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ABSTRACT. This paper presents sufficient conditions for the existence and uniqueness of a pos-
itive solution to a nonlinear fourth-order differential equation under Lidstone boundary conditions.

Our analysis relies on a fixed point theorem in partially ordered sets.
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1. INTRODUCTION AND PRELIMINARIES

The fourth-order differential equation
(1.1) u® () =\ f(tu, o w0y, te(0,1),
with Lidstone boundary conditions
(1.2) uw(0) =u(1l) =0=u"(0) =u"(1),
has received a lot of attention in the last decades since it models the stationary states

of the deflection of an elastic beam with both ends hinged (see [20]).

Some of the main tools of nonlinear analysis have been applied in the literature
devoted to the study of problem (1.1)—(1.2): lower and upper solutions [3, 7, 8, 17],
monotone iterative technique [1, 9, 11], Krasnoselskii fixed point theorem [5], fixed
point index [2, 15, 21], Leray-Schauder degree [10, 13] and bifurcation theory [16, 19].

In this paper we are interested in the positive solutions of problem

u®(t) = f(t,u), te€(0,1)

(13) u(0) = u(1) = 0= u(0) = u"(1).

A particular case of this problem is

u®(t) = A h(#)f(w), te(0,1), A>0
w(0) = u(1) = 0 = u"(0) = u"(1),
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which has been recently studied in [6] by using a slight variant of a fixed point theorem
proved in [4].
In [6] the uniqueness of the solution is not treated.

The main tool in our work is a fixed point theorem in partially ordered sets which
appears in [12].
In what follows, we present some results about the fixed point theorems which

we will use later. These results appear in [12].

Definition 1.1. An altering distance function is a function ¢: [0, 00) — [0, co) which

satisfies:

(a) v is continuous and nondecreasing.
(b) ¥(t) =0 is and only if t = 0.

Theorem 1.2 (Theorem 2.2 of [12]). Let (X, < ) be a partially ordered set and
suppose that there exists a metric d in X such that (X, d) s a complete metric space.

Assume that X satisfies the following condition

(1.4) if () is a nondecreasing sequence in X such that

x, — x then x, < x for alln € N.
Let T : X — X be a nondecreasing mapping such that
P(d(Tx, Ty)) < ¢(d(z,y)) — ¢(d(z,y)), forz>y,

where ¥ and ¢ are altering distance functions. If there exists xo € X with o < Txg
then T has a fized point.

If we consider that (X , < ) satisfies the following condition:
(1.5)  for z,y € X there exists z € X which is comparable to x and v,
then we have the following result.

Theorem 1.3 (Theorem 2.3 of [12]). Adding condition (1.5) to the hypotheses of

Theorem 1.2 we obtain uniqueness of the fixed point of T.

In our considerations, we will work in the Banach space
C[0,1] = {z : [0,1] — R, continuous},

with the standard norm ||z| = max |z (t)].

Note that this space can be equipped with a partial order given by

z,y €Cl0,1], z<y<=z(t) <y(t), forte]l0,1].
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In [18] it is proved that (C[0,1], <) with the classic metric given by

d(z,y) = max |z(t) — y(t)]

satisfies condition (1.4) of Theorem 1.2. Moreover, for z,y € C[0, 1], as the function

max{z, y} is continuous, (C[0,1], <) satisfies condition (1.5).

On the other hand, the boundary value problem (1.3) can be rewritten as the

integral equation (see, for example, [14])

1
u(t) :/ G(t,s)f (s, u(s))ds,
0
where G(t, s) is the Green function given by

1

6s(1 —t)(2t —s* —t%), s<t
(1.6) G(t,s) = )

61&(1 —8)(2s —t* — 5%, s>t

Note that G(t,s) is a continuous function on [0,1] x [0,1] and G(t,s) = G(s,1).
Moreover, G(t,s) > 0 for t,s € [0,1]. In fact, for s <t we have

Glt,s) = %5(1 @t st —2) > %5(1 )2t — 2 — 1)
_ ! 1—t)(2t —2t2
- La—pei-m)

_ %3(1 — 121 — ) > 0.

The case t < s is a direct consequence from G(t, s) = G(s,t).

On the other hand, G(t,s) = G(1—t,1—s). In fact, for s <t we have 1 -t < 1—s

and, consequently,
G —t,1—s) = éu C)s[2(1—s) — (1— £ — (1— )]
= %3(1 —t)[2t — ¢* = 7]
= G(t,s).

From G(t, s) = G(s,t) we can obtain the case t < s.

Finally, a straightforward calculation gives us

1 ¢ 1
/G(t,s)zds:/ G(t,s)2ds+/ G(t,s)*ds
0 0 ¢
1

= 2t -1 6Bt -6t — 12+ 4t +2).
945( )* (3 6 + 4t + 2)
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1
Moreover, if in the integral / G(1—t, s)2ds we make the change of variables s = 1—u

0
and taking into account G(t,s) = G(1 —t,1 — s) we get
1 0
/ G(1—t,s)ds = —/ G(1—t,1—u)’du
0 1
1
= / Gl —t,1—u)’du
0
1

= / G(t,u)*du

0
1

= / G(t, s)*ds.
0

This means that the polynomial

1

1

/ G(t,s)ds = —t*(t — 1) (3t — 65 — > + 4t + 2)
0 945

is a symmetric function with respect to ¢ty = 1/2 and, consequently, as t(t — 1) is also
symmetric function with respect to to = 1/2 then

q(t) = 3t* — 6t — 2 + 4t + 2

must be symmetric with respect to to = 1/2.

Therefore

max ¢(t) = mmax q(t).

If the maximum is reached at (0, %), the symmetric character of ¢(t) says us that
the derivative of ¢(t) has at least two zeroes in (0,1) and consequently, the second

derivative of ¢(¢) has at least one zero in (0,1). But
q(t) =12t — 18t — 2t + 4
q"(t) = 36t — 36t — 2

and ¢"(t) does not vanish in (0, 1) and, consequently, the maximum of ¢(t) is reached
inty=0orty=1/2. As ¢(0) =2 and ¢(1/2) = 51/16, thus,

(1) = h=q(L)=2
Zaxa _ogtlg{mq —9\32) " 16

Moreover, as the maximum of h(t) = t*(1 — t)? is reached at to = 1/2 we get

1 1
max / G(t,s)’ds = max / G(t,s)’ds
0 0

0<t<1 0<t<1/2

SNORORIC

~ 80640
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2. MAIN RESULT

In this section, we present the main results of the paper.

Theorem 2.1. Consider problem (1.3) with f: [0,1] x [0,00) — [0,00) continuous
and non-decreasing with respect to the second variable and suppose that there exists

0<a< % such that, for x,y € [0, 00) with y > z,

(2.1) f(ty) = f(t.2) < a /i [(y —2)2 + 1],

Then problem (1.3) has a unique nonnegative solution.

Proof. Consider the cone
P={zecCl0,1]:x(t) >0}
Obviously, (P,d) with d(z,y) = sup {|z(t) — y(¢)| : ¢t € [0,1]} is a complete metric
space. Moreover, (P, < ) with the partial order defined by
r<y<=z(t) <y(t), fortel01]
satisfies condition (1.4) and (1.5) (see, Section 1). (Notice that for z,y € P then

max{z,y} € P.)
Consider the operator defined by

(Tu)(t) = /0 G(t,s)f(s,u(s))ds, forue P,

where G(t, s) is the Green function defined in Section 1.

Since f(t,z) and G(t, s) are nonnegative continuous functions 7" applies P into
itself.

In what follows, we check that hypotheses in Theorems 1.2 and 1.3 are satisfied.

The operator T' is nondecreasing, since for u,v € P, u > v and t € [0, 1], we have

(Tu) (1) :/0 G(t,s)f (s, u(s))ds Z/o G(t,s)f(s,v(s))ds = (Tv)(¢).

(Notice that f is nondecreasing with respect to the second variable.)

Besides, for u,v € P and u > v, and, taking into account our assumptions and

the above mentioned properties of the Green function (see, Section 1), we can get

d(Tw, Tv) = sup |(Tw)(t) — (TU)(t)‘

0<t<1

= sup, ((Tu)) - (T0) (1))
= 08521/01 G(t,s) (f(s,u(s)) — f(s,v(s)))ds
< osgltlgl/ol G(t, s) a\/ln [(u(s) - v(s))2 + 1} ds.
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Using the Cauchy-Schwarz inequality in the last integral we get

/Gts \/m[( (s) U(s))2—|—1]ds
< (/01 (G(t,s)) ds) g (/01 a?In [(u(s) — ()’ + 1]ds)%

and, as

1a2 In [(u(s) — v(s))2 + 1} ds < a’In [Hu — ’UH2 + 1] =a’ln [al(u,v)2 + 1],

/
1
2 /80640
Stlel?/o (G(t,s)) ds = 80640 , we can get
/ (G(t, s)
0

1

a 21n [d(u v)’ +1])
o (in [d(u,@m}f o

< (1n[a(uv)* +1])*
The last inequality gives us
A(Tu, Tv)* < In [d(u,v)* +1]
— d(u,v)? — <d(u, )2 —In [d(u, v)’ + 1]) .

Put ¢(z) = z* and ¢(z) = z* — In(2? + 1). Obviously, ¥ and ¢ are altering

distance functions, and we have

P (d(Tu,Tv)) < (d(u,v)) — ¢ (d(u,v)) , for u,v e P with u > v.

d(Tu,TU) < sup (

tel

Finally, as f and G are nonnegative functions

(T0)(¢ / G(t,s)f(s,0)ds > 0,

and Theorems 1.2 and 1.3 give us that 7" has a unique fixed point or, equivalently,

our problem (1.3) has a unique nonnegative solution. O

Remark 2.2. Note that G(1,s) = G(0,s) = 0 and for ¢t # 0,1, G(t,-) # 0 a.e.

because G(t,-) is given by a polynomial.

In the sequel, we present a sufficient condition for the existence and uniqueness

of positive solutions for our problem (1.3) (positive solution means z(t) > 0 for
€ (0,1)).

Theorem 2.3. Under assumptions of Theorem 2.1 and suppose that f(t,0) # 0 for
t € AC0,1] with u(A) > 0, then our problem (1.3) has a unique positive solution.

(Here pu denotes the classical Lebesque measure in [0,1]).
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Proof. Notice that the nonnegative solution given by Theorem 2.1 for our problem
(1.3) satisfies

z(0) = /0 G(0,s)f(s,z(s))ds = / 0-f(s,2(s))ds =0

0

z(1) = /0 G(1,s)f(s,z(s))ds :/0 0- f(s,2(s))ds = 0.

Moreover, taking into account our assumptions, the zero function is not solution of

problem (1.3). In fact, in contrary case, we have

0:/01G(t,s)f(s,0)ds, for t € [0, 1].
This and the nonnegativity of the functions G(t, s) and f(s,0) gives us
G(t,s)- f(s,0) =0 ae., fortel0,1].
As G(t,—) > 0 a.e. (see Remark 2.2) then
f(5,0) =0 ae.

which contradicts our hypothesis.

Now, suppose that there exists 0 < ty < 1 such that z(tg) = 0. As x(¢) is a fixed

point of the operator T" which appears in Theorem 2.1, we have

z(ty) = /0 G(to, s)f (s, z(s))ds = 0.

As z(s) > 0 and the fact that f is nondecreasing with respect to the second variable,

we can obtain

0=x(ty) = /0 Glto, s)f(s,z(s))ds > /0 G(to,s)f(s,0)ds >0

and the last inequality gives us

1
/ G(to, s)f(s,0)ds = 0.
0
By using an analogous argument to the used one previously, we can conclude that
f(s,O) =0 a.e.

and this contradicts our hypothesis. Therefore, for ¢t € (0,1), z(¢t) > 0. This finishes
the proof. O

Remark 2.4. Notice that as f: [0,1] x [0,00) — [0,00) is continuous, the fact
f(-,0) # 0 give us automatically the assumption that appears in Theorem 2.3. Indeed,
as f(-,0) # 0 there exists ¢y € [0, 1] such that f(to,0) > 0 and using the continuity of
f, we can find a set A C [0, 1] with y(A) > 0 such that f(¢,0) > 0 for ¢ € A.
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In [6] the authors obtained sufficient conditions for the existence of positive so-

lutions for the following fourth-order equation with Lidstone boundary conditions

u®(t) = X h(t)g(u), t€(0,1), A>0

(2.2)
u(0) = u(1) = 0 = u"(0) = u"(1).

More precisely, the main result in [6] is the following theorem.

Theorem 2.5 (Theorem 3.1 [6]). Suppose that h: [0,1] — [0,00) is continuous and

], 9: R —[0,00) continuous, lim 9(s) = 400, and there
§—00 S

13
401
exists B € [0, +00) such that g is nondecreasing on [0, B). If

not identically zero in [

0<A< sup — ,
se(0,8) 1*9(5)

where

1
v = max)/ G(t, s)h(s)ds,
0

te(0,B

then problem (2.2) has at least a positive solution.

Note that in [6] the uniqueness of the solution is not treated.
Some particular cases of problem (2.2) can be treated by our Theorem 2.3 and we
additionally obtain uniqueness of the solution. For example, if ¢(0) > 0 and g¢(y) —
x) < \/ln [(y—2)2+1], for 0 <a <y, with g:[0,00) — [0,00) continuous and

nondecreasing with respect to the second variable, and h: [0,1] — [0, 00) continuous

1
Z’Z ) In this
case, f(t,u) = Ah(t)g(u) and, obviously, f: [0,1] x [0,00) — [0,00) is continuous

and nondecreasing with respect to the second variable. Moreover, for 0 < x < y we

and not identically zero ( in particular if h is not identically zero in

have

fty) = f{t,z) = A-h(t) [g(y) — g(z)]
<. h(t)\/ln [(y — 2)2 + 1]
< A by [(y - 2)2 + 1],

where ||| = sup {h(t) : t € [0,1]}. As f(t,0) = Ah(t)g(0), g(0) > 0 and h is not
identically zero, Remark 2.4 says that f (t,0) satisfies the assumption appearing in

TRl \/@ , Theorem 2.3 says us that problem

(2.2), for this particular case, has a unique positive solution.

Theorem 2.3. Consequently, for A <

Remark 2.6. Notice that in [6] the authors allow to the nonlinear part to be zero

at u = 0, but their results don’t ensure the uniqueness of the solution.
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