ P on the set P = {0, 1, . . . , L}. In this case µ(t) = 1, t ∈ J , so

Assumption H2 holds.



608 T. JANKOWSKI

We assume that

(4.4) γ ≤ 0, βa + γ ≥ 0.

Put x0(i) = 0, y0(i) = −a, i ∈ P for a ≥ 1. Then

(Fx0)(i) = 0 = ∆x0(i),

(Fy0)(i) = (1 − b)a| sin i| ≤ 0 = ∆y0(i),

and

g(x0(0), x0(L)) = g(0, 0) = γ ≤ 0,

g(y0(0), y0(L)) = g(−a,−a) = λa(a − 1) + βa + γ ≥ 0,

by (4.4). Functions x0, y0 are lower and upper solutions of problem (4.3), respectively.

It is easy to see that m(i) = b| sin i|, n(i) = 0, t ∈ J and M = β. In view of

Theorem 4.4, problem (4.3) has extremal solutions.

5. GENERALIZATIONS

In this section we consider a boundary value problem of the form

(5.1)

{

x△(t) = f(t, x(t), x(α1(t)), . . . , x(αr(t))) ≡ (Gx)(t), t ∈ J = [0, T ],

0 = g(x(0), x(T )).

We formulate only corresponding results using the notions of lower and upper solu-

tions of problem (5.1) which are the same as before with the operator G instead of

operator F . The next theorem is similar to Theorem (4.4) and therefore the proof is

omitted.

Theorem 5.1. Assume that f ∈ C(J × R
r+1, R), g ∈ C(R × R, R), αi ∈ C(J, J),

t ≤ αi(t) ≤ T and αi(t) 6≡ t on J for i = 1, 2, . . . , r. Let x0, y0 ∈ C1(J, R) be lower

and upper solutions of (5.1), respectively and y0(t) ≤ x0(t), t ∈ J . We assume that

there exists functions m ∈ C(J, R), ni ∈ C(J, R+), i = 1, 2, . . . r such that

f(t, u0, u1, . . . , ur) − f(t, v0, v1, . . . , vr) ≥ −m(t)[v0 − u0] −
r

∑

i=1

ni(t)[vi − ui]

if t ∈ J , y0(αi(t)) ≤ ui ≤ vi ≤ x0(αi(t)), i = 0, 1, . . . , r with α0(t) = t. Moreover, we

assume that sup
t∈J

[µ(t)m(t)] > −1 and condition (2.4) holds with

N (t) =
r

∑

i=1

ni(t)

1 + µ(t)m(t)
em(α(t), t).

In addition, we assume that g is nondecreasing in the first variable and there exists a

constant M > 0 such that

g(v, u)− g(v, ū) ≤ M(ū − u) if y0(T ) ≤ u ≤ ū ≤ x0(T ).
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Then problem (5.1) has minimal and maximal solutions in the region [y0, x0].
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