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1. INTRODUCTION

Control algorithms are designed with the assumption that the plant dynamics are

exactly those of of one member of specified class of models.It is then natural to ask

how the control system will behave when, as is inevitable in practice, the true plant is

not perfectly described by any model in the given class. If the stability of the control

system is guaranteed, provided only that the modeling error is sufficiently small, then

we say that the control algorithm is robust, and we speak of robust stability. It is

clear that robust stability is very important for the practical applicability of control

algorithms.

Unfortunately, a stable control algorithm is not necessary stable. The reason is

that the modeling error signal appears as a disturbance in the law and may cause the

divergence of the adaptive process. The fact that the disturbance is correlated with

the plant input and output signals and, in addition, is of the same order of magnitude,

is part of the complexity of the robustness problem.

As a first step towards robustness results, the stability of control systems in

the presence of bounded external disturbances has been investigated by several au-

thors.This investigations were prompted by observations showing that a bounded

external disturbance, even an asymptotically vanishing one, can can cause the diver-

gence of the adaptive process, and thereby instability. To prevent the latter, four

main approaches have been made.

In the first approach a dead zone is used in the law so that adaptation takes place

only when the identification error exceeds a certain threshold. If the disturbance is

Received October 31, 2004 1056-2176 $15.00 c©Dynamic Publishers, Inc.



334 V. B. KOLMANOVSKII

bounded below this threshold, then it can be shown that the adaptation is always

in the ”right” direction and system stability is achieved. In order to choose the size

of dead zone appropriately, a bound on disturbance must be known. In the second

approach, a modification of the adaptive law is used, which comes into operation only

when the norm of the estimated controller parameters exceeds a certain value and

has the effect that the parameter estimates remain bounded for all time. Closed-

loop system stability is thus obtained in the presence of bounded disturbances of

arbitrary, unknown size. In this case a bound on the norm of the desired controller

parameters must be known. In the third approach we suggested and analysed. again

if the disturbance is known to be bounded, close-loop system stability is obtained.

For plants of relative degree greater than two, this also requires the knowledge of a

bound the norm of the(unknown)desired controller parameters. In the forth approach

the idea is to produce persistency of excitation in order to make the control system

exponentially stable, and to obtain stability in the presence of a bounded disturbance

as a consequence of the exponential stability. The question of how the signal can be

chosen to ensure the persistency of excitation in the presence of the disturbance has

not been completely resolved as yet. We point out that in all four approaches the proof

of stability depends crucially on the a priory boundedness of external disturbance.

In the robustness problem, the disturbance is internally generated and thus de-

pends on the actual plant input and output signals. In particular, if the control

system were unstable and the plant input and output signals were to grow without

bound, then the caused by model-plant mismatch, would also grow without bound. In

other words, the stability problem becomes the problem of an internal, and thus po-

tentially unbounded disturbance.Therefore, when proving boundedness of the distur-

bance cannot be assumed a priory, and, consequently, the aforementioned approaches

for bounded disturbances do not necessarily solve the problem..

In spite of this intrinsic difficulty, a number of robustness results have been ob-

tained in the literature. The results which have been proved in this approach are also

local in nature because,a sufficiently large disturbances could invalidate the persis-

tency of excitation assumption. Another interesting approach, is to use a modified

signal normalization, which suitably bounds the modeling error signal, which keeps

the parameter estimates bounded, in the adaptive law. Stability is then shown sub-

ject to the assumptions that bounds on the unknown plants parameters are known

and the estimated plant is uniformly controllable and observable.

Stability is then demonstrated subject to the assumption that the unknown plant

parameters lie in a known set of the parameter space, throughout which no unstable

pole-zero cancellation occurs.
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A signal normalization is used to define the relative identification error. It is

shown that if the model-plant mismatch is sufficiently small, then the relative mod-

eling error signal is within the dead zone, and the law causes the parameter error

to decrease monotonically as in the bounded disturbance case. However, the law

can now only guarantee that the relativeidentification error becomes smaller than the

dead zone eventually, and hence, if the close-loop system were unstable, the absolute

identification error would still grow without bound. A crucial step in the proof of

stability is to carry this potentially unbounded identification error in such a way that

stability can be concluded and an expression for the admissible size of the dead zone

is obtained. To achieve this, the above-mentioned a priory knowledge of bounds on

the unknown plant and controller parameters and on the plant zeros appears to be

necessary. In principle, these bounds can be extended arbitrarily to approach the

assumptions made in the ideal non-robust case, but it is also true that their values

affect the admissible size and hence the degree of robustness which can be guaranteed.

The relative zone approach gives rise to quite different properties of the overall

adaptive system. The potential of parameter convergence to the true values is retained

in the absence of modeling errors. However, in the presence of modeling errors,

even when they are over the specified region.In contrast to that, in the relative zone

approach the parameter estimates will not converge to their true values in general,

even when no modeling errors are present. However, regardless of the presence of

modeling errors, the parameter estimates converge to a certain neighborhood of the

true parameter values, and no drift phenomena are encountered.

In summery, the main contributions of this paper are the introduction of the

relative concept as a tool for dealing with robustness of solutions for discrete Volterra

equations.

The paper is organized as follows: introduction, main theorems, stability under

steady state acting perturbations, discussion and conclusion.

Let us consider a system of linear Volterra difference equations with initial con-

dition x0

(1.1) xi+1 =
i∑

j=0

A (i, j) xj, i ≥ 0

(1.2) x0 ∈ Rn

Here xi ∈ Rn, A (i, j) ∈ Rn×n. The solution of equation (1.1) is denoted by x (i, 0, x0) .

It is assumed that x0 and the matrices A (i, j) are given, N is a set of integers.

Definition. The solution x (i, 0, x0)of problem (1.1), (1.2) is called exponentially

stable if there exist constant C > 0 and γ ∈ [0, 1)such that

(1.3) |x (i, 0, x0)| ≤ C |x0| γi, i ≥ 0, ∀x0 ∈ Rn
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Here |·| is a norm in the space Rn.

Conditions of exponential stability of the solutions x (i, 0, x0) of equation (1.1)

were investigated in some papers. In paper [1] were considered linear convolution

type Volterra difference equations

(1.4) xi+1 =
i∑

j=i0

A (i− j) xj, xi0 = x0 ∈ Rn

In the paper [1] it was shown that if the system (1.4) is uniformly asymptotically

stable with respect to the initial moment i0, then system (1.4) exponentially stable if

and only if the value ‖A (i)‖ is decreasing exponentially:

‖A (i)‖ ≤ c1γ
i
1, c1 > 0, 0 ≤ γ1 < 1, i →∞

The proof of the paper [1] was founded on Laplace transformation method.

In the paper [2] were formulated necessary and sufficient conditions of exponential

stability for equation (1.1) in terms of mapping Banach space Lγ into Banach space

Cγ, 0 < γ < 1. Here the Banach space Lγ is defined as

(1.5)
Lγ =

{
{fi}i∈N : fi ∈ Rn,

∞∑
i=0

|fi| γ−i < ∞
}

,

‖f‖Lγ =
∞∑
i=0

|fi| γ−i

The Banach space Cγ, 0 < γ < 1 is defined as

(1.6)
Cγ =

{
{fi}i∈N : fi ∈ Rn, sup

i≥0
|fi| γ−1 < ∞

}
,

‖f‖Cγ = sup
i≥0

|fi| γ−i

Further let us introduce the operator F on Lγ

(1.7) F : f ∈ Lγ → y = {yi} , yi ∈ Rn

Here

y0 = 0, yi =
i−1∑
j=0

z (i, j + 1) fj, i ≥ 1

The resolvent z (i, j) of equation (1.1) is a matrix (n× n) satisfying the relations

z (i + 1, j) =
i∑

l=j

A (i, l) z (l, j) , i ≥ j, z (j, j) = I,

z (i, j) = z (i, l) z (l, j) +
i−1∑
k=l

z (i, k + 1)
l−1∑
h=j

A (k, h) z (h, j) ,

i ≥ l ≥ j

where I is identity (n× n) matrix.
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Necessary and sufficient conditions of exponential stability of solutions xi of equa-

tion (1.1) is the following; the operator F defined by the relation (1.7) must map

Banach space Lγ into space Cγ, 0 < γ < 1.

Let us consider along with equation (1.1) the perturbed equation

(1.8) yi+1 =
i∑

j=0

(A (i, j) + B (i, j)) yj, i ≥ 0, y0 ∈ Rn

Assume that the solutions of equation (1.1) are exponentially stable. It means that

the resolvent z (i, j) of equation (1.1) satisfies the inequality (see,e.g.,[2])

(1.9) ‖z (i, j)‖ ≤ λγi−j, z (i, i) = I, i ≥ j, 0 ≤ γ < 1, λ > 0

where γ is a fixed number.

The statement of the problem that will be studied in this paper is the following:

what conditions must be imposed on perturbations B (i, j) ∈ Rn×n such that the

resolvent W (i, j) of equation (1.8) will satisfy the inequality

(1.10) ‖W (i, 0)‖ ≤ λ1γ
i
1, W (i, 0) = I, i ≥ 0, 0 ≤ γ1 < 1, λ1 > 0

It is clear that if the inequality (1.10) be valid then the solutions of the perturbed

equation (1.8) be exponentially stable as well.

2. MAIN THEOREMS

Theorem 2.1. Assume that the resolvent z (i, j) satisfies the inequality (1.9), matrix

B (j, l) equal zero for each j and l < j−m, l > j, where m ≥ 0. Let us introduce two

positive numbers η and µ such that

(2.1) sup
j≥0,l≥0

‖B (j, l)‖ ≤ η, η > 0, µ = λη
γ−m − 1

1− γ

Then under condition

(2.2) 1 > γ exp (µ)

(where λ > 0, γ ∈ (0, 1) from (1.9), η > 0 are fixed numbers) the resolvent W (i, 0)

satisfies the inequality (1.10), i. e. the solutions of perturbed equation (1.8) are

exponentially stable.

Proof. Using Cauchy formula for Volterra difference equations the solution of equation

(1.8) can be represented either in the form

(2.3) y (i, 0, y0) = W (i, 0) y0, i ≥ 0

or in the form

(2.4)

y (i + 1, 0, y0) = z (i + 1, 0) y0

+
i∑

j=0

z (i + 1, j + 1)
j∑

l=0

B (j, l) y (l, 0, y0)
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But

y (l, 0, y0) = W (l, 0) y0, l ≥ 0

Therefore
y (i + 1, 0, y0) = z (i + 1, 0) y0

+
i∑

j=0

z (i + 1, j + 1)
j∑

l=0

B (j, l) W (l, 0) y0

Comparing relations (2.1) and (2.2) in view of the arbitrariness y0 and i ≥ 0 we can

conclude that

(2.5)

W (i + 1, 0) = z (i + 1, 0)

+
i∑

j=0

z (i + 1, j + 1)
j∑

l=0

B (j, l) W (l, 0) , i ≥ j ≥ 0

Further according to the assumption of theorem 1 the resolvent z (i, k) satisfies the

estimate (1.9).From this estimate and relations (2.1), (2.5) it follows that

γ−i−1 ‖W (i + 1, 0)‖ ≤ λ

(
1 + γ−1

i∑
j=0

γ−j

∥∥∥∥ j∑
l=0

B (j, l) W (l, 0)

∥∥∥∥
)

≤ λ

(
1 + ηγ−1

i∑
j=0

γ−j
j∑

l=0

‖W (l, 0)‖

)

= λ

(
1 + ηγ−1

i∑
l=0

‖W (l, 0)‖
l+m∑
j=l

γ−j

)
= λ + µ

i∑
l=0

‖W (l, 0)‖ γ−l

Here the number µ is given by (2.1).

Denote by ω (i) the function

ω (i) = γ−i ‖W (i, 0)‖ , i ≥ 0

Now using discrete variant of Gronwall-Bellman lemma ([3], p.15) we obtain that

‖W (i + 1, 0)‖ ≤ λγ (γ exp (µ))i , i ≥ 0

Hence under assumption of theorem 1 the solutions of the perturbed system (1.8) are

exponentially stable. Theorem 1 is proven.

Theorem 2.2. Assume that the resolvent z (i, j) of equation (1.1) is bounded for all

i ≥ j by the number q1:

(2.6) ‖z (i, j)‖ ≤ q1, i ≥ j ≥ 0

Then the resolvent W (i, j) of the perturbed equation (1.8) is also bounded for all

i ≥ j ≥ 0 under condition

(2.7)
∞∑

j=0

j∑
l=0

‖B (j, l)‖ < ∞



ROBUST STABILITY 339

Proof. Let us denote for any fixed k the function

λk (j) = sup
k≤l≤j

‖W (l, j)‖

From equality (2.5) and inequality (2.6) it follows that

(2.8) ‖W (i + 1, k)‖ ≤ q1

(
1 +

i∑
j=k

sup
k≤l≤j

‖W (l, k)‖
j∑

l=k

‖B (j, l)‖

)
Then using inequality (2.8) we have

λk (i + 1) ≤ q1

(
1 +

i∑
j=k

λk (j)

j∑
l=k

‖B (j, l)‖

)
From here and Gronwall-Bellman lemma it follows

λk (i) ≤ q1 exp

{
q1

∞∑
j=k

j∑
l=k

‖B (j, l)‖

}
, k ≥ 0

Therefore by virtue of (2.7) the resolvent W (i, j) of perturbed equation (1.8) is

bounded. Theorem 2 is proven.

3. STABILITY UNDER STEADY STATE ACTING PERTURBATIONS

Denote by L1 and C two Banach spaces of sequences defined by relations (1.5),

(1.6) for γ = 1. Let us interpret elements f ∈ L1 as a perturbations acting on system

(1.1). Without loss of generality we can assume that initial condition xi0 = 0 for

equation (1.1).

Theorem 3.1. For any element f ∈ L1 corresponds the solution x ∈ C of the problem

(3.1) xi+1 =
i∑

j=i0

A (i, j) xj + fi, xi0 = 0

if and only if

(3.2) ‖z (i, j)‖ ≤ k, i ≥ j ≥ i0

Here k > 0 is a positive constant, xi ∈ Rn, z (i, j) is resolvent matrix (n× n) of

homogeneous equation (3.1), perturbation fi ∈ Rn.

Proof. Sufficiency. Assume that inequality (3.2) is valid and f ∈ L1. The solution of

the problem (3.1) is given by the formula

xi =
i−1∑
j=i0

z (i, j + 1) fj

Hence

|xi| =

∣∣∣∣∣
i−1∑
j=i0

z (i, j + 1) fj

∣∣∣∣∣ ≤ k
∞∑

j=i0

|fj| = k ‖f‖L1
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Therefore x ∈ C.

Necessity. Assume that for every element f ∈ L1 will be valid equality x = Ff ∈
C, where F is an operator acting from the space L1 into C. Let us show that from

here it follows relation (3.2). Take some fixed moment l ≥ i0 and put

f1 (l) = ω ∈ Rn, f1 (j) = 0, j 6= l

where ω is a constant vector from Rn. Remind (see, e.g. [4], ch.3) that if the operator

F acts from the Banach space L1 into Banach space C then it will be bounded.

Therefore for f = f1 we have

‖(Ff1) (i)‖ = ‖zω (i, l)‖ ≤ k |ω|

From here and arbitrariness of the vector ω it follows the estimate (3.2). Theorem 3

is proven.

Consider Volterra difference equation under nonlinear perturbations

(3.3) xi+1 =
i∑

j=i0

A (i, j) xj + F

(
i,

i∑
j=i0

B (i, j) xj

)
, i ≥ i0

Here F : N0 ×Rn → Rn is continuous function with respect to the both arguments.

Denote by µ1 the value

µ1 = sup
i≥i0

i−1∑
j=i0

z (i, j + 1)

Theorem 3.2. Let the resolvent z (i, j) of equation (1.1) satisfy the inequality (1.9),

initial condition xi0 of equation (3.3) satisfy the estimate

|xi0| < ε (2λ)−1 , ε > 0

and in the domain {|u| ≤ H, i ≥ i0} be met the inequalities∣∣∣∣∣F
(

i,
i∑

j=i0

B (i, j) uj

)∣∣∣∣∣ < µ2, µ1µ2 <
ε

2
, i ≥ i0, |u| ≤ H

Then for the solution x (i, i0, xi0) of equation (3.3) is valid estimate x (i, i0, xi0) <

ε, i ≥ i0.

Proof. The solution of equation (3.3) has a form

xi = z (i, i0) x0 +
i−1∑
j=i0

z (i, j + 1) F

(
j,

j∑
l=i0

B (j, l) xl

)
Let us introduce the operator Dη, 0 ≤ η ≤ 1 acting in the space L1 by the relation

(3.4) (Dηx) (i) = z (i, i0) x0 + η
i−1∑
j=i0

z (i, j + 1) F

(
j,

j∑
l=i0

B (j, l) xl

)
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Taking into account assumption about function F we can conclude that the operator

Dη completely continuous. Further using Schauder principle ([3],p.298) we can obtain

apriori estimate of all solutions

xη (i) = (Dηx) (i) , 0 ≤ η ≤ 1

of equation (3.4). In fact from (3.4) it follows

|xη (i)| ≤ λγi−i0 |x0|+ µ2

i−1∑
j=i0

z (i, j − 1) ≤ ε

2
+ µ1µ2 ≤ ε

Also for η = 0 we have

sup
i≥i0

|z (i, i0) x0| <
ε

2
< ε1, ε1 > ε

Therefore all assumptions of Leray-Schauder theorem are satisfied. Consequently

equation (3.3) has at least one solution and for all solutions of equation (3.3) with

initial condition |x0| < ε� (2λ) will be valid estimate |xi| ≤ ε, i ≥ i0. Theorem 4 is

proven.

Corollary.Consider equation (3.1) under perturbations fi that are bounded by

some number δ > 0

|fi| ≤ δ, δ > 0, i ≥ i0

Further assume that the resolvent z (i, j) of equation (1.1) satisfies exponential esti-

mate

‖z (i, j)‖ ≤ λγi−j, 0 < γ < 1, i ≥ j ≥ i0

Then the solutions x (i, i0, x0) of equation (3.1) are bounded for all i ≥ i0.

In fact from (3.1) it follows that

xi = z (i, i0) x0 +
i−1∑
j=i0

z (i, j + 1) fj

Hence

|xi| ≤ k

(
γi−i0 |x0|+ δ

i−1∑
j=i0

γi−j−1

)
= γik (γ−i0 |x0|+ δ (γ−i−1 − γ−i0−1) � (γ−1 − 1)) < ∞

Conclusion. In this paper, we have further extended the stability analysis re-

sults under exogenous disturbances and parametric/dynamic uncertainties. Sufficient

conditions for robust stability of Volterra difference equations were obtained.
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