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ABSTRACT. Different from studying the normal asymptotic periodicity of the solution, a new

kind of asymptotic periodicity—“asymptotic weighted periodicity” of the solution is established in

this paper. Accordingly, a type of difference differential equation and difference differential sys-

tem with time delay are discussed. Just as shown in this paper the asymptotic weighted periodic

oscillations are mainly caused by the delay. Besides of the delay effect, if the impulses are taken

into consideration, then the oscillations of the solution may have some kind of asymptotic weighted

periodicity, and the weight is associated with the impulse.
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1. INTRODUCTION

There are so many dynamic systems related to time delays, such as the model

given in [1] about the combustion control in a rocket:

x′ (t) = (n − 1)x (t) + nx (t − τ) + u(t), t > 0,

where n is a positive constant, τ > 0 is the time delay, and u(t) denotes the controlling

term. At the same time, just as mentioned in [2], there are some other models of this

kind:

x′ (t) = ax (t) + bx (t − τ) + f(t), t > 0

and

x′ (t) = −x (t) + A tanh (x (t − τ)) , t > 0

where a, b and A are fixed constants, f(t) is a known function. The first one is a

linear one, which describes the development of the capitalist economic crisis. The

second one is a nonlinear one, which is about the dynamic system of neural network.
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Mathematical speaking, for the study of this kind of difference differential equa-

tions there are many researchers, such as in [3] and the reference therein, they studied

the nonlinear equation as follows:

x′(t) = −αx(t) + f(x(t − 1)), t > 0,

where α is a positive constant and f is a piecewise constant function, which shows

that this equation displays chaos and may have infinitely many periodic solutions if

some conditions for α and f are satisfied.

On the other hand, the following linear equation with variable coefficients was

considered in [4],

(1.1) x′ (t) = p (t) x (t) + q (t)x (t − τ) , t > 0,

where p(t), q(t) are continuous functions. The results in [4] say that for t > 0 if

a(t) = −q(t) exp

(

−
∫ t

t−τ

p (s) ds

)

> 0, and lim inf
t→∞

∫ t

t−τ

a (s) ds > 1/e,

then all the solutions of equation (1.1) oscillate; Otherwise, if

0 < lim sup
t→∞

∫ t

t−τ

a (s) ds < 3/2 and

∫ ∞

0

a (s) ds = ∞,

then every solution x (t) of equation (1.1) satisfies lim
t→∞

x (t) = 0. We think that such

results are rough. For example, it is easy to check that (1/t) sin t is a solution of the

following equation:

x′ (t) = −1

t
x (t) +

( π

2t
− 1
)

x
(

t − π

2

)

, t > 0.

Notice that p(t) = −1/t and q(t) = π/2t − 1, for the case 0 < t ≤ π/2, it is easy

see q(t) ≤ 0 and hence a(t) ≤ 0 . Respectively, for the case t > π/2, it’s easy to

calculate that a(t) ≡ 1 and
∫ t

t−π/2
a(s)ds = π/2 > 3/2. So the conditions given in [4]

for equation (1.1) are not met, yet the solution (1/t) sin t not only oscillates but also

tends to 0 as t → ∞.

Respect to the periodic function and the almost periodic function, we note that

(1/t) sin t is a particular function. It is well known that the periodicity phenomenon

is very universal and is vastly used in the applications. Thus, it attracts numerous

researchers to reveal the existence of periodic solutions for some dynamic systems.

Unfortunately, not all dynamic systems have periodic solutions. Thus, the existence

of almost periodic solutions become a hotspot and has been extensively investigated in

recent years, such as in [5]. In addition, the existence of asymptotic periodic solutions

has also been studied, such as in [6]. A function x (t) is called asymptotic periodic if

there exists a periodic function θ (t) such that lim
t→∞

|x(t)− θ(t)| = 0. For example, the

functions (1 + 1/t) sin t and 1/t+sin t are asymptotic periodic respect to the periodic

function sin t. But for the function (1/t) sin t, we see that it isn’t periodic, almost
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periodic or asymptotic periodic in t since it oscillates about 0 and tend to 0 as t → ∞.

But, we think that the function u(t) = (1/t) sin t contains some kind of asymptotic

periodicity, namely:

lim
t→∞

|u(t + 2π) − u(t)| = lim
t→∞

| 2π

(t + 2π)t
sin t| = 0,

and this lead us to a new definition as follows.

Definition 1.1. The function x(t) is continuous or piecewise continuous on R. If

there exists a real number ω > 0 and a constant α > 0 such that

(1.2) lim
t→∞

|x(t + ω) − αx(t)| = 0,

then we say x(t) has asymptotic weighted periodicity with period ω and weight α.

Remark 1.1 The asymptotic weighted periodicity is different from the asymptotic

periodicity in the normal sense: lim
t→∞

|x(t)−θ(t)| = 0, where θ(t) is a periodic function

with period ω. In case α = 1, recall that θ(t) is periodic, we have |x(t + ω)− x(t)| ≤
|x(t + ω) − θ(t + ω)| + |x(t) − θ(t)|. Hence if x(t) has asymptotic periodicity in

the normal sense, then it also has asymptotic weighted periodicity with weight 1.

Similarly, if lim
t→∞

x(t) = E (E is a fixed number), then |x(t + ω)− x(t)| ≤ |x(t + ω)−
E|+ |x(t)−E|, and hence x(t) also has asymptotic weighted periodicity with weight

1. So the expression (1.2) include the cases lim
t→∞

|x(t) − θ(t)| = 0 and lim
t→∞

x(t) = E

for α = 1.

Remark 1.2 The expression (1.2) can be rewritten as: lim
t→∞

|x(t) − αx(t − ω)| = 0.

Correspondingly, the above arguments for (1/t) sin t implies that more general

results exist for (1.1) than that in [4]. Naturally, we have some questions to ask.

Are there any similar results for the nonlinear one? Are there any principles for the

oscillation if the solution oscillate? To answer these questions, we consider a more

general model than that in [1–4] as follows:

(1.3) x′ (t) = −p (t) x (t) + q (t) f (x (t − τ)) , t > 0,

where p(t) and q(t) are continuous functions. f(x) is a continuous function which

satisfies the Lipschitz condition:

(1.4) |f(x1) − f(x2)| ≤ L|x1 − x2|, ∀ x1, x2 ∈ R,

here L is a fixed positive constant. We also assume that the associated initial function

is x0 ∈ C([−τ, 0]), where C([−τ, 0]) denotes the space of continuous functions on

[−τ, 0].

Besides of the models for the combustion of rocket, the capitalist economic crisis

and the neural network, the equation (1.3) can also be seen as a population protection

model. Indeed, let x (t) be the size of a species population in the time t. When the
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environments have been destroyed, the simple Malthus model is x′ (t) = −px (t)

where p is a positive constant. Naturally, the death rate vary in time t should be

more realistic. At the same time, some rare species needs protection, and our actions

for protection f always lag behind and a time delay should be involved. The study

of this dynamic system may also guide the artificial protection of species.

Notice that the results for (1.1) are all related to the case q(t) < 0, it is very

natural for us to consider the case q(t) ≥ 0 or that q (t) is oscillatory. That is, in this

paper we do not request that q (t) has constant sign. For example, in the protection

sense, we can not assure that the artificial protection is always good for species.

It’s easy to see the nonlinear delay differential equation (1.3) has a smooth solu-

tion x(t) for every given continuous initial function x(t) = x0(t) on [−τ, 0] by using

the ordinary Step methods. The main aim of this paper is to reveal the asymptotic

behavior of the solution.

We arrange this paper as follows: The detail arguments for problem (1.3) is given

in Section 2. A kind of vector equation related to (1.3) is discussed in Section 3, and

some arguments about the case when problem (1.3) is affected by impulses are given

in Section 4. Moreover, some numerical results as applications are given in Section 5.

2. ASYMPTOTIC BEHAVIOR OF (1.3)

For the difference differential equation (1.3), if f(0) = 0, then 0 is an equilibrium.

Since the coefficients p(t), q(t) vary in t and may be also unbounded, it’s not easy to

construct a Lyapunov function to show the stability of 0, where the complexity of the

nonlinear term f and the effects of the time delay should be also considered. Hence we

choose another method to discuss this problem. First of all, we give some asymptotic

results for the eventually nonnegative case and the eventually non-positive case.

Theorem 2.1. Assume p(t) > 0 and
∫∞

0
p(t)dt = ∞. If f(0) = 0 and there exists a

positive number µ > 1 such that 2p(t) ≥ (1 + µ)L|q(t)| for t ≥ 0, and if the solution

x(t) of equation (1.3) is eventually nonnegative or eventually non-positive, then the

solution x(t) must satisfies: lim
t→∞

x(t) = 0.

Proof: Assume that the solution of problem (1.3) with initial condition x(s) = x0(s)

for s ∈ [−τ, 0] is eventually nonnegative, that is, there exists t1 > 0 such that x(t) ≥ 0

and x(t− τ) ≥ 0 for t ≥ t1. The eventually non-positive case can be discussed by the

same method. If x(t) ≡ 0 for t ≥ t1, then the assertion is trivially satisfied. In the

following we always assume that there exists t∗ ≥ t1 such that x(t∗) > 0. Consider

that |f(x(t− τ))| = |f(x(t− τ))− f(0)| ≤ L|x(t− τ)− 0| = Lx(t− τ) for t ≥ t1, then

we have

(2.1) x′(t) = −p(t)x(t) + q(t)f(x(t − τ)) ≤ −p(t)x(t) + L|q(t)|x(t − τ).
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By multiplying the term e
R t

t1
p(s)ds

respect to (2.1) we get

[p(t)x(t) + x′(t)]e
R t

t1
p(s)ds ≤ L|q(t)|x(t − τ)e

R t
t1

p(s)ds
,

[

e
R t

t1
p(s)ds

x(t)
]′

≤ L|q(t)|x(t − τ)e
R t

t1
p(s)ds

,
∫ t

t1

[

e
R w

t1
p(s)ds

x(w)
]′

dw ≤
∫ t

t1

L|q(s)|x(s − τ)e
R s

t1
p(σ)dσ

ds.

Hence for t > t1 we get

(2.2) x(t) ≤ e
−

R t
t1

p(s)ds

[

x(t1) +

∫ t

t1

L|q(s)|x(s − τ)e
R s

t1
p(σ)dσ

ds

]

.

In the following we prove lim
t→∞

x(t) = 0 for several cases.

Case 1 If x(t) is eventually monotonically decreasing, notice that x(t) ≥ 0 for t ≥ t1,

its limit must exists. Set lim
t→∞

x(t) = E, then E ≥ 0. Since
∫∞

t1
p(s)ds = ∞, from the

inequality (2.2) we have

E = lim
t→∞

x(t) ≤ lim
t→∞

e
−

R t
t1

p(s)ds
x(t1) + lim

t→∞

∫ t

t1
L|q(s)|x(s − τ)e

R s
t1

p(σ)dσ
ds

e
R t

t1
p(s)ds

= 0 + lim
t→∞

L|q(t)|x(t − τ)e
R t

t1
p(σ)dσ

p(t)e
R t
t1

p(s)ds

≤ 2

1 + µ
lim
t→∞

x(t − τ) =
2

1 + µ
E,(2.3)

which implies E = 0.

Case 2 If x(t) is eventually monotonically increasing, then there exists t2, in case

t ≥ t2, we have 0 < x(t − τ) ≤ x(t). Notice that µ > 1, from (2.1) we get

x′(t) ≤ −p(t)x(t) + L|q(t)|x(t − τ) ≤ [L|q(t)| − p(t)]x(t) ≤ −µ − 1

1 + µ
p(t)x(t),

and

x(t2 + τ) ≤ x(t2) exp

(

−
∫ t2+τ

t2

µ − 1

1 + µ
p(s)ds

)

< x(t2),(2.4)

which leads to a contradiction, so this case is impossible.

Case 3 If x(t) is neither eventually monotonically decreasing nor increasing. We refer

to the method in [7] to continue our discussion. Of the various possibilities which

then arise, we shall treat in detail the case in which x(t) has an infinite sequence of

local maxima {tj}, j = 1, 2, · · · with tj → ∞ and x(tj) > 0, x′(tj) = 0 (here the t1 is

redefined). Other cases can be dealt with similarly. We claim that sup
t≥tk

x(t) = x(tk)

for some integer k. If this is false, it means that after every maximum x(tj) there is

another that is higher, so we can find a subsequence (still denoted {tj}) such that
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x(t) < x(tj) for all t1 ≤ t < tj. Hence from (2.1) we have

0 = x′(tj) ≤ −p(tj)x(tj) + L|q(tj)|x(tj − τ)

≤ −p(tj)x(tj) + L|q(tj)|x(tj)

≤
[

−p(tj) +
2

1 + µ
p(tj)

]

x(tj)

= −µ − 1

1 + µ
p(tj)x(tj) < 0,(2.5)

which leads to a contradiction. Thus, sup
t≥tk

x(t) = x(tk) for some integer k, and we

let s1 = tk. By applying this same argument to the interval t ≥ tk+1, we can infer

the existence of a tl (l > k) with sup
t≥tk+1

x(t) = x(tl), and we let s2 = tl. This process

can be continued to generate an infinite sequence {sj} such that sj+1 > sj, sj → ∞,

x(t) ≤ x(sj) for t > sj and x′(sj) = 0. Furthermore, we can select a subsequence of

{sj} such that x(sj − τ) ≤ x(sj−1), and also denote the subsequence {sj}. So from

(2.1) for t = sj,

0 = x′(sj) ≤ −p(sj)x(sj) + L|q(sj)|x(sj − τ)

≤ −p(sj)x(sj) + L|q(sj)|x(sj−1)

≤
[

−x(sj) +
2

1 + µ
x(sj−1)

]

p(sj),(2.6)

which implies

x(sj) ≤
2

1 + µ
x(sj−1).

Notice that 2/(1 + µ) < 1, we have x(sj) → 0 as j → ∞, which implies x(t) → 0 as

t → ∞. The proof is complete.

Remark 2.1 Conversely, if the solution x(t) of (1.3) has limit: lim
t→∞

x(t) = E, then

the estimate |E| ≤ 2
(µ−1)L

|f(0)| holds true.

The reason is as follows. From (1.3) we can deduce that

x(t) = e−
R t
0

p(s)ds

[

x(0) +

∫ t

0

q(s)f(x(s − τ))e
R s
0

p(σ)dσds

]

.

Note that |f(x(t − τ))| ≤ |f(x(t − τ)) − f(0)| + |f(0)| ≤ L|x(t − τ)| + |f(0)|,

|E| = lim
t→∞

|x(t)| ≤ lim
t→∞

e−
R t
0

p(s)ds|x(0)| +
∣

∣

∣

∣

∣

lim
t→∞

∫ t

0
q(s)f(x(s − τ))e

R s
0

p(σ)dσds

e
R t
0

p(s)ds

∣

∣

∣

∣

∣

= 0 +

∣

∣

∣

∣

∣

lim
t→∞

q(t)f(x(t − τ))e
R t
0

p(σ)dσ

p(t)e
R t
0

p(s)ds

∣

∣

∣

∣

∣

≤ 2

(1 + µ)L
(L|E| + |f(0)|),

which implies the assertion.
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To demonstrate the above results, we consider a more general case of the previous

model given in [2] about the dynamic system of neural network:

x′ (t) = −p (t) x (t) + q (t) tanh(x (t − τ)), t > 0,

where p(t) and q(t) are continuous functions with p(t) > 0 and
∫∞

0
p(t)dt = ∞. Since

f(x) = tanh(x) = (ex−e−x)/(ex+e−x), we can check that the Lipschitz condition (1.4)

holds for L = 1. If there exists a positive number µ > 1 such that 2p(t) ≥ (1+µ)|q(t)|,
then its eventually nonnegative or eventually non-positive solution x(t) must satisfies:

lim
t→∞

x(t) = 0. As far as know, such fact hasn’t been indicated by the previous

researchers.

On the other hand, we can assume that f (x) = −x. In this case, we have

x′ (t) = −p (t) x (t) − q (t) x (t − τ) , t > 0.

Thus,

a (t) = q (t) exp

(
∫ t

t−τ

p (s) ds

)

.

In view of [4], we know that for the eventually positive or eventually negative solution

x(t), to ensure lim
t→∞

x(t) = 0 it needs
∫∞

0
a (s) ds = ∞. But for the case p (t) = 2 and

q (t) = 1/(t + 1)2, there is no result lim
t→∞

x(t) = 0 since at this time
∫∞

0
a (s) ds < ∞.

However, it is a direct results of Theorem 2.1.

Theorem 2.1 shows that for the case f(0) = 0 the limit of the solution for problem

(1.3) must be 0 for the eventually nonnegative and the eventually non-positive cases.

Yet it is not always the case, maybe the solution x(t) oscillates about 0. Especially, in

case f(0) 6= 0, the asymptotic behavior of the solution may become very complex. In

the following we try to reveal this by considering the asymptotic weighted periodicity

of the problem (1.3) with periodic coefficients.

Theorem 2.2. Suppose that p(t) and q(t) are periodic functions with period τ/n1

and τ/n2 ( n1, n2 are positive integers), respectively. If M(t) = 2p(t) − L|q(t)| > 0

with
∫∞

0
M(t)dt = ∞ and there exists a positive number µ > 1 such that 2p(t) ≥

(1 + µ)L|q(t)| for t ≥ 0, then the solution x(t) of problem (1.3) with every given

initial function x0 ∈ C([−τ, 0]) has the following asymptotic weighted periodicity:

(2.7) lim
t→∞

|x(t + τ) − x(t)| = 0.

Proof: Considering the periodicity of p(t) and q(t), from (1.3) we have

(2.8) [x(t + τ) − x(t)]′ = −p(t)[x(t + τ) − x(t)] + q(t)[f(x(t)) − f(x(t − τ))].
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Refer to the method in [6], denotes y(t) = x(t+ τ)−x(t) and multiplies (2.9) by y(t),

1

2
(y2(t))′ = −p(t)y2(t) + q(t)y(t)[f(x(t)) − f(x(t − τ))]

≤ −p(t)y2(t) + L|q(t)| · |y(t)| · |y(t − τ)|

≤
[

−p(t) +
1

2
L|q(t)|

]

y2(t) +
1

2
L|q(t)|y2(t − τ),(2.9)

here the Lipschitz condition (1.4) for f is used. Furthermore, denotes Y (t) = y2(t),

then Y (t) ≥ 0 satisfies:

(2.10) Y ′(t) ≤ −M(t)Y (t) + N(t)Y (t − τ),

where M(t) = 2p(t) − L|q(t)| > 0, N(t) = L|q(t)|. Since 2p(t) ≥ (1 + µ)L|q(t)|, we

have M(t) ≥ µN(t) with µ > 1. Notice that
∫∞

0
M(t)dt = ∞, the same process

as in the proof of Theorem 2.1 reveals that Y (t) → 0 as t → ∞. That is, we have

lim
t→∞

[x(t + τ) − x(t)]2 = 0. The proof is complete.

Remark 2.2 In Theorem 2.2 if f satisfies f(0) = 0, let x2(t) = Y (t) then it is easy

to prove the solution of (1.3) also satisfies lim
t→∞

|x(t)| = 0, where the restriction of the

periodicity on p(t), q(t) is not needful for this case.

Remark 2.3 For the nonhomogeneous equation

(2.11) x′ (t) = −p (t)x (t) + q (t) f (x (t − τ)) + r(t), t > 0,

where r(t) is a continuous periodic function with period τ/n3 (n3 is a positive integer),

it’s easy to see the results in Theorem 2.2 also hold true.

Remark 2.4 If p and q are fixed positive constants, then Theorem 2.2 shows that

the equation (1.3) has asymptotic weighted periodicity with weight 1 caused only by

the time delay provided that 2p ≥ (1 + µ)Lq with µ > 1.

Consider the following equation:

x′(t) = −x(t) +
1

2
x(t − 4π) +

5

2
cos t.(2.12)

It is a nonhomogeneous case. Accordingly, the eigenvalue problem of the homogeneous

equation is

λ = −1 +
1

2
e−4πλ.(2.13)

By plotting against λ the graphs y = λ + 1 and y = 1
2
e−4πλ, it is easy to see (2.14)

has a real negative root λ = −a with a > 0. It is easy to check that x1(t) =

e−at + 2 sin t + cos t is a solution of (2.13) for suitable initial function on [−4π, 0]. So
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we have

lim
t→∞

|x1(t + 4π) − x1(t)|

= lim
t→∞

∣

∣[e−a(t+4π) + 2 sin (t + 4π) + cos (t + 4π)] − [e−at + 2 sin t + cos t]
∣

∣

= lim
t→∞

∣

∣e−a(t+4π) − e−at
∣

∣ ≤ lim
t→∞

e−a(t+4π) + lim
t→∞

e−at = 0,(2.14)

which accord with the results in Theorem 2.2 for the nonhomogeneous case.

Furthermore, we see θ(t) = 2 sin t + cos t is a periodic solution of (2.13). Refer

to the Hayes Theorem in [7] and the results in the appendix of [8], we know all the

eigenvalues of (2.14) has negative real parts, that is, Reλ < 0. Therefore, for every

given initial function x0(t) ∈ C([−4π, 0]), the solution should satisfies lim
t→∞

|x(t) −
(2 sin t + cos t)| = 0, such as x1(t) = e−at + 2 sin t + cos t. This result accord with the

assertion in Remark 1.1.

For problem (1.3), if f(0) = 0, then lim
t→∞

x(t) = 0 holds true according to Remark

2.2, where the restriction of periodicity on p(t) and q(t) isn’t needful. We extend this

result as follows.

Corollary 2.1. If there exists a positive number µ > 1 such that 2p(t) = (1 +

µ)Lq(t) > 0 for t ≥ 0 with
∫∞

0
q(t)dt = ∞, then the solution x(t) of (1.3) with every

given initial function x0 ∈ C([−τ, 0]) has the limit:

(2.15) lim
t→∞

|x(t) − E| = 0,

where E is the unique solution of (1 + µ)LE = 2f(E) if it exists.

Proof: It is easy to see the conditions for Theorem 2.2 are all satisfied except the

request of the periodicity on p(t) and q(t), since M(t) = 2p(t) − Lq(t) = µLq(t) > 0

and
∫∞

0
M(t)dt =

∫∞

0
µLq(t)dt = µL

∫∞

0
q(t)dt = ∞. For the case f(0) = 0 the

relation (2.16) is trivially satisfied. For the case f(0) 6= 0, notice that 2p(t) =

(1 + µ)Lq(t), from (1 + µ)LE = 2f(E) we know E is a constant solution of (1.3). So

[x(t) − E]′ = −p(t)[x(t) − E] + q(t)[f(x(t − τ)) − f(E)].

Here p(t) and q(t) aren’t necessarily periodic in t. Let Y (t) = (x(t) − E)2, then the

same deduction process as in Theorem 2.2 reveals that (2.11) also holds true with

M(t) = µN(t) = µLq(t). Hence Y (t) → 0 as t → ∞, which implies (2.16). The proof

is complete.

3. VECTOR EQUATION

Recently there has been a great interest in studying the travelling wave solutions

for the system

x′
i(t) = p(t)∆2xi−1(t) + q(t)f(xi(t − τ)), 1 ≤ i ≤ n
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with or without delay, see, for example, [10-18] and the references therein. The

operator ∆2 is defined as ∆2xi−1(t) = xi+1(t) − 2xi(t) + xi−1(t) for 1 ≤ i ≤ n. And

the boundary conditions is Dirichlet type: x0(t) = xn+1(t) = 0 or periodic type:

x0(t) = xn(t), x1(t) = xn+1(t) for t ≥ 0. Let X(t) stand for the column vector

(x1(t), x2(t), · · · , xn(t))T , and f(X(t− τ)) = (f(x1(t− τ)), f(x2(t− τ)), · · · , f(xn(t−
τ)))T (here the superscribe ’T’ stands for the transpose), then the above system can

be rewritten to be a vector equation:

X ′(t) = p(t)AX(t) + q(t)f(X(t − τ)),

where A is a n × n symmetry matrix given by:

A1 =

















−2 1 0 · · · 0

1 −2 1 · · · 0

· · ·
0 · · · 1 −2 1

0 · · · 0 1 −2

















n×n

or A2 =

















−2 1 0 · · · 1

1 −2 1 · · · 0

· · ·
0 · · · 1 −2 1

1 · · · 0 1 −2

















n×n

respect to the Dirichlet boundary condition and the periodic boundary condition.

In this section we consider a more general vector equation as follows:

(3.1) X ′(t) = p0(t)AX(t) − p1(t)X(t) + q(t)f(X(t − τ)),

here X(t) and f(X(t − τ)) are defined as above and the function f also satisfies the

Lipschitz condition (1.4) ( componentwise). A is a n×n real value symmetry matrix,

p0(t), p1(t) and q(t) are continuous scalar functions.

We define the norm of the vector X(t) as:

‖X(t)‖ =

√

√

√

√

n
∑

i=1

x2
i (t).

We also say vector X(t) has asymptotic weighted periodicity with period τ and weight

1 under the norm ‖ · ‖ if it satisfies lim
t→∞

‖X(t + τ) − X(t)‖ = 0. As the real value

matrix A is symmetric, its eigenvalues λ1, λ2, · · · , λn must be real. We also assume

that λ1 ≥ λ2 ≥ · · · ≥ λn.

Theorem 3.1. Suppose that p0(t), p1(t) and q(t) are periodic functions with period

τ/n1, τ/n2 and τ/n3 ( n1, n2, n3 are positive integers), respectively. If M(t) =

2[p1(t) − λ1p0(t)] − L|q(t)| > 0 with
∫∞

0
M(t)dt = ∞ and there exists a positive

number µ > 1 such that 2[p1(t) − λ1p0(t)] ≥ (1 + µ)L|q(t)| for t ≥ 0, then the so-

lution x(t) of problem (3.1) with every given initial function x0 ∈ C([−τ, 0]) has the

asymptotic weighted periodicity:

(3.2) lim
t→∞

‖X(t + τ) − X(t)‖ = 0.
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Proof: Consider the periodicity of p0(t), p1(t) and q(t), from (3.1) we have

[X(t + τ) − X(t)]′ = p0(t)A[X(t + τ) − X(t)] − p1(t)[X(t + τ) − X(t)]

+q(t)[f(X(t)) − f(X(t − τ))].(3.3)

Denotes Y (t) = X(t + τ) − X(t) and multiplies (3.3) by the row vector Y (t)T then

Y (t)T Y ′(t) = p0(t)Y (t)T AY (t) − p1(t)Y (t)T Y (t)

+q(t)Y (t)T [f(X(t)) − f(X(t − τ))].(3.4)

If denotes Y (t) = (y1(t), y2(t), · · · , yn(t))
T , then Y (t)T Y (t) =

n
∑

i=1

y2
i (t) = ‖Y (t)‖2 and

Y (t)T Y ′(t) =
n
∑

i=1

yi(t)y
′
i(t) = 1

2
(‖Y (t)‖2)′. On the other hand, the Cauchy inequality

and the Lipschitz condition in (1.4) for f imply that

|Y (t)T [f(X(t)) − f(X(t − τ))]| ≤ ‖Y (t)‖ · ‖f(X(t)) − f(X(t − τ))‖

= ‖Y (t)‖ ·
{

n
∑

i=1

[f(xi(t)) − f(xi(t − τ))]2

}1/2

≤ ‖Y (t)‖ ·
{

n
∑

i=1

L2[xi(t) − xi(t − τ)]2

}1/2

= L‖Y (t)‖ · ‖Y (t − τ)‖.(3.5)

Since matrix A is symmetric, there should exists an orthogonal n×n matrix Q which

satisfies QQT = I such that

QAQT = diag(λ1, λ2, · · · , λn),

here diag(λ1, λ2, · · · , λn) denotes the diagonal matrix and I is the unit matrix. Let

QY (t) = Z(t) = (z1(t), z2(t), · · · , zn(t))T , then

Y T (t)AY (t) = Y T (t)QT diag(λ1, λ2, · · · , λn) QY (t)

= Z(t)T diag(λ1, λ2, · · · , λn)Z(t) =

n
∑

i=1

λiz
2
i (t)

≤ λ1

n
∑

i=1

z2
i (t) = λ1Z(t)T Z(t) = λ1Y (t)T QT QY (t)

= λ1Y (t)T Y (t) = λ1‖Y (t)‖2.(3.6)

From (3.4)–(3.6) it is easy to see

(‖Y (t)‖2)′ ≤ 2[λ1p0(t) − p1(t)]‖Y (t)‖2 + 2L|q(t)| · ‖Y (t)‖ · ‖Y (t − τ)‖
≤ [2λ1p0(t) − 2p1(t) + L|q(t)| ] ‖Y (t)‖2

+L|q(t)| · ‖Y (t − τ)‖2.(3.7)
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If denote Y ∗(t) = ‖Y (t)‖2, then Y ∗(t) satisfies:

d

dt
Y ∗(t) ≤ −M(t)Y ∗(t) + N(t)Y ∗(t − τ),(3.8)

where M(t) = 2[p1(t) − λ1p0(t)] − L|q(t)| > 0 and N(t) = L|q(t)|. Notice that
∫∞

0
M(t)dt = ∞, the similar arguments as that for Theorem 2.2 reveal that

lim
t→∞

Y ∗(t) = 0, that is, lim
t→∞

‖X(t + τ) − X(t)‖2 = 0 and hence (3.2) holds true. The

proof is then finished.

Remark 3.1 Relation (3.2) implies that lim
t→∞

|xi(t + τ)− xi(t)| = 0 (i = 1, 2, · · · , n),

and we can also get lim
t→∞

|xi(t)| = 0 provided that f(0) = 0.

Example 3.1 We consider the differential-difference equation:

(3.9) x′
i(t) = (10 + 4.5 sin 2πt)∆2xi−1(t) + (2 + sin 2πt)xi(t − 2)

with Dirichlet boundary conditions x0(t) = xn+1(t) = 0 for t ≥ 0. Here we choose

n = 5 for simple and hence the problem can be transferred to be the vector equation:

(3.10) X ′(t) = (10 + 4.5 sin 2πt)A1X(t) + (2 + sin 2πt)X(t − 2),

where X(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))
T and A1 is a 5 × 5 symmetry matrix

given as the previous for Dirichlet boundary conditions. It is easy to see the eigenval-

ues of A1 are λi = −2+2 cos (iπ/6) for 1 ≤ i ≤ 5, and λ1 = −2+2 cos (π/6) =
√

3−2

is the biggest one.

Equation (3.10) can be seen as a particular case of equation (3.1) with p0(t) =

10+4.5 sin 2πt, p1(t) ≡ 0, q(t) = 2+sin 2πt and f(X(t−2)) = X(t−2). We check the

conditions for Theorem 3.1 as follows: It is easy to see that the period of p0(t), q(t)

is 1 = τ/2 since τ = 2. The Lipschitz constant should be L = 1 due to the linearity

of f . So

M(t) = 2[p1(t) − λ1p0(t)] − L|q(t)|
= 2[0 − (

√
3 − 2)(10 + 4.5 sin 2πt)] − (2 + sin 2πt)

= (38 − 20
√

3) + (17 − 9
√

3) sin 2πt ≥ 38 − 20
√

3 > 0,(3.11)

and it is easy to see
∫∞

0
M(t)dt = ∞. To satisfy 2[p1(t) − λ1p0(t)] ≥ (1 + µ)L|q(t)|,

only if 2[0 − (
√

3 − 2)(10 + 4.5 sin 2πt)] ≥ (1 + µ)(2 + sin 2πt), it suffices to show

9(2−
√

3)(2 + sin 2πt) ≥ (1 + µ)(2 + sin 2πt), i.e. µ ≤ 17− 9
√

3 ≈ 1.41154. So µ can

be chosen freely in the interval (1, 1.41154). So all the conditions for Theorem 3.1 are

satisfied and the solution of (3.10) should have the asymptotic weighted periodicity:

lim
t→∞

‖X(t + 2) − X(t)‖ = 0, hence the solution of the difference equation (3.9) also

has the asymptotic weighted periodicity (componentwise):

lim
t→∞

|xi(t + 2) − xi(t)| = 0, 1 ≤ i ≤ 5.
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4. IMPULSIVE DIFFERENTIAL EQUATION

In this section we consider a differential equation with impulse effects as follows:

x′(t) = −p(t)x(t) + q(t)f(x(t − τ)), t > 0, t 6= tk,(4.1)

x(t+k ) − x(t−k ) = bx(tk),(4.2)

x(s) = x0(s), s ∈ [−τ, 0],(4.3)

where p(t), q(t) are continuous periodic functions with period τ/n1 and τ/n2 (n1, n2

are positive integers), respectively. f(x) is a continuous function which satisfies the

weighted Lipschitz condition: for b 6= −1,

|f(x1) − (1 + b)f(x2)| ≤ L|x1 − (1 + b)x2| ∀ x1, x2 ∈ R,(4.4)

here L is a fixed positive constant. {tk}∞0 are discrete points with lim
k→∞

tk = ∞.

x(t+k ) = lim
t→tk+0

x(t) and x(t−k ) = lim
t→tk−0

x(t) with x(tk) = x(t−k ). Relation (4.2) is

the impulsive condition which describes the instantaneous changes in the substance

x studied, and constant b is the jump. The initial function x0(s) is a continuous

function on [−τ, 0]. For the study of the periodicity of the impulsive differential

equations there are many researchers, such as in [19–21], yet the methods they have

used aren’t suitable for solving our problem though it’s only a relatively simpler

ordinary differential equation due to the variation of the coefficients and the effects of

the delay and impulses. Here we prefer showing the asymptotic weighted periodicity of

the solution for initial value problem (4.1)–(4.3) rather than discussing the existence of

the periodic solution for (4.1)(4.2). As shown in Section 2, the delay in the problem

(4.1)(4.3) with no impulse can cause the solution vary weighted periodically with

weight 1 as t → ∞, but if the impulse is taken into consideration, as shown by the

following results, the oscillation of the solution may have some kind of asymptotic

weighted periodicity with some fixed weight related to the jump b.

In the following we take tk = kτ (k = 0, 1, · · · .) for simple to continue our

discussion.

Notice that x(t−k ) = x(tk), relation (4.2) can be rewritten as x(t+k ) = (1+ b)x(tk).

Denote x1(t) the solution of the problem (4.1)–(4.3) on (0, τ ]. In this case, −τ <

t − τ ≤ 0, and x1(t − τ) = x0(t − τ). If we extend x0 by x0(t) = x0(t − τ) on (0, τ ],

then x1(t − τ) = x0(t) and x1 solves

(4.5)

{

x′
1(t) = −p(t)x1(t) + q(t)f(x0(t)), t ∈ (0, τ ],

x1(0) = (1 + b)x0(0),

where x1(0) stands for x1(0
+). As x0(t) is a known function, the linear problem (4.5)

has a unique smooth solution x1(t). We can also extend x1 by x1(t) = x1(t − τ) on
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(τ, 2τ ] and get

(4.6)

{

x′
2(t) = −p(t)x2(t) + q(t)f(x1(t)), t ∈ (τ, 2τ ],

x2(τ) = (1 + b)x1(τ).

According to this method, for every integer k = 1, 2, · · · ,

(4.7)

{

x′
k(t) = −p(t)xk(t) + q(t)f(xk−1(t)), t ∈ ((k − 1)τ, kτ ],

xk((k − 1)τ) = (1 + b)xk−1((k − 1)τ),

where xk((k−1)τ) stands for xk (((k − 1)τ)+) and xk−1 satisfy the extension relations

xk−1(t) = xk−1(t − τ) on ((k − 1)τ, kτ ], and further periodic extensions for xk−1 are

permitted if it needs. If we have solved xk−1, then we can take it as a known function

and continue to solve xk.

The iteration process (4.7) implies the following relations for t ∈ (kτ, (k + 1)τ ]:

(4.8)
{

[xk+1 − (1 + b)xk]
′ = −p(t)[xk+1 − (1 + b)xk] + q(t)[f(xk) − (1 + b)f(xk−1)],

[xk+1 − (1 + b)xk]|t=kτ = (1 + b)[xk(kτ) − (1 + b)xk−1((k − 1)τ)].

As x0 is continuous on [−τ, 0] it should be bounded and there exists a positive constant

K such that −K ≤ x0 ≤ K. Similarly, as x1 is a smooth solution of problem (4.5), we

can set C1 = inf{x1(t); t ∈ (0, τ ]} and C2 = sup{x1(t); t ∈ (0, τ ]}. We also denote:

C = max{|C1 − (1 + b)K|2, |C2 + (1 + b)K|2};
M(t) = 2p(t) − L|q(t)|; N(t) = L|q(t)|;

S = [(1 + b)2 − 1/µ] · exp

(

−
∫ τ/2

0

M(s)ds

)

+ 1/µ;(4.9)

T = [(1 + b)2 − 1/µ] · exp

(

−
∫ τ

0

M(s)ds

)

+ 1/µ;

P = max{(1 + b)2, S}; Q =

{

(1 + b)2S, (1 + b)2 > 1/µ,

T, (1 + b)2 ≤ 1/µ,

here µ is a positive constant to be defined.

Theorem 4.1. In case b > −1, if we can choose a positive number µ > 1 such

that 2p(t) ≥ (1 + µ)L|q(t)| for t ≥ 0 and Q < 1, then the solution x(t) of problem

(4.1)–(4.3) has the following asymptotic weighted periodicity:

(4.10) lim
t→∞

|x(t) − (1 + b)x(t − τ)| = 0.

Proof: For every t ∈ ((k−1)τ, kτ ], let yk(t) = xk(t)−(1+b)xk−1(t) for k = 1, 2, · · · ,
we can multiply the first equation in (4.8) by yk+1(t) and get

(4.11) yk+1(t)y
′
k+1(t) = −p(t)y2

k+1(t) + q(t)yk+1(t)[f(xk(t)) − (1 + b)f(xk−1(t))].
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Consider that b > −1, the weighted Lipschitz condition (4.4) for f implies that:

|f(xk(t)) − (1 + b)f(xk−1(t))| ≤ L|xk(t) − (1 + b)xk−1(t)| = L|yk|, so from (4.11) we

have

1

2
(y2

k+1(t))
′ ≤ −p(t)y2

k+1(t) + L|q(t)| · |yk+1(t)| · |yk(t)|

≤
[

−p(t) +
1

2
L|q(t)|

]

y2
k+1(t) +

1

2
L|q(t)|y2

k(t).(4.12)

Denotes Yk(t) ≡ y2
k(t), also use the denotations in (4.9), (4.12) can be rewritten as:

Y ′
k+1(t) ≤ −M(t)Yk+1(t) + N(t)Yk(t), ∀ t ∈ (kτ, (k + 1)τ ].

Furthermore, considering the extension property of xk, from (4.8) it is easy to see

Yk+1(kτ) = (1 + b)2Yk(kτ). Condition 2p(t) ≥ (1 + µ)L|q(t)| implies that M(t) ≥
µN(t) ≥ 0. So for t ∈ (kτ, (k + 1)τ ] from (4.13) we can obtain

Yk+1(t) ≤ e−
R t
kτ M(s)ds

[

Yk+1(kτ) +

∫ t

kτ

N(s)Yk(s)e
R s
kτ M(σ)dσds

]

≤ e−
R t
kτ

M(s)ds

[

(1 + b)2Yk(kτ) +

∫ t

kτ

Yk(s)
1

µ
M(s)e

R s
kτ

M(σ)dσds

]

= e−
R t
kτ M(s)ds

[

(1 + b)2Yk(kτ) +
1

µ

∫ t

kτ

Yk(s)
(

e
R s

kτ M(σ)dσ
)′

ds

]

.(4.13)

As b > −1 and so 1 + b > 0, from the denotations in (4.9) for t ∈ (0, τ ],

Y1(t) = |x1(t) − (1 + b)x0(t)|2

≤ max{|C1 − (1 + b)K|2, |C2 + (1 + b)K|2} ≡ C.(4.14)

(4.14) and (4.15) imply that

Y2(t) ≤ e−
R t

τ
M(s)ds

[

(1 + b)2Y1(τ) +
1

µ

∫ t

τ

Y1(s)
(

e
R s

τ
M(σ)dσ

)′

ds

]

≤ e−
R t

τ M(s)ds

[

(1 + b)2C +
1

µ

∫ t

τ

C
(

e
R s
τ M(σ)dσ

)′

ds

]

= C

{[

(1 + b)2 − 1

µ

]

e−
R t

τ M(s)ds +
1

µ

}

, t ∈ (τ, 2τ ].(4.15)

Case 1 If (1 + b)2 > 1/µ, then M(t) ≥ 0 implies that:

Y2(t) ≤ C

{[

(1 + b)2 − 1

µ

]

e0 +
1

µ

}

= C(1 + b)2, t ∈ (τ, 3τ/2],

Y2(t) ≤ C

{[

(1 + b)2 − 1

µ

]

e−
R

3τ/2

τ M(s)ds +
1

µ

}

= C

{[

(1 + b)2 − 1

µ

]

e−
R τ/2

0
M(s)ds +

1

µ

}

≡ CS, t ∈ (3τ/2, 2τ ],(4.16)
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here the periodicity of M(t) is used. It is easy to see (1 + b)2 ≥ S and then

Y3(t) ≤ e−
R t
2τ

M(s)ds

[

(1 + b)2Y2(2τ) +
1

µ

∫ t

2τ

Y2(s)
(

e
R s
2τ

M(σ)dσ
)′

ds

]

≤ e−
R t
2τ M(s)ds

[

(1 + b)2CS +
1

µ

∫ t

2τ

C(1 + b)2
(

e
R s
2τ M(σ)dσ

)′

ds

]

= C(1 + b)2

{[

(1 + b)2 − 1

µ

]

e−
R τ/2

0
M(s)ds−

R t
2τ

M(s)ds +
1

µ

}

≤ C(1 + b)2S, t ∈ (2τ, 3τ ](4.17)

and

Y4(t) ≤ e−
R t
3τ M(s)ds

[

(1 + b)2Y3(3τ) +
1

µ

∫ t

3τ

Y3(s)
(

e
R s
3τ M(σ)dσ

)′

ds

]

≤ e−
R t
3τ

M(s)ds

[

(1 + b)2C(1 + b)2S +
1

µ

∫ t

3τ

C(1 + b)2S
(

e
R s
3τ

M(σ)dσ
)′

ds

]

= C(1 + b)2S

{[

(1 + b)2 − 1

µ

]

e−
R t
3τ

M(s)ds +
1

µ

}

, t ∈ (3τ, 4τ ]

which implies that

Y4(t) ≤ C(1 + b)2S

{[

(1 + b)2 − 1

µ

]

e0 +
1

µ

}

= C(1 + b)4S, t ∈ (3τ, 7τ/2],

Y4(t) ≤ C(1 + b)2S2, t ∈ (7τ/2, 4τ ].(4.18)

From the iteration process we can get the estimate for every m = 1, 2, · · · as:

Y2m(t) ≤ C(1 + b)2[(1 + b)2S]m−1, t ∈ ((2m − 1)τ, (2m − 1/2)τ ],

Y2m(t) ≤ CS[(1 + b)2S]m−1, t ∈ ((2m − 1/2)τ, 2mτ ],

Y2m+1(t) ≤ C[(1 + b)2S]m, t ∈ (2mτ, (2m + 1)τ ].(4.19)

Consider the denotations P = max{(1+ b)2, S} and Q = (1+ b)2S for case (1+ b)2 >

1/µ, it’s easy to see

Y2m(t) ≤ CPQm−1, t ∈ ((2m − 1)τ, 2mτ ],

Y2m+1(t) ≤ CQm, t ∈ (2mτ, (2m + 1)τ ].(4.20)

For each t > 0, there exists a nonnegative integer k and t0 ∈ (0, τ ] such that t = kτ+t0,

here k = 2m − 1 or 2m. Considering that Q < 1,

lim
m→∞

Y2m((2m − 1)τ + t0) ≤ lim
m→∞

CPQm−1 = 0, ∀ t0 ∈ (0, τ ],

lim
m→∞

Y2m+1(2mτ + t0) ≤ lim
m→∞

CQm = 0, ∀ t0 ∈ (0, τ ].(4.21)

If let k → ∞ then for every t0 ∈ (0, τ ],

lim
k→∞

|x(kτ + t0) − (1 + b)x((k − 1)τ + t0)|2 = lim
k→∞

Yk+1(kτ + t0) = 0.
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The arbitrariness of t0 ∈ (0, τ ] implies lim
t→∞

|x(t) − (1 + b)x(t − τ)|2 = 0, and hence

relation (4.10) holds true for the case (1 + b)2 > 1/µ.

Case 2 If (1 + b)2 ≤ 1/µ, then M(t) ≥ 0 implies that:

Y2(t) ≤ C

{[

(1 + b)2 − 1

µ

]

e−
R

2τ
τ M(s)ds +

1

µ

}

= C

{[

(1 + b)2 − 1

µ

]

e−
R τ
0

M(s)ds +
1

µ

}

≡ CT, t ∈ (τ, 2τ ].(4.22)

Y3(t) ≤ e−
R t
2τ M(s)ds

[

(1 + b)2Y2(2τ) +
1

µ

∫ t

2τ

Y2(s)
(

e
R s
2τ M(σ)dσ

)′

ds

]

≤ e−
R t
2τ

M(s)ds

[

(1 + b)2CT +
1

µ

∫ t

2τ

CT
(

e
R s
2τ

M(σ)dσ
)′

ds

]

= CT

{[

(1 + b)2 − 1

µ

]

e−
R t
2τ

M(s)ds +
1

µ

}

≤ CT 2, t ∈ (2τ, 3τ ].(4.23)

From the iteration process we can get the estimate for every k = 1, 2, · · · as:

Yk+1(t) ≤ CT k = CQk, t ∈ (kτ, (k + 1)τ ].

then for every t0 ∈ (0, τ ],

lim
k→∞

|x(kτ + t0) − (1 + b)x((k − 1)τ + t0)|2

= lim
k→∞

Yk+1(kτ + t0) ≤ lim
k→∞

CQk = 0(4.24)

due to Q < 1, and hence lim
t→∞

|x(t) − (1 + b)x(t − τ)|2 = 0, which implies relation

(4.10). The proof is then proven.

If C in (4.9) is substituted by C∗ = max{|C2 − (1 + b)K|2, |C1 + (1 + b)K|2},
then we can prove that Theorem 4.1 also holds true for b < −1 by using the same

method. According to Definition 1.1 the weight should be positive, so we can change

the form of the asymptotic weighted periodicity. Since

lim
t→∞

∣

∣x(t) − (1 + b)2x(t − 2τ)
∣

∣

= lim
t→∞

∣

∣x(t) − (1 + b)x(t − τ) + (1 + b)x(t − τ) − (1 + b)2x(t − 2τ)
∣

∣

≤ lim
t→∞

|x(t) − (1 + b)x(t − τ)| + |1 + b| · lim
t→∞

|x(t − τ) − (1 + b)x(t − 2τ)|

= 0 + |1 + b| · 0 = 0,(4.25)

we can get a result for the case b < −1 as follows.

Theorem 4.2. In case b < −1, if we can choose a positive number µ > 1 such that

2p(t) ≥ (1 + µ)L|q(t)| for t ≥ 0 and Q < 1 with Q defined in (4.9), then the solution

x(t) of problem (4.1)–(4.3) has the following asymptotic weighted periodicity:

lim
t→∞

∣

∣x(t) − (1 + b)2x(t − 2τ)
∣

∣ = 0.
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Remark 4.1 In Theorem 4.1 and Theorem 4.2, for the case (1 + b)2 > 1/µ, since

Q = (1 + b)2S > (1 + b)2/µ, to satisfy Q < 1 it needs 1/µ < (1+ b)2 < µ; for the case

(1 + b)2 ≤ 1/µ, it is easy to see Q = T ≤ 1/µ < 1 is trivially satisfied.

Remark 4.2 If b = 0 then there isn’t impulse and the results in Theorem 4.1 accord

with that in Theorem 2.2, the difference is that there haven’t the restriction M(t) =

2p(t)−L|q(t)| > 0 and
∫∞

0
M(t) = ∞. If b = −2, then Theorem 4.2 also implies that

the solution has asymptotic weighed periodicity with period 2τ and weight 1, which

also includes the case lim
t→∞

|x(t)| = 0 for f(0) = 0 due to (1 + b)2 = 1 at this time.

5. SIMULATIONS

In this section, we give some numerical results for the asymptotic behavior of the

solution to the impulsive equation (4.1)–(4.3).

Example 5.1 For simplicity of simulations we consider the linear problem as follows:










x′(t) = −p(t)x(t) + q(t)f(x(t − τ)), t > 0, t 6= tk,

x(t+k ) = (1 + b)x(tk),

x(s) = x0(s), s ∈ [−τ, 0],

where f(x(t − τ)) = x(t − τ) + C (C is a fixed constant), tk = kτ for k = 1, 2, · · · ,
p(t) = 1.5 sin 2πt, q(t) = sin 2πt with period 1 and x0(s) = s + 3.

Case 1 Choose b = −0.2, τ = 2 and C = 0. We check the conditions for Theorem

4.1 as follows: Since f(x(t−τ)) = x(t−τ), it is easy to see f(0) = 0 and L = 1. If we

choose µ = 4/3, then 2p(t) = 3 sin 2πt ≥ (1+4/3) sin 2πt = (1+µ)L|q(t)|. At the same

time, from the denotations in (4.9), M(t) = 2p(t)−Lq(t) = 2×1.5 sin 2πt− sin 2πt =

2 sin 2πt and (1 + b)2 = (1 − 0.2)2 = 0.64 < 3/4 = 1/µ. So

Q = T =
[

(1 + b)2 − 1/µ
]

· exp

(

−
∫ τ

0

M(s)ds

)

+ 1/µ

= [0.64 − 3/4] · exp

(

−
∫ 2

0

2 sin (2πs)ds

)

+ 3/4 < 1,

hence all the conditions for Theorem 4.1 are satisfied. So the solution x(t) of problem

(5.1) has the following asymptotic weighted periodicity:

lim
t→∞

|x(t) − 0.8x(t − 2)| = 0.

Since the amplitude of x(t) may get nearly to be 0.8 times after 2 units of time t, it’s

easy to see x(t) → 0 as t → ∞ just as shown in Figure 1.
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Case 2. Choose b = 0.05, τ = 1 and C = 0. We check the conditions for

Theorem 4.1 as follows: 2p(t) ≥ (1 + µ)L|q(t)| is satisfied as in Case 1 for µ = 4/3.

At the same time, since (1 + b)2 = (1 + 0.05)2 = 1.010025 > 3/4 = 1/µ, from (4.9)

we have

Q = (1 + b)2S

= (1 + b)2

{

[

(1 + b)2 − 1/µ
]

· exp

(

−
∫ τ/2

0

M(s)ds

)

+ 1/µ

}

= 1.010025×
{

(1.010025 − 3/4) · exp

(

−
∫ 1/2

0

2 sin (2πs)ds

)

+ 3/4

}

= 1.010025×
(

0.260025× e−2/π + 3/4
)

≈ 0.8965 < 1.

Hence all the conditions for Theorem 4.1 are satisfied. So the solution x(t) of problem

(5.1) has the following asymptotic weighted periodicity:

lim
t→∞

|x(t) − 1.05x(t − 1)| = 0.

Since the amplitude of x(t) may get nearly to be 1.05 times after a unit time t, so

x(t) gets larger and larger as t increases just as shown in Figure 2.

Case 3. Choose b = −2, τ = 1 and C = 0. We check the conditions for Theorem

4.2 as follows: Since (1 + b)2 = (1 − 2)2 = 1 > 3/4 = 1/µ, from the denotations in

(4.9),

Q = (1 + b)2S

= (1 + b)2

{

[

(1 + b)2 − 1/µ
]

· exp

(

−
∫ τ/2

0

M(s)ds

)

+ 1/µ

}

= 1 ×
{

(1 − 3/4) · exp

(

−
∫ 1/2

0

2 sin (2πs)ds

)

+ 3/4

}

=
1

4
e−2/π +

3

4
< 1.
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Hence all the conditions for Theorem 4.2 are satisfied. So the solution x(t) of problem

(5.1) has the following asymptotic weighted periodicity:

lim
t→∞

|x(t) − x(t − 2)| = 0.

Just as indicated by Remark 4.2 for the case f(0) = 0 that (5.4) also includes

the case lim
t→∞

|x(t)| = 0. Accordingly, the simulation is given by Figure 3.
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Case 4. Choose b = −2, τ = 1 and C = 1. At this time we also have L = 1

and (5.4) also holds true. Since at this time f(0) = 1 6= 0, we have an asymptotic

periodic solution x(t) in the normal sense (see Figure 4).
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