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ABSTRACT. We investigate a class of integro-differential stochastic evolution equation with ad-

ditive noise and dissipative nonlinearity. We find the existence and uniqueness of a generalized

solution in the space of pathwise continuous adapted processes with values in a Banach space. We

also establish a large deviation principle for the law of the solution with explicit rate functional.
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1. INTRODUCTION

Let H be a real separable Hilbert space. In this paper we are concerned with the

following class of integral Volterra equations perturbed by a additive Wiener noise

(1.1) u(t) = x −
∫ t

0

a(t − s)Au(s) ds +

∫ t

0

a(t − s)F (u(s)) ds + B W (t),

for t ∈ [0, T ]; W is a cylindrical Wiener noise and we assume that F is a nonlinear op-

erator defined on a subset of the Hilbert space H. Following Da Prato & Zabczyk [10],

we shall consider (1.1) in a smaller state space X ⊂ H, on which the operator F is

well defined and continuous. This method requires also that the initial condition x

takes values in the smaller space X.

Our main result, Theorem 3.4, asserts the existence and uniqueness of the solution

(in a suitable sense) for (1.1). Notice that the solution actually exists for all time,

since T is arbitrary; however, many of the bounds involved in the proofs depend on

T , so it is not possible to give the result directly on R+ = [0,∞).

The study of stochastic evolutionary integral equations, of which (1.1) is a special

case, is mainly motivated by applications in mathematical physics, such as viscoelas-

ticity, heat conduction and electro-dynamic with memory. For a description of such

models we refer to the monograph of Prüss [17].
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Recently, Clement et al. [5, 6, 7] proposed to introduce white noise perturbations

for these models to account for the presence of rapidly varying forces. We extended,

in the authors [2], this approach to cover the case non-linear equations in case of a

Lipschitz non-linearity. Our techniques applied there do not extend to cover the case

of dissipative perturbations; an extension of known existence results for deterministic

Volterra equations was considered separately in the authors [1], which is, therefore,

a basic reference for us. However, this result requires stronger assumptions on the

scalar kernel a with respect to the authors [2].

In the second part of paper we consider, under the same assumptions, further

regularity of the solution and we establish, in Theorem 5.3, a large deviation principle

(LDP for short) for (1.1), with reduced noise
√

εB, ε ↓ 0.

Large deviation estimates have gained an increasing interest in literature since

the foundational works of Varadhan [19] and Frĕıdlin and Wentzell[14]. One reason

for this importance is the existence of a general reference framework, from which one

can adapt the results in diverse cases; on the other hand, large deviations proved to

be crucial in several applications in applied probability: see for instance the biblio-

graphical discussion in Dembo and Zeitouni [11, Section 5.9].

2. SETTING OF THE PROBLEM

Notation. Throughout the paper H is a separable Hilbert space with norm |·|.
We denote L(H) the space of linear bounded operators from H into itself and L2(H)

the subspace of Hilbert-Schmidt operators.

In this section we discuss the existence and uniqueness result for (1.1); but, before,

we shall introduce some relevant background material as well as our assumptions.

2.1. Volterra equations. Let us consider the linear integral Volterra equation

(2.1) u(t) = x −
∫ t

0

a(t − ϑ)Au(ϑ) dϑ, t ∈ [0, T ].

In this section we state our conditions on the coefficients of (2.1). They necessarily

follow those in the authors [1, Theorem 1.1], which is a basic tool for our construction.

As a general reference for the material quoted here we refer to Prüss [17].

Let us recall that a kernel a : (0,∞) → R is said to be completely monotonic if,

for any n ≥ 0 it holds dn

dtn
a(t) ≥ 0 for t ∈ (0,∞).

Hypothesis 2.1. The kernel a is completely monotonic, a ∈ L1
loc(0,∞), and there

exists a function k(t) = k0 +
∫ t

0
k1(s) ds associated to a, the relation between a and k

being given by

(2.2) k0a(t) +

∫ t

0

k1(t − s)a(s) ds = 1, t ∈ (0,∞).
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The function k is called a Bernstein function, compare Prüss [17, Proposition

4.4]. It holds that k1 is completely monotonic, and k0 is a non-negative constant,

related to a(0+) by

k0 = 0 ⇐⇒ a(0+) = +∞.

Hypothesis 2.2. We assume the following conditions on the operator A.

2.2a: −A is a linear operator in H, generates a strongly continuous semigroup

of type ω; the eigenvalues {µk}k≥1 of A form a non-decreasing sequence with

limk→∞ µk = ∞ and the corresponding eigenvectors {ek}k≥1 form a complete

orthonormal system in H;

2.2b: X is a Banach space, densely, continuously and as Borel subspace embedded

in H, with norm ‖·‖; the part on X of −(A+ωI) generates a strongly continuous

contractions semigroup on X.

Now we recall the basic definition of resolvent operator. A family {S(t)}t∈R+
of

bounded linear operators in a Banach space X is called a resolvent of (2.1) if the

following conditions are satisfied:

1. S(t) is strongly continuous on R+ and S(0) = I;

2. S(t) commutes with A for all t ∈ R+;

3. the resolvent equation holds: for all x ∈ D(A), t ∈ R+:

(2.3) S(t)x = x −
∫ t

0

a(t − s)AS(s)x ds.

Proposition 2.3. Under Hypotheses 2.1 and 2.2, Volterra equation (2.1) is well

posed, i.e., it defines a family of resolvent operators {S(t)}t∈R+
.

It is possible to show that the resolvent admits a diagonal decomposition in the

basis {ek}k≥1 of H. We introduce, then, the solution sα of the scalar integral equation

(2.4) sα(t) + α

∫ t

0

a(t − ϑ)sα(ϑ) dϑ = 1, t ∈ R+.

Let µk be an eigenvalue of A with eigenvector ek. Then

(2.5) S(t)ek = sµk
(t)ek, t ∈ R+.

We investigate further the properties of sα. Under Hypothesis 2.1, it is proved in

Clément & Da Prato [5] that

∫ T

0

|sα(t)|2 dt ≤ C
1

α

for any α > 0. For similar estimates we refer also to Bonaccorsi & Tubaro [3].
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We can express sα in terms of another kernel rα, defined as the solution to the

integral equation

(2.6) rα(t) + α

∫ t

0

rα(t − s)a(s) ds = αa(t), t ∈ R+.

By Prüss [17, Lemma 4.1], since a is completely monotonic, we know that for any

α > 0, rα belongs to L1(R+)∩C(0,∞), it is completely monotonic, 0 ≤ rα(t) ≤ αa(t)

and ∫ ∞

0

rα(s) ds ≤ 1.

Moreover, if α < 0, then rα belongs to L1
loc(R+) ∩ C(0,∞) and rα(t) ≤ αa(t) <

0, compare also Friedman [15]. The relation between sα and rα is clarified in the

following formula:

(2.7) sα(t) =

(
1 −

∫ t

0

rα(τ) dτ

)
, t ∈ R+.

A Gronwall-type lemma. We state, here, a useful tool to prove estimates for the

solution of Volterra equations. The proof of this lemma is given in the authors [1].

Lemma 2.4. Let v be a continuous, non negative function which satisfies the estimate

v(t) ≤ sλ(t)x + 1
λ
f(t) + ω

λ
v(t) + rλ ∗ v(t),

where λ > ω, while sλ and rλ are defined in (2.4) and (2.6) respectively. Then

(2.8) v(t) ≤ d

dt

(
ωλ

ω
(x + 1

λ
f + a ∗ f) ∗ s−ωλ

)
(t),

where s−ωλ
is defined as in (2.4) with ωλ = λω

λ−ω
.

2.2. Stochastic convolution. The material in this section is standard; for fur-

ther background material on stochastic differential equations we refer to Da Prato

& Zabczyk [10], our approach to stochastic Volterra equations follows the lines of

Clément & Da Prato [5, 6], Clément et al. [7].

We are given a complete probability space (Ω,F , P), equipped with a right-

continuous filtration {Ft}t∈R+
. Every stochastic process in the sequel will be given

with respect to this basis.

We shall take a cylindrical Wiener process W (t), t ∈ R+, of the form

〈W (t), h〉 =

∞∑

k=1

〈ek, h〉 βk(t), t ∈ R+,

where {βk}k≥1 is a sequence of independent real standard Brownian motions.

Hypothesis 2.5. The operator B ∈ L(H) satisfies the following condition

(2.9)

∫ T

0

‖S(t)B‖2
L2(H) dϑ < +∞.
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We define the stochastic convolution process WS as the solution of the linear

equation

z(t) =

∫ t

0

a(t − s)Az(s) ds + B W (t), t ∈ [0, T ];

then WS is defined by the formula

WS(t) =

∫ t

0

S(t − σ)B dW (σ), t ∈ [0, T ],

where S is the resolvent operator introduced above. In this paper it is necessary to

assume a space-time regularity for the noise which is more stringent than the case

treated in [2].

Hypothesis 2.6. The process WS has a X-continuous version.

Remark 2.7. Assume that the operator B is a non-negative operator which com-

mutes with A, i.e., there exists a sequence {λk ∈ R+}k≥1 such that

〈B W (t), h〉 =

∞∑

k=1

λkβk(t) 〈ek, h〉, t ∈ R+.

then it is possible to express condition (2.9) in terms of the eigenvalues λk and µk,

since the operators S(t) and B, diagonalize on the same basis, as
∞∑

k=k0

λk

µk
< +∞

where µk0
is the first positive eigenvalue.

In some cases, we can state also Hypothesis 2.6 in terms of sµk
, compare for

instance the next example, which is taken from Clément & Da Prato [5, Theorem

4.1].

Proposition 2.8. Assume that H is the space L2(O) of square integrable functions

on a bounded domain O ⊂ R
d. Suppose that for some γ > 0 there exists δ < 1 with

∫ u

0

|sµ(t − ϑ) − sµ(τ − ϑ)|2 dϑ +

∫ t

τ

|sµ(t − ϑ)|2 dϑ(2.10)

≤ C
1

µδ
|t − τ |2γ ,

and that:

(2.11)
∞∑

k=1

λ2
k

1

µδ
k

< ∞.

Assume further that there exists M > 0 such that

(2.12)





|ek(x)| ≤ M, k ∈ N, x ∈ O,

|∇ek(x)| ≤ Mµ
1/2
k , k ∈ N, x ∈ O.

Then the trajectories of WS(t, x) are almost surely continuous in (t, x).
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Remark 2.9. Let H = L2(0, 1) and X = C0([0, 1]), and set −Au = D2u, for any

u ∈ D(A) = H2(0, 1) ∩ H1
0 (0, 1). Then a complete orthonormal system in H defined

by eigenvectors of A is given by

ek(x) =

√
2

π
sin(kπx), x ∈ [0, 1], k ∈ N,

with µk = π2k2, k ∈ N. It is a simple computation to show that (2.12) holds.

Let a be a completely positive kernel: then inequality (2.10) holds for any δ > 0.

Now, from the definition of µk, the series in (2.11) converges for any δ > 1
2
, hence we

may apply Proposition 2.8 and in this case Hypothesis 2.6 is verified. �

2.3. The solution of stochastic Volterra equation. We say that a stochastic

process u in X is a mild solution to the equation (1.1) if u is a X-continuous, adapted

process and it verifies the integral equation

(2.13) u(t) = S(t)x +

∫ t

0

S(t − σ)F (u(σ)) dσ + WS(t)

P-a.s. for all t ∈ [0, T ]. If, given a X-valued, adapted process u, there exists a

sequence un of mild solutions for (a family of approximating equations for) (1.1)

which converges to u uniformly in [0, T ] P-a.s., then u is said a generalized mild

solution of (1.1).

It remains to state our assumptions on the perturbation term F .

Hypothesis 2.10. The perturbation term F maps X into X, it is uniformly contin-

uous on bounded sets of X and F is m-dissipative on X.

The theory of accretive (and dissipative) operators is well known in the literature;

as a general reference we mention the monograph of Da Prato [9].

Dissipativity condition holds iff for any x, y ∈ X and for all λ > 0: ‖x − y‖ ≤
‖x − y − λ(F (x) − F (y))‖. m-dissipativity means that F is dissipative and the

Range(I − λF ) = X for one (hence for all) λ > 0.

3. MAIN THEOREM

Theorem 3.1. Let us assume Hypothesis 2.1, 2.2, 2.5, 2.6 and 2.10. Then for any

x ∈ X, there exists a unique generalized mild solution of (1.1).

3.1. Volterra operators. As stated in the introduction, the proof of Theorem 3.1

is based on the results in the authors [1] for existence of a solution to a class of de-

terministic non-linear Volterra equations. In order to make this paper self-contained,

we give a survey of these results, later we finish the proof of Theorem 3.1.
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Let us introduce the linear Volterra operator

(3.1) Lu(t) =
d

dt

[
k0u(t) +

∫ t

0

k1(t − s)u(s) ds

]
, t > 0,

with domain

D(L) = {f ∈ L1(R+; X)|k0f + (k1 ∗ f) ∈ W
1,1
0 (R+; X)}

The operator L is m-accretive and densely defined, see Clément [4], Proposition 3.2.

There is a natural representation of its inverse operator L−1 in terms of the kernel a.

(3.2) L−1v(t) =

∫ t

0

a(t − s)v(s) ds.

We shall consider also the Yosida approximation Lµ = L(I+ 1
µ
L)−1. The operator

Lµ is given by the formula

(3.3) Lµv(t) = µ
d

dt
(v ∗ sµ)(t).

Consider a non-linear Volterra equation

(3.4) u(t) = x −
∫ t

0

a(t − s)Au(s) ds +

∫ t

0

a(t − s)f(s) ds, t ∈ [0, T ];

it is known that this problem is equivalent to

(3.5)





L[u(·) − x](t) + Au(t) = f(t), t ∈ [0, T ],

k0u(0) + (a ∗ u)(0+) = k0x.

In order to define a generalized solution to (3.5), we shall consider an approximate

equation, where the operator L is replaced by its Yosida approximation Lµ, µ > 0.

Let uµ be the solution of the following equation

(3.6) Lµ[uµ(·) − x](t) + Auµ(t) = f(t).

Once we establish the existence of a solution of (3.6) for any µ > 0, we let µ go

to ∞ and, provided that the sequence uµ converges, define a generalized solution to

(3.5) as the limit of such sequence.

Theorem 3.2. Assume that Hypotheses 2.1 and 2.2 are satisfied and let x ∈ X

and f ∈ C(R+; X). Then, for every µ > 0 equation (3.6) has a unique solution

uµ ∈ C(R+; X).

As µ → ∞, there exists a function u = U(x, f) with u ∈ C(R+; X) such that

uµ → u in L∞
loc(R+; X).
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The function u = U(x, f), that exists according to Theorem 3.2, is said the

generalized solution for problem (3.5).

In this paper, we are interested to non-linear perturbation of the linear Volterra

equation, i.e., with f(t) = F (t, u(t)). Then we shall define u = U(x, F (·, u)) a

generalized solution of

(3.7)





L[u(·) − x](t) + Au(t) = F (t, u(t)),

t ∈ (0,∞), u(0+) = x.

The existence of a generalized solution to (3.7) depends on the assumptions on the

non-linear term F .

Before we discuss the case of dissipative non-linearities, that is the object of

Theorem 3.4, we shall consider the case of a Lipschitz non-linearity.

Theorem 3.3. Let the assumptions of Theorem 3.2 be fulfilled and assume that the

nonlinear term F : [0, T ] × X → X is a continuous function, and there exists a

function η(t) ∈ L∞
loc(R+) such that, for any t ∈ R+

(3.8) ‖F (t, u) − F (t, v)‖ ≤ η(t)‖u − v‖.

Then there exists a unique generalized solution to the problem (3.7).

Then we arrive to the case of dissipative non-linearity needed in Theorem 3.1.

Theorem 3.4. Assume X is a real Banach space and let the coefficients in (3.7)

satisfy Hypotheses 2.1, 2.2, 2.10, 2.5 and 2.6. Then, for any x ∈ X, there exists a

unique generalized solution v to the abstract non-linear Volterra equation (3.7).

Sketch of the proof. We introduce, for any α > 0, the approximating equation

(3.9) L(vα(·) − x)(t) + Avα(t) = Fα(t, vα(t)),

where Fα are the Yosida approximations of F . Since Fα is Lipschitz continuous

and bounded in norm by ‖F‖, we obtain an a priori estimate for the approximating

solution vα as follows:

‖vα(t)‖ ≤ s−ω(t) ‖x‖ − 1
ω

(r−ω ∗ ‖F (·, 0)‖) (t).

This assures that the sequence {vα}α>0 is bounded uniformly in α, and there exists

R1 such that ‖vα(t) ≤ R1‖ for all α and t ∈ [0, T ].

To show the convergence of the sequence, we set, for any α, β > 0,

gα,β(t) = vα(t) − vβ(t).

and we estimate the relevant norm with techniques –analogous to those used in the

proof of [10, Theorem 7.13]– based on the previous estimate of ‖vα(t)‖ and dissipativ-

ity of F . Define R ≥ R1 such that ‖F (t, vα(t) ≤ R‖ for all α and t ∈ [0, T ]. Standard
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calculations as in the authors [1] lead to

(3.10) ‖gα,β(t)‖ ≤ [ρF ( 2
α
R) + ρF ( 2

β
R)]

(
a ∗ s−ω

)
(t),

where ρF is the modulus of continuity of F on the bounded set B(0, 2R) (i.e., a

function such that ρF (s) = sup{‖F (x1)−F (x2)‖ : x1, x2 ∈ B(0, 2R), ‖x1−x2‖ ≤ s}).
This yields the convergence of the sequence vα in C([0, T ]; X) to a function v,

which is easily seen to be the unique generalized solution for problem (3.7).

We conclude this section with a last remark about (3.7).

Remark 3.5. Notice that we are concerned with a continuous and m-dissipative

operator F ; however, since this term is non-autonomous, we cannot consider the sum

A − F as a unique operator, even if we assume that A − F is m-accretive and use

directly Gripenberg [16, Theorem 1].

3.2. Proof of Theorem 3.1. We search for a X-valued process u(t), t ∈ [0, T ],

which solves (1.1). We start by writing formally the mild integral equation, compare

(2.13)

u(t) = S(t)x +

∫ t

0

S(t − σ)F (u(σ)) dσ + WS(t).

Now, we define v(t) = u(t) − WS(t) and note that the X-valued process v shall be a

solution of the Volterra equation

(3.11) v(t) = x −
∫ t

0

a(t − s)Av(s) ds +

∫ t

0

a(t − s)F (v(s) + z(s)) ds,

where z(t) = WS(t) ∈ C(R+; X) is a trajectory of the stochastic convolution process.

Hypothesis 2.6 and 2.10 on the non-linear term F and the X-continuity of WS

implies that F (t, v) = F (z(t) + v) verifies the assumptions of Theorem 3.4; we have

proved that there exists a unique generalized solution v of problem (3.11), and u(t) =

v(t) + WS(t) is a generalized mild solution of (1.1) according to our definition in

Section 2.3

4. TRANSFER FUNCTIONAL

In this section we focus on the functional Φ : C0([0, T ]; X) → C([0, T ]; X) that

associates to any z ∈ C0([0, T ]; X) the solution v of problem (3.11). Our aim is to

prove the continuity of this functional, which is the key point in the proof of the LDP.

From now on we fix the initial condition x ∈ X.

Theorem 4.1. Suppose the assumptions of Theorem 3.4 hold; then the transfer func-

tional Φ is continuous.
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Proof. Our argument is divided in two steps. In the former step we suppose that the

non linear term F is locally Lipschitz on X, while in the latter we prove the theorem

in the general case. For the existence of the functional Φ in both cases we refer to

Theorem 3.3 and Theorem 3.4 respectively.

To show continuity of Φ, fix a point z1 of C0([0, T ]; X), and a bounded subset B

around z1. Then, there exists a bounded Borel subset C ⊂ X such that z(t) ∈ C for

any z ∈ B and t ∈ [0, T ]. Since F is locally Lipschitz, we can suppose, without loss

of generality, that F is Lipschitz on C ⊂ X, with Lipschitz constant equal to Λ.

Let z2 ∈ B and denote by v1 and v2 the solutions Φ(z1) and Φ(z2) respectively. By

the definition of generalized solution, we have that there exist two sequences v1,µ, v2,µ

such that

vi,µ → vi ∈ C(R+; X),

and

Lµ(vi,µ(·) − x)(t) + Avi,µ(t) = F (vi(t) + zi(t)).

Then subtracting term to term we have

(4.1) Lµ(v1,µ(·) − v2,µ(·))(t) + A(v1,µ(t) − v2,µ(t))

= F (v1(t) + z1(t)) − F (v2(t) + z2(t)).

Choose, now, an element y∗ in the sub-differential ∂‖v1,µ(t)−v2,µ(t)‖: if we scalar

multiply y∗ both members in previous equation, we have

(4.2) 〈Lµ(v1,µ(·) − v2,µ(·))(t), y∗〉 + 〈A(v1,µ(t) − v2,µ(t)), y∗〉
= 〈F (v1(t) + z1(t)) − F (v2(t) + z2(t)), y

∗〉 .

Using the definition of Lµ, we get

(4.3) µ
(
‖v1,µ(t) − v2,µ(t)‖ −

(
‖v1,µ − v2,µ‖ ∗ rµ

)
(t)

)
− ω‖v1,µ(t) − v2,µ(t)‖

≤ Λ(‖v1(t) − v2(t)‖ + ‖z1(t) − z2(t)‖).

From this equation we obtain an estimate on the norm ‖v1,µ(t)−v2,µ(t)‖ via Lemma 2.4:

‖v1,µ(t) − v2,µ(t)‖ ≤ Λωµ

ω

d

dt

(
1
µ

[
‖v1 − v2‖ + ‖z1 − z2‖

]
∗ s−ωµ

+ a ∗
[
(‖v1 − v2‖ + ‖z1 − z2‖)

]
∗ s−ωµ

)
(t),

and passing to the limit as µ → ∞ we obtain

‖v1(t) − v2(t)‖ ≤ Λ
d

dt

(
a ∗

[
(‖v1 − v2‖ + ‖z1 − z2‖)

]
∗ s−ω

)
(t)
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that becomes

‖v1(t) − v2(t)‖ ≤ Λ
(
a ∗

[
‖v1 − v2‖ + ‖z1 − z2‖

])
(t)

− Λ
(
a ∗

[
‖v1 − v2‖ + ‖z1 − z2‖

])
(t)

− 1
ω
Λ

(
r−ω ∗

[
‖v1 − v2‖ + ‖z1 − z2‖

])
(t)

= − 1
ω
Λ

(
r−ω ∗

[
‖v1 − v2‖ + ‖z1 − z2‖

])
(t).

Now since − 1
ω
r−ω is a completely monotone kernel, we can apply again Lemma

2.4 and we have

‖v1(t) − v2(t)‖ ≤
(
−r̃−Λ ∗ ‖z1 − z2‖

)
(t),

where r̃−Λ satisfies

r̃−Λ(t) + Λ
ω

(
r̃−Λ ∗ r−ω

)
(t) = Λ

ω
r−ω(t).

Since −r̃−Λ(t) ≤ −r−(ω+Λ)(t) for all t ∈ R+, we have

(4.4) ‖Φ(z1)(t) − Φ(z2)(t)‖ ≤
(
−r−(ω+Λ) ∗ ‖z1 − z2‖

)
(t).

from where we have that Φ is continuous in the Lipschitz case.

Let us proceed to step two: we can approximate F with its Yosida approximations

Fα, so denoting with Φα the functional corresponding to Φ in the (3.11) with Fα in

place of F , we have:

‖Φ(z1) − Φ(z2)‖ ≤ ‖Φ(z1) − Φα(z1)‖
+ ‖Φα(z1) − Φα(z2)‖ + ‖Φα(z2) − Φ(z2)‖.

As in the estimate (3.10) in Theorem 3.4, possibly choosing R′ > R, we have that for

all ε there exists α small enough such that

‖Φ(z1) − Φα(z1)‖ ≤ ε

‖Φα(z2) − Φ(z2)‖ ≤ ε

for all z1, z2 in the same bounded set of C([0, T ]; X). Now continuity of Φ follows

from continuity of Φα.

Corollary 4.2. Assume hypothesis of Theorem 4.1 hold. Let Ψ = I + Φ, then Ψ is

continuous.

Ψ : C0([0; T ]; X) → C([0; T ]; X) is the transfer functional related to (1.1), in

the sense that Ψ associates to any trajectory of the stochastic convolution WS the

corresponding trajectory of the generalized mild solution u.
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5. LARGE DEVIATIONS

In the authors [2], we started considering abstract Volterra equations with addi-

tive noise, in the framework of equations in Hilbert spaces. The main technique is

the contraction principle; it requires the continuity of transfer functional Ψ, which is

formally analogous to the one used for differential equations, see Fantozzi [13, 12].

Here, we are concerned with large deviations in a Banach subspace X of H. In the

case of stochastic differential equations with additive Gaussian perturbation it was

studied by Smoleński et al. [18], by applying Varadhan’s contraction principle, see

also Da Prato & Zabczyk [10, Theorem 12.15], and the problem was solved assuming

that the semilinear part F is locally Lipschitz in X.

We consider (1.1) with B replaced by
√

εB, bringing up a family of solutions uε.

We denote by νε the law of uε on the space C([0, T ]; X), and we want to study the

LDP for this laws. First of all, we recall same preliminary results. For any ε > 0, we

consider the laws of the processes
√

εWS(·) on the space L2(0, T ; H).

Theorem 5.1. Suppose that Hypotheses 2.1, 2.2 and 2.5 hold, and let µ be the law

of the stochastic convolution process WS(·). Then the family µε of laws of
√

εWS(·)
satisfies a large deviation principle with respect to the rate functional I given by

I(f) =





1

2

∫ T

0

∣∣B−1 d
dt

[f(ϑ) + (a ∗ Af)(ϑ)]
∣∣2 dϑ

for f ∈ R

+∞ otherwise.

where R is the subspace of L2(0, T ; H) defined as

R =
{
f ∈ L2(0, T ; H)

∣∣∣∃g ∈ L2(0, T ; H) : f(t) = −
∫ t

0

S(t − ϑ)Bg(ϑ) dϑ
}

.

For the proof of this result, based on the fact that WS(·) is a centered Gaussian

variable in L2(0, T ; H), see the authors [2, Theorem 3.4].

Under Hypothesis 2.6, we denote as before µε, for any ε > 0, the laws of the

processes
√

εWS(·) on the space C([0, T ]; X).

Theorem 5.2. Assume that Hypotheses 2.1, 2.2, 2.5 and 2.6 hold. Let µ be the law

of the stochastic convolution process WS(·) on the space C0([0, T ]; X); then the family

µε of laws of
√

εWS(·) satisfies a large deviation principle with respect to the rate

functional I given by

(5.1) I(f) =





1

2

∫ T

0

∣∣B−1 d
dt

[f(ϑ) + (a ∗ Af)(ϑ)]
∣∣2 dϑ

for f ∈ R

+∞ otherwise,
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where R is the subspace of C0([0, T ]; X) defined as

R =
{
f ∈ C([0, T ];X)

∣∣∣∃g ∈ L2(0, T ;H) : f(t) = −
∫ t

0

S(t − ϑ)Bg(ϑ) dϑ
}

.

Proof. Since X is dense and continuously embedded in H, the same holds for C([0, T ]; X)

in L2(0, T ; H).

We know that the Gaussian process WS(·) has a Gaussian law on the space

L2(0, T ; H) but, since from hypotheses it has support on the space C0([0, T ]; X), we

have that µ is a Gaussian variable also on C0([0, T ]; X). So a large deviation principle

holds for the family µε on the space C0([0, T ]; X); by uniqueness of the reproducing

kernel, see Da Prato & Zabczyk [10, Proposition 2.8], the rate functional is the same

as in Theorem 5.1.

Theorem 5.3. Under the assumptions of Theorem 3.4, the family of laws νε sat-

isfies the large deviation principle with respect to the following explicit functional

J : C([0, T ]; X) → [0; +∞]

(5.2) J(f) =





1

2

∫ T

0

∣∣B−1 d
dt

[f(ϑ)+(a ∗ Af)(ϑ) − (a ∗ F (f))(ϑ)]
∣∣2 ds

for f ∈ R̃

+∞ otherwise.

where R̃ is the subset of C([0, T ]; X) defined as

(5.3) R̃ =
{
f ∈ C([0, T ]; X)

∣∣∣∃g ∈L2(0, T ; H) : f(t) = S(t)x

+ d
dt

[∫ t

0
S(t − ϑ) (a ∗ F (f))(ϑ) dϑ

]
+

∫ t

0
S(t − ϑ)Bg(ϑ) dϑ

}
.

Proof. We have that νε = Ψ ◦µε, where from Theorem 4.1 the functional Ψ is contin-

uous. Thus, from Theorem 5.2 and [10, Proposition 12.3], the family of laws νε has

the large deviation property with respect to the functional J = I ◦ Ψ−1. Eventually

the result follows since the definition of Ψ implies that J has the explicit formula-

tion (5.2).

Remark 5.4. The rate functional J is related to the control system

hg(t) = x −
∫ t

0

a(t − ϑ)[Ahg(ϑ) − F (hg(ϑ))] dϑ +

∫ t

0

Bg(ϑ) dϑ, t ∈ [0, T ].

This equation has a unique solution, so it is possible to give the following definition

for J in terms of g:

J(hg) =
1

2

∫ T

0

|g(ϑ)|2 dϑ.

this formula expresses the minimal energy given by the forcing term to stay out of

the path of the deterministic system. To be more precise, it is possible to say that
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the probability for the system to remain in a given subset of trajectories, in the limit

for ε → 0, depends only on the smooth trajectory with minimal L2-norm.

This is the reason why the rate functional (5.2) resembles the one in the au-

thors [2]. �
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