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1. INTRODUCTION

Boundary value problems on the half-line arise quite naturally in various branches

of applied mathematics. However, the general theory on the semi-infinite interval is

not well developed and most of the known results require rather technical assumptions,

which are difficult to verify in concrete applications. The main tools used in the

literature to guarantee existence or multiplicity of solutions for such problems are fixed

point arguments together with the lower and upper solution method. In this paper

using variational methods we obtain multiple solutions for a second order boundary

value problem on the half line under very simple assumptions (see Theorem 3.3).

Consider the boundary value problem

(Pλ)















−y′′ + m2y = λf(t, y)

y(0) = 0

lim
t→∞

y(t) = 0,

where m is a non zero constant, λ is a real parameter, and f : [0,∞) × R → R is an

L2−Carathéodory function, that is

(a) t → f(t, y) is measurable for every y ∈ R;

(b) y → f(t, y) is continuous for almost every t ∈ [0,∞);
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(c) for every ρ > 0 there exists a function lρ ∈ L2([0,∞)) such that

sup
|y|≤ρ

|f(t, y)| ≤ lρ(t)

for almost every t ∈ [0,∞).

We refer to [5, Chapter 13] and the references therein, for more details on problem

(Pλ). Our aim is to establish a precise open interval Λ ⊆ (0,∞) such that, for each

λ ∈ Λ, problem (Pλ) admits at least three generalized solutions.

The present paper is arranged as follows. Section 2 is devoted to preliminary

results and basic properties on the functionals which are useful for our ends. In

Section 3 we establish multiplicity results for nonlinear boundary problems on the

semi-infinite interval.

2. PRELIMINARIES

Let W 1,2([0,∞)) be the Sobolev space endowed with the norm

‖u‖ :=

(∫ ∞

0

|u′(t)|2dt + m2

∫ ∞

0

|u(t)|2dt

)1/2

,

which is equivalent to the usual one. As is usual, we denote by W
1,2
0 ([0,∞)) the

closure of C1
0([0,∞)) in W 1,2([0,∞)). Now, we recall some properties on the previous

Sobolev spaces that can be deduced easily from [3, Chapter VIII].

Proposition 2.1. Let u ∈ W 1,2([0,∞)). Then,

u ∈ W
1,2
0 ([0,∞)) if and only if u(0) = 0.

Proposition 2.2. Let u ∈ W 1,2([0,∞)). Then, lim
t→∞

u(t) = 0.

Proposition 2.3. One has

W 1,2([0,∞)) ⊆ BC([0,∞)),

where BC([0,∞)) is the set of all functions u : [0,∞) → R which are bounded and

continuous. Moreover,

(2.1) max
t∈[0,∞)

|u(t)| ≤ max

{

1;
1

|m|

}

‖u‖

for all u ∈ W 1,2([0,∞)).

A function u : [0,∞) → R is said a generalized solution to (Pλ) if u ∈ C1([0,∞)),

u′ ∈ ACloc([0,∞)), −u′′(t)+m2u(t) = λf(t, u(t)) for almost every t ∈ [0,∞), u(0) = 0

and lim
t→∞

u(t) = 0. Also a function u : [0,∞) → R is said a weak solution to (Pλ) if

u ∈ W
1,2
0 ([0,∞)) and

∫ ∞

0

u′(t)v′(t) dt + m2

∫ ∞

0

u(t)v(t) dt = λ

∫ ∞

0

f(t, u(t))v(t) dt
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for every v ∈ W
1,2
0 ([0,∞)).

We explicitly observe that the weak solution is well-defined.

Proposition 2.4. Generalized and weak solutions to (Pλ) coincide.

Proof. Assume that u is a weak solution to (Pλ). Proposition 2.1 and Proposition

2.2 guarantee that the function u satisfies the boundary conditions. Moreover, from

definition of weak solution it follows that u′ is weakly differentiable and its derivative

is m2u(t) − λf(t, u(t)) ∈ L2([0,∞)). Hence, u′ ∈ W 1,2([0,∞)) and the conclusion

follows.

Now assume that u is a generalized solution to (Pλ). Arguing as in [3, Chapter

VIII, Example 8] we see that u ∈ W
1,2
0 ([0,∞)) and a standard argument guarantees

that u is a weak solution to (Pλ).

Remark 2.5. Every weak solution u for problem (Pλ) satisfies

lim
t→∞

u′(t) = 0;

this can be deduced from the proof of Proposition 2.4, taking into account Proposition

2.2.

We also observe that if the L2−Carathéodory function f is continuous in [0,∞)×
R, then the weak solutions are also classical solutions, namely u ∈ C2([0,∞)) and

−u′′(t) + m2u(t) = λf(t, u(t)) for every t ∈ [0,∞).

Here and in the sequel, F : [0,∞) × R → R is the function defined by

F (t, z) =

∫ z

0

f(t, y) dy.

Clearly, one has

(a) t → F (t, z) is measurable for every z ∈ R;

(b) z → F (t, z) ∈ C1(R) and F ′
z(t, y) = f(t, y), for almost every t ∈ [0,∞).

Moreover, one also has

(c) for every ρ > 0 there exists a function Lρ ∈ L2([0,∞)) such that

sup
|z|≤ρ

|F (t, z)| ≤ Lρ(t)

for almost every t ∈ [0,∞).

In fact, |F (t, z)| = |
∫ z

0
f(t, y) dy| ≤ |z| sup|y|≤ρ |f(t, y)| ≤ ρlρ(t) := Lρ(t) for almost

every t ∈ [0,∞) and for all |z| ≤ ρ.

We now put

Ψ(u) =

∫ ∞

0

F (t, u(t)) dt
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for all u ∈ W
1,2
0 ([0,∞)).

By standard methods, we have the following result.

Proposition 2.6. The functional Ψ : W
1,2
0 ([0,∞)) → R is well-defined. Moreover,

it is Gâteaux differentiable and its Gâteaux derivative is

Ψ′(u)(v) =

∫ ∞

0

f(t, u(t))v(t) dt

for all u, v ∈ W
1,2
0 ([0,∞)).

If we assume that the function f satisfies the further condition

(c’) there exists a function l ∈ L2([0,∞)) such that

(2.2) sup
y∈R

|f(t, y)| ≤ l(t)

for almost every t ∈ [0,∞),

we have the following result.

Proposition 2.7. Assume that condition (2.2) holds. Then Ψ′ : W
1,2
0 ([0,∞)) →

(

W
1,2
0 ([0,∞))

)∗
is a compact operator. In particular, Ψ : W

1,2
0 ([0,∞)) → R is a

weakly sequentially continuous functional.

Proof. Let X be a bounded set in W
1,2
0 ([0,∞)) and let {αn} be a sequence in Ψ′(X).

Then there is a sequence {un} in X such that βn = Ψ′(un) and ‖αn−βn‖(W 1,2
0

([0,∞)))
∗ <

1
n

for all n ∈ R. Since W
1,2
0 ([0,∞)) is reflexive, there is a subsequence unk

converging

weakly to u ∈ W
1,2
0 ([0,∞)). Therefore, arguing as in [4, Lemma 1.1], {un} has a

subsequence, which without loss of generality we again call {unk
}, which converges

everywhere in [0,∞) to the function u. Hence, {f(t, unk
(t))} converges to {f(t, u(t))}

a.e. on [0,∞). Now, taking into account (2.1), one has

|Ψ′(unk
)(v) − Ψ′(u)(v)| ≤

∫ ∞

0
|f(t, unk

(t)) − f(t, u(t))||v(t)| dt ≤
(∫ ∞

0
|f(t, unk

(t)) − f(t, u(t))|2 dt
)

1

2
(∫ ∞

0
|v(t)|2 dt

)
1

2 ≤
≤ 1

|m|

(∫ ∞

0
|f(t, unk

(t)) − f(t, u(t))|2 dt
)

1

2 for all v ∈ W
1,2
0 ([0,∞)) such that ‖v‖ ≤

1. Hence, from (2.2) and Lebesgue Dominated Convergence Theorem, the sequence

{Ψ′(unk
)} converges to Ψ′(u) in

(

W
1,2
0 ([0,∞))

)∗
.

Therefore, taking into account that

‖αnk
− Ψ′(u)‖(W 1,2

0
([0,∞)))

∗ ≤ ‖αnk
− βnk

‖(W 1,2
0

([0,∞)))
∗ + ‖βnk

− Ψ′(u)‖(W 1,2
0

([0,∞)))
∗,

the sequence {αnk
} converges in Ψ′(X) and the compactness is proved.

Finally, from [8, Corollary 41.9, page 236] we obtain the other conclusion.
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Remark 2.8. Clearly, under the condition (2.2), Ψ : W
1,2
0 ([0,∞)) → R is a con-

tinuously Gâteaux differentiable functional. In fact, arguing in a similar way as in

the proof of Proposition 2.7, we see that Ψ′ : W
1,2
0 ([0,∞)) →

(

W
1,2
0 ([0,∞))

)∗
is a

continuous operator.

Now, we define the functional Φ : W
1,2
0 ([0,∞)) → R by putting for every u ∈

W
1,2
0 ([0,∞))

Φ(u) :=
1

2
‖u‖2.

Clearly, Φ is a Gâteaux differentiable functional whose Gâteaux derivative at the

point u ∈ W
1,2
0 ([0,∞)) is the functional Φ′(u) ∈

(

W
1,2
0 ([0,∞))

)∗
given by

Φ′(u)(v) =

∫ ∞

0

u′(t)v′(t) dt + m2

∫ ∞

0

u(t)v(t) dt

for every v ∈ W
1,2
0 ([0,∞)), and Φ′ : W

1,2
0 ([0,∞)) →

(

W
1,2
0 ([0,∞))

)∗
is continuous.

Moreover, since Φ is convex, from [7, Proposition 25.20 (i), page 514] we see that Φ is

a sequentially weakly lower semicontinuous functional. Finally, since Φ′ is uniformly

monotone, from [7, Theorem 26.A (d), page 557] it admits a continuous inverse on
(

W
1,2
0 ([0,∞))

)∗
.

The main tool to prove our results in Section 3 is the three critical points theorem

below.

Theorem A. ([1, Theorem B]) Let X be a reflexive real Banach space, Φ : X → R

a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous

functional whose Gâteaux derivative admits a continuous inverse on X ∗, and Ψ :

X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative is

compact. Assume that:

(i) lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞ for all λ ∈ [0, +∞[;

(ii) there is r ∈ R such that:

inf
X

Φ < r,

and

ϕ1(r) < ϕ2(r),

where

ϕ1(r) := inf
x∈Φ−1(]−∞,r[)

Ψ(x) − inf
Φ−1(]−∞,r[)

w
Ψ

r − Φ(x)
,

ϕ2(r) := inf
x∈Φ−1(]−∞,r[)

sup
y∈Φ−1([r,+∞[)

Ψ(x) − Ψ(y)

Φ(y) − Φ(x)
,

and Φ−1(] −∞, r[)
w

is the closure of Φ−1(] −∞, r[) in the weak topology.
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Then, for each λ ∈] 1
ϕ2(r)

, 1
ϕ1(r)

[, the functional Φ + λΨ has at least three critical

points in X.

Note ϕ1(r) in Theorem A could be 0. In this and similar cases, here and in the

sequel, we agree to read 1
0

as +∞.

We also use the following two critical points theorem.

Theorem B. ([2, Theorem 1.1]) Let X be a reflexive real Banach space, and let Φ, Ψ :

X → R be two sequentially weakly lower semicontinuous and Gâteaux differentiable

functions. Assume that Φ is (strongly) continuous and satisfies lim‖x‖→+∞ Φ(x) =

+∞. Assume also that there exist two constants r1 and r2 such that

(j) infX Φ < r1 < r2;

(jj) ϕ1(r1) < ϕ∗
2(r1, r2);

(jjj) ϕ1(r2) < ϕ∗
2(r1, r2),

where ϕ1 is defined as in Theorem A and

ϕ∗
2(r1, r2) := inf

x∈Φ−1(]−∞,r1[)
sup

y∈Φ−1([r1,r2[)

Ψ(x) − Ψ(y)

Φ(y) − Φ(x)
,

Then, for each λ ∈
]

1
ϕ∗

2
(r1,r2)

, min
{

1
ϕ1(r1)

, 1
ϕ1(r2)

}[

, the functional Φ + λΨ admits

at least two critical points which lie in Φ−1(] −∞, r1[) and Φ−1([r1, r2[) respectively.

We recall that Theorem A and Theorem B are based on the variational principle

of B.Ricceri in [6].

3. RESULTS

Our main result is the following theorem.

Theorem 3.1. Let f : [0,∞) × R → R be an L2−Carathéodory function such that

(2.2) holds. Put F (t, z) =
∫ z

0
f(t, y) dy for all (t, z) ∈ [0,∞) × R, m = min{1; |m|},

and assume that there exist two positive constants c and d such that:

(1) c2 < 2
m2 (d + 4

3
m2d3);

(2)
∫ d

0
F (t, t) dt ≥ 0 and

∫ 4d

3d
F (t, 4d − t) dt ≥ 0;

(3) 2
m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c
<

0

B

B

B

B

@

R 3d

d
F (t,d) dt−

0

B

B

@

∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt

1

C

C

A

1
2

c

1

C

C

C

C

A

d+ 4

3
m2d3

.

Then, for each
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λ ∈



















d + 4
3
m2d3

∫ 3d

d
F (t, d) dt −





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c

,
m2c

2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2



















,

the problem (Pλ) admits at least three generalized solutions.

Proof. Let X be the Sobolev space W
1,2
0 ([0,∞)) endowed with the norm ‖u‖ :=

(∫ ∞

0
|u′(t)|2dt + m2

∫ ∞

0
|u(t)|2dt

)1/2
. For each u ∈ X, put:

Φ(u) :=
1

2
‖u‖2, Ψ(u) := −

∫ ∞

0

F (t, u(t))dt.

As seen in Section 2, the critical points in X of the functional Φ+λΨ are precisely

the generalized solutions of problem (Pλ). Our goal is to apply Theorem A to Φ and

Ψ. We see from Section 2 that it is enough to show Φ and Ψ satisfy (i) and (ii) in

Theorem A. We note that (2.2) implies

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞

for all λ ∈ [0, +∞[.

Now it remains to show (ii) of Theorem A. Let

r :=
m2c2

2

and

y(t) :=



























t if t ∈ [0, d[

d if t ∈ [d, 3d[

4d − t if t ∈ [3d, 4d[

0 if t ∈ [4d,∞).

Clearly, one has y ∈ X, Φ(y) = d + 4
3
m2d3 and, taking into account (2),

Ψ(y) ≤ −
∫ 3d

d
F (t, d) dt.

Therefore, from (1) one has Φ(y) > r. Moreover, taking into account (2.1), one has

sup
u∈Φ−1((−∞,r])

∫ ∞

0

F (t, u(t)) dt ≤ sup
u∈Φ−1((−∞,r])

∫ ∞

0

sup
|z|≤c

|f(t, z)||u(t)| dt ≤

≤ sup
u∈Φ−1((−∞,r])





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2
(

∫ ∞

0

|u(t)|2 dt

)
1

2

≤

≤





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c.
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Hence, taking into account that Φ(0) = Ψ(0) = 0, Φ−1(] −∞, r[)
w

= Φ−1((−∞, r])

and that the previous inequality holds, one has

ϕ1(r) = infx∈Φ−1(]−∞,r[)

Ψ(x)− inf
Φ−1(]−∞,r[)

w
Ψ

r−Φ(x)
≤

− inf
Φ−1(]−∞,r[)

w
Ψ

r

≤
sup

u∈Φ−1((−∞,r])

∫ ∞

0

F (t, u(t)) dt

r
≤ 2

m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c
.

On the other hand, one has

ϕ2(r) = inf
x∈Φ−1(]−∞,r[)

sup
y∈Φ−1([r,+∞[)

Ψ(x) − Ψ(y)

Φ(y) − Φ(x)
≥ inf

x∈Φ−1(]−∞,r[)

Ψ(x) − Ψ(y)

Φ(y) − Φ(x)
≥

inf
x∈Φ−1(]−∞,r[)

Ψ(x) − Ψ(y)

Φ(y)−Φ(x)
≥

− sup
x∈Φ−1(]−∞,r[)

∫ ∞

0

F (t, x(t)) dt +

∫ 3d

d

F (t, d) dt

Φ(y)−Φ(x)
≥

R 3d

d
F (t,d) dt−

“

R ∞
0 |sup|z|≤c |f(t,z)||2 dt

”
1
2
c

Φ(y)−Φ(x)
≥

R 3d

d
F (t,d) dt−

“

R ∞
0 |sup|z|≤c |f(t,z)||2 dt

”
1
2

c

1

2
‖y‖2

= 1
d+ 4

3
m2d3







∫ 3d

d
F (t, d) dt −





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c






.

Hence from (3) one has

ϕ1(r) < ϕ2(r).

Therefore, from Theorem A, taking also into account that

1
ϕ2(r)

≤ d+ 4

3
m2d3

R

3d

d
F (t,d) dt−

0

B

B

@

∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt

1

C

C

A

1
2

c

and

1
ϕ1(r)

≥ m2c

2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

, we obtain the desired conclusion.

Remark 3.2. When (1) of Theorem 3.1 holds, simple calculations show that the

condition

(3’)
2

m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c
<

∫ 3d

d
F (t, d) dt

2
(

d + 4
3
m2d3

)
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implies (3) of Theorem 3.1. Hence, if (1), (2) and (3’) hold, then for each λ ∈

Λ =



















2
(

d + 4
3
m2d3

)

∫ 3d

d
F (t, d) dt

,
m2c

2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2



















, the problem (Pλ) admits three

generalized solutions. Moreover, if f(t, x) = α(t)g(x), (3’) becomes

(3”) 2‖α‖2

m2

sup
|x|≤c

|g(x)|

c
<

(∫ 3d

d

α(t) dt

)

∫ d

0
g(x) dx

2
(

d + 4
3
m2d3

)

and Λ =







2
(

d + 4
3
m2d3

)

∫ 3d

d
α(t) dt

∫ d

0
g(x) dx

,
m2c

2‖α‖2 sup
|x|≤c

|g(x)|






.

We also observe that the condition

(2’) F (t, z) ≥ 0 for all (t, z) ∈ ([0, d] ∪ [3d, 4d]) × [0, d]

implies (2). In particular, when f(t, x) = α(t)g(x) the condition

(2”) α(t) ≥ 0 for all t ∈ [0, d] ∪ [3d, 4d] and
∫ z

0
g(x) dx ≥ 0 for all z ∈ [0, d]

implies (2’).

Finally, we observe that

(1’) max{1, c} < d

implies (1).

Now, we point out a special case of Theorem 3.1.

Theorem 3.3. Let α ∈ C([0,∞))∩ L2([0,∞)) and g ∈ BC([0,∞)) be two nonnega-

tive functions. Assume that

(3.1) lim
x→0+

g(x)

x
= 0

and assume that there exists a positive constant d such that:

(3.2)

∫ 3d

d

α(t) dt

∫ d

0

g(x) dx > 0.

Then, for each λ > λ∗, where

λ∗ =
d + 4

3
m2d3

∫ 3d

d
α(t) dt

∫ d

0
g(x) dx

,
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the problem

(P ′
λ)















−y′′ + m2y = λα(t)g(y)

y(0) = 0

lim
t→∞

y(t) = 0,

admits at least two nonnegative and non zero classical solutions.

Proof. Of course from (3.3) we are assuming that g(0)=0. Then, without loss of

generality, we can assume g(x) = 0 for all x < 0. Put f(t, x) = α(t)g(x) for all

(t, x) ∈ [0,∞) × R. Clearly, one has F (t, z) =
∫ z

0
f(t, y) dy = α(t)

∫ z

0
g(y) dy ≡

α(t)G(z) for all (t, z) ∈ [0,∞)×R, G is a non-increasing function and (2) of Theorem

3.1 is clearly satisfied. Now, fix λ > λ∗. From (3.1) we have limx→0+

sup|ξ|≤x |g(ξ)|

x
= 0,

so taking into account (3.2), there is δ > 0 such that

(3.3)
sup|ξ|≤x |g(ξ)|

x
<

1

‖α‖2

m2

4

1

d + 4
3
m2d3

∫ 3d

d

α(t) dt

∫ d

0

g(x) dx

for all x ∈]0, δ[. By choosing c ∈]0, δ[ such that c2 < 2
m2 (d + 4

3
m2d3),

d+ 4

3
m2d3

R 3d

d
α(t) dt

R d

0
g(x) dx−‖α‖2sup|x|≤c |g(x)|c

< λ and m2c
2‖α‖2sup|x|≤c |g(x)|

> λ, from (3.3) one has

4
m2 ‖α‖2

sup|x|≤c |g(x)|

c
< 1

d+ 4

3
m2d3

∫ 3d

d
α(t) dt

∫ d

0
g(x) dx,

2
m2 ‖α‖2

sup|x|≤c |g(x)|

c
+ ‖α‖2

1
d+ 4

3
m2d3

c sup|x|≤c |g(x)| < 4
m2 ‖α‖2

sup|x|≤c |g(x)|

c
<

< 1
d+ 4

3
m2d3

∫ 3d

d
α(t) dtG(d),

and 2
m2 ‖α‖2

sup|x|≤c |g(x)|

c
< 1

d+ 4

3
m2d3

(

∫ 3d

d
α(t) dtG(d) − ‖α‖2sup|x|≤c |g(x)|c

)

.

Hence, all the assumptions of Theorem 3.1 are satisfied. Therefore, problem (P ′
λ)

admits at least two nonzero classical solutions. We claim that these solutions are

nonnegative. Assume that there exists t0 ∈]0,∞) such that u1,λ(t0) < 0. Then there

exists a ∈ [0, t0[ and b ∈]t0,∞] such that −u′′
1,λ(t) + m2u1,λ(t) = 0 for all t ∈]a, b[,

u1,λ(a) = 0, u1,λ(b) = 0, so u1,λ = 0 for all t ∈ [a, b] and this is a contradiction. Hence,

our claim is proved and the conclusion follows.

Example 3.4. Let α(t) = 1
1+t

and

g(x) =

{

ex if x ≤ 10

e10 if x > 10.

Theorem 3.1 (see also Remark 3.2) guarantees that, for each λ ∈] 1
8
, 1

6
[, the problem

(P ′
λ)















−y′′ + y = λ
g(y)
1+t

y(0) = 0

lim
t→∞

y(t) = 0,

admits at least three nonnegative and non zero classical solutions. To see this it is

enough to pick c = 1 and d = 10.
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Example 3.5. Theorem 3.3 guarantees that the following problem

(P ′)















−y′′ + y = 32e−yy2

1+t2

y(0) = 0

lim
t→∞

y(t) = 0,

admits at least two nonnegative and non zero classical solutions. To see this it is

enough to pick d = 1, and observe that 32 > λ∗.

Now, we present a result, where (2.2) is not required, and we also point out some

consequences.

Theorem 3.6. Let f : [0,∞) × R → R be an L2−Carathéodory function. Put

F (t, z) =
∫ z

0
f(t, y) dy for all (t, z) ∈ [0,∞) × R, m = min{1; |m|}, and assume that

there exist three positive constants c1, d and c2 such that:

(1) c2
1 < 2

m2 (d + 4
3
m2d3) < c2

2;

(2) F (t, z) dt ≥ 0 for all (t, z) ∈ ([0, d] ∪ [3d, 4d]) × [0, d];

(3) 2
m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c1

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c1
<

∫ 3d

d
F (t, d) dt

2
(

d + 4
3
m2d3

) ;

(4) 2
m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c2

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c2
<

∫ 3d

d
F (t, d) dt

2
(

d + 4
3
m2d3

) .

Then, for each λ ∈
]2

(

d + 4
3
m2d3

)

∫ 3d

d
F (t, d) dt

, min{ m2c1

2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c1

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

,
m2c2

2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c2

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

}
[

,

the problem (Pλ) admits at least two generalized solutions u1,λ and u2,λ such that

maxt∈[0,∞) |u1,λ(t)| ≤ c1 and maxt∈[0,∞) |u2,λ(t)| ≤ c2.

Proof. Put

f(t, x) :=































f(t,−c2) if (t, x) ∈ [0,∞) × (−∞,−c2[

f(t, x) if (t, x) ∈ [0,∞) × [−c2, c2]

f(t, c2) if (t, x) ∈ [0,∞)×]c2,∞).
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Clearly, f : [0,∞) × R → R satisfies (2.2). Now, put F (t, z) =
∫ z

0
f(t, y) dy for all

(t, z) ∈ [0,∞) × R and take X and Φ as in the proof of Theorem 3.1, and

Ψ(u) := −
∫ ∞

0

F (t, u(t))dt

for all u ∈ X. Our goal is to apply Theorem B to Φ and Ψ. We explicitly observe

that, from Proposition 2.7, Ψ : X → R is a weakly sequentially continuous functional.

Moreover, we see again from Section 2 that it is enough to show Φ and Ψ satisfy (j)-

(jjj) in Theorem B. Let

r1 :=
m2c2

1

2
, r2 :=

m2c2
2

2
,

and y ∈ X as in the proof of Theorem 3.1. Clearly, infX Φ < r1 < r2 and r1 <

Φ(y) < r2. Moreover, arguing as in the proof of Theorem 3.1 and taking also into

account Remark 3.2 we obtain ϕ1(r1) ≤ 2
m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c1

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c1
, ϕ1(r2) ≤

2
m2





∫ ∞

0

∣

∣

∣

∣

∣

sup
|z|≤c2

|f(t, z)|
∣

∣

∣

∣

∣

2

dt





1

2

c2
and ϕ∗

2(r1, r2) ≥
∫ 3d

d
F (t, d) dt

2
(

d + 4
3
m2d3

) . Hence, from (3) and

(4) we have (jj) and (jjj) of Theorem B. Therefore, from Theorem B we obtain that,

for each λ ∈ Λ, the problem

(P λ)















−y′′ + m2y = λf(t, y)

y(0) = 0

lim
t→∞

y(t) = 0,

admits at least two generalized solutions u1,λ and u2,λ such that maxt∈[0,∞) |u1,λ(t)| ≤
c1 and maxt∈[0,∞) |u2,λ(t)| ≤ c2. Observing that these solutions are also solutions for

(Pλ), the conclusion follows.

Theorem 3.7. Let α ∈ C([0,∞)) ∩ L2([0,∞)) be a positive function and let g ∈
C([0,∞)) be a nonnegative and nonzero functions. Assume that

(3.4) lim
x→0+

g(x)

x
= lim

x→∞

g(x)

x
= 0

Then, for each λ > λ, where

λ = inf

{

2
(

d + 4
3
m2d3

)

∫ 3d

d
α(t) dt

∫ d

0
g(x) dx

: d > 0 and

∫ 3d

d

α(t) dt

∫ d

0

g(x) dx > 0

}

,

the problem (P ′
λ) admits at least one nonnegative and non zero classical solution.
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Proof. Let λ > λ. Then, there is d > 0 such that
∫ 3d

d
α(t) dt

∫ d

0
g(x) dx > 0 and λ >

2(d+ 4

3
m2d3)

R 3d

d
α(t) dt

R d

0
g(x) dx

. From (3.4) we obtain limx→0+

sup|ξ|≤x |g(ξ)|

x
= limx→∞

sup|ξ|≤x |g(ξ)|

x
= 0,

so we can pick c1 > 0 and c2 > 0 such that c2
1 < 2

m2 (d + 4
3
m2d3) < c2

2,
sup|x|≤c1

|g(x)|

c1
<

m2

2
1

‖α‖2

1
λ
, and

sup|x|≤c2
|g(x)|

c2
< m2

2
1

‖α‖2

1
λ
. Hence, from Theorem 3.6 we obtain the con-

clusion.

Example 3.8. Let α(t) = 1
1+t

and

g(x) =











ex if x ≤ 10

e10 if 10 < x ≤ 10.000

e(x−9.990) if x > 10.000.

Theorem 3.6 guarantees that, for each λ ∈] 1
8
, 1

6
[, the problem

(P ′′
λ )















−y′′ + y = λ
g(y)
1+t

y(0) = 0

lim
t→∞

y(t) = 0,

admits at least two nonnegative and non zero classical solutions. To see this it is

enough to pick c1 = 1, d = 10, and c2 = 10.000.

Example 3.9. Theorem 3.7 guarantees that the following problem

(P ′′)















−y′′ + y = 30

√
y3

(1+y)(1+t)

y(0) = 0

lim
t→∞

y(t) = 0,

admits at least one nonnegative and non zero classical solutions. To see this it is

enough to observe that λ < 29 (by choosing, for instance, d = 1).
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