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ABSTRACT. Some results on the existence of bifurcation at multiple eigenvalues for abstract sys-

tems concerning Lipschitz continuous mappings in Banach spaces are proved. The obtained results

improve some well-known bifurcation results by Crandall and Rabinowitz, McLeod and Sattinger,

Tan etc, in the case involving Lipschitz continuous mappings. An application to a system of partial

differential equations will be given.
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1. INTRODUCTION

Bifurcation problems play a very important role in different areas of applied

mathematics and have been intensively studied in the literature. Several methods

have been used, for instance, variational, topological, analytical and numerical meth-

ods etc, (cf [1, 2, 3, 4, 9, 10, 11]). In general, the bifurcation problem consists in

determining bifurcation points of equations depending on a parameter in Banach

spaces of the form

(1.1) F (λ, v) = 0, (λ, v) ∈ Λ ×D

where Λ is a subset of a normed space, D is a neighbourhood of the origin in a Banach

space X with the closure D and F is a nonlinear mapping from Λ ×D into another

Banach spaces Y with F (λ, 0) = 0 for all λ ∈ Λ. A point (λ, 0) is called a trivial

solution.

Definition 1.1. A point (λ, v) ∈ Λ × D is said to be a bifurcation point of the

equation (1.1) if and only if

(λ, 0) ∈ cl
{

(λ, v) ∈ Λ ×D,F (λ, v) = 0 and v 6= 0
}

,

where clA = A, the closure of the set A.
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In the case the mapping F is differentiable, using the Implicit Function Theorem

one can easily verify that (λ, 0) is a bifurcation point of (1.1) only if λ belongs to the

spectral set of Fx (λ, 0), i.e, Fx(λ, 0)u0 = 0 for some u0 ∈ X, u0 6= 0.

The purpose of this paper is to study the existence of bifurcation points of the

system (1.1), with F of the form

F (λ, u) = −T (u) + L (λ, u) +H (λ, u) +K (λ, u) , (λ, u) ∈ Λ ×D,

T = (T1, T2), L = (L1, L2), H = (H1, H2) and K = (K1, K2), where Λ is an open

subset of a normed space Z with the norm defined by |·|Λ, D is a neighbourhood of the

origin in a Banach space X. For any fixed λ ∈ Λ and for any i = 1, 2, Ti, Li (λ, ·) are

linear continuous mappings from X into another Banach space Yi, Hi (λ, ·), Ki (λ, ·)
are nonlinear Lipschitz continuous mappings of “higher order term” from D into Yi

with Hi (λ, 0) = Ki (λ, 0) = 0 and Hi (λ, ·) satisfies an ai-homogeneous condition to

be described later with ai > 1.

Let λ ∈ Λ be a characteristic value of the pair (T, L) (i.e T (v) − L(λ, v) =

0 for some v ∈ X, v 6= 0) such that the mapping T − L
(

λ, ·
)

is Fredholm with

nullity p and index zero. We shall prove, under some sufficient conditions, that (λ, 0)

is a bifurcation point of the system (1.1) with F as above, using the Lyapunov-

Schmidt procedure, the Banach Contraction Principle and the topological degree

theory. Furthermore, we also describe parameter families of nontrivial solutions of the

system (1.1) in a neighbourhood of (λ, 0) in analytical form. Our result in Section 2

generalize some well-known results obtained by Crandall and Rabinowitz [7], McLeod

and Sattinger [12], Buchner, Marsden and Schecter [5], Tan [13]. They always need

the differentiability conditions on those mappings. Lastly, in Section 3, we apply the

obtained result to investigate the bifurcation points of the system of equations of the

form










−∆u = ηv + u |uv| in G

−∆v = µu+ v |u|σ in G

u = v = 0 in ∂G,

where (η, µ) ∈ R
2, σ > 2, G = [0, 1] × [0, 1] × [0, 1] , (u, v) ∈ X = H1

0 (G) ×H1
0 (G).

2. THE MAIN RESULT

2.1. Notations. Throughout this paper, X, Y1 and Y2 are always supposed to be

real Banach spaces with duals X∗, Y ∗
1 and Y ∗

2 , respectively, Y denoted the product

space Y1 ×Y2 with dual Y ∗. Λ is an open subset of a normed space Z. The norm and

the pairings between elements of X, X∗; and Y, Y ∗ are denoted by the same symbols

‖·‖ and 〈·, ·〉, respectively. The norm of the normed space containing Λ restricted to

Λ is denoted by |·|Λ. In this section we consider the existence of bifurcation points
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of the system (1.1) with F mentioned above. This means that we investigate the

existence of bifurcation points of the system

(2.1)

{

T1(v) = L1(λ, v) +H1(λ, v) +K1(λ, v), (λ, v) ∈ Λ ×D

T2(v) = L2(λ, v) +H2(λ, v) +K2(λ, v), (λ, v) ∈ Λ ×D,

where the mappings Ti, Li, Hi, and Ki, i = 1, 2 are as in the introduction.

Now let λ ∈ Λ be a characteristic value of the pair (T, L) with multiplicity

p, p ≥ 1, such that the mapping T−L
(

λ, ·
)

is Fredholm with nullity p and index zero,

where T = (T1, T2) and L = (L1, L2). It follows that the null space ker(T − L(λ, ·))
is p-dimensional. We assume

(2.2) ker(T − L(λ, ·)) = [v1, . . . , vp],

where the right side is the subspace of X spanned by v1, . . . , vp.

By (T − L(λ, ·))∗ we denote the adjoint mapping of the mapping T − L(λ, ·),
defined on Y ∗, and assume

(2.3) ker(T − L(λ, ·))∗ = [ψ1, . . . , ψp].

Given j ∈ {1, . . . , p}, we define ψ1
j : Y1 → R and ψ2

j : Y2 → R by
〈

y, ψ1
j

〉

= ψj(y, 0)

and
〈

y, ψ2
j

〉

= ψj(0, y).

By the Hahn-Banach Theorem one can find p functionals γ1, . . . , γp on X such

that

〈vm, γn〉 = δmn, m,n = 1, . . . , p.

and 2p elements, zi
1, . . . , z

i
p in Yi, i = 1, 2, such that

〈

zi
m, ψ

i
n

〉

= δmn, m, n = 1, . . . , p,

with δmn denoting the Kronecker δ. We set
{

X0 = [v1, . . . , vp],

X1 = {x ∈ X, 〈x, γk〉 = 0, k = 1, . . . , p}.

For j = 1, . . . , p, we set zj = (z1
j , z

2
j ) and

{

Y 0 = [z1, . . . , zp],

Y 1 = {y ∈ Y, 〈y, ψk〉 = 0, k = 1, . . . , p}.

It can be seen that Y = Y 0
⊕

Y 1 and the restriction of the mapping T−L(λ, ·) on X1

is a one-to-one linear continuous mapping onto Y 1. The projections PX : X → X0,

QX : X → X1, PY : Y → Y 0 and QY : Y → Y 1, are defined by

PX(x) =

p
∑

k=1

〈x, γk〉 vk, QX(x) = x− PX(x), x ∈ X,
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PY (y) =

p
∑

k=1

〈y, ψk〉 zk, QY (y) = y − PY (y), y ∈ Y.

2.2. Hypotheses. Concerning the main results in this paper we impose the following

hypotheses on the mappings Ti, L,Hi and Ki:

(H1) : There is a real number b such that αL(λ, v) = L
(

αbλ, v
)

holds for all α ∈ [0, 1]

and v ∈ D.

(H2) : There exist two real numbers ai > 2 and two real increasing function ρi : R → R

with lim
δ→0

ρi(δ) = 0 such that,

i) The mappings Hi, i = 1, 2 are ki−Lipschitz.

ii) Hi(λ, tv) = taiHi(λ, v) holds for all t ∈ [0, 1], (λ, v) ∈ Λ ×D.

iii) α−aiPYKi(
λ

(1 + αai−1)b
, αv) tend to zero as α → 0, uniformly to v ∈ D, where b

is from Hypothesis (H1).

iv) ‖Ki(λ, v) −Ki(λ
′, v′)‖ ≤ ρi(|λ− λ′|Λ + ‖v − v′‖)(|λ− λ′|Λ + ‖v − v′‖), holds for

all (λ, v), (λ′, v′) ∈ Λ ×D.

Further, we put

(2.4) a = min(a1, a2)

and for i = 1, 2, we define the mapping Ai : R
p → R

p,Ai= (A1
i , . . .Ap

i ) by

(2.5)

Ak
i (x) =

〈

Ti(

p
∑

j=1

xjvj) − ciHi(λ,

p
∑

j=1

xjvj), ψ
i
k

〉

, x = (x1, . . . , xp), k = 1, . . . , p,

with

ci =

{

1 if ai = a,

0 if not,

and make the following hypothesis:

(H3) : There is a point x ∈ R
p and an open neighborhood U ∗ of x not containing

the origin in R
p, such that the topological degree deg(A1 +A2, U

∗, 0) of the mapping

A1 + A2 with respect to U ∗ and the origin is defined and different from zero.

2.3. The main result. We have the following result:

Theorem 2.1. Under hypotheses (H1)-(H3), (λ, 0) is a bifurcation point of the system

(2.1). More precisely, to any given δ > 0 there exists a neighborhood I of zero in R

such that for each α ∈ I, α 6= 0, we can find x(α) = (x1(α), . . . , xp(α)) ∈ U∗ and a

nontrivial solution (λ(α), v(α)) of the system (2.1) with

λ(α) =
λ

(1 + |α|a−1)b
,

v(α) =

p
∑

j=1

|α|xj(α)vj + o(|α|),
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satisfying
∣

∣λ(α) − λ
∣

∣

Λ
< δ and 0 < ‖v(α)‖ < δ.

The proof of this theorem will be done in two steps. In the first, we will give three

lemmas which will reduce the resolution of the system (2.1) to a finite dimension. In

the second step we will solve this finite dimensional problem.

The system (2.1) can be written as (2.6).

(2.6) T (v) = L(λ, v) +H(λ, v) +K(λ, v) (λ, v) ∈ Λ ×D.

Let us fix λ satisfying (H1)-(H3). Let I1 be a neighborhood of zero in R, I1 ⊂ [−1, 1],

such that
λ

(1 + |α|)b
∈ Λ holds for all α ∈ I1, where b is from hypothesis (H1) and let

U1 = U(0, r1) be an open ball with the center at the origin in R
p and the radius r1 > 0,

such that
p
∑

i=1

xivi ∈ PX(D) for all (x1, . . . , xp) ∈ U1. Without loss of generality we may

assume that |α|a−1 ∈ I1, |α|x ∈ U1 hold for all α ∈ I1, x ∈ U1. Setting D1 = QX(D)

and by choosing D′
1 smaller if necessary, we may assume that D1 = D1(0, r2), the

open ball with the center at the origin in X1 and radius r2 > 0.

We define the mapping G : I1 × U1 ×D1 → X1 by

G(α, ε, ω) = −SQY {|α|T (

p
∑

i=1

εivi + ω) − (1 + |α|)M(
λ

(1 + |α|)b
,

p
∑

i=1

εivi + ω)},

where M = (H1 +K1, H2 +K2) and S is the inverse of the restriction of the mapping

T − L(λ, ·) on Y 1 onto X1.

2.4. Lemmas.

Lemma 2.2. Let hypotheses (H1), (H2) be satisfied and let I1, U1, D1 be as above.

Then there exist neighborhoods I2 of zero in R, I2 ⊂ I1, D2 of the origin in X1 such

that for any (|α|a−1 , |α|x) ∈ I2 × U1 one can find a point ω = ω(|α|a−1 , |α|x) ∈ D2

satisfying

G(|α|a−1 , |α|x, ω) = ω.

Proof. For fixed t ∈ [0, 1], we set I(t) = tI1 and D(t) = tD1. Then, any α ∈
I(t), ω ∈ D(t) can be written as α = tα′, ω = tω′ with α′ ∈ I1, ω

′ ∈ D1. Now, let

(|α|a−1 , |α|x) ∈ I(t) × U1. We will prove that there exists

(2.7) t0 ∈ (0, 1]

such that the map G(|α|a−1 , |α|x, ·) is a strict contraction from D(t0) into D(t0).

Let us write α = tα′, ωj = tω′j for any ωj ∈ D(t), j = 1, 2, and set

(2.8) γ = ‖SQY ‖
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and

∆ =
∥

∥G(|α|a−1 , |α|x, ω1) −G(|α|a−1 , |α|x, ω2)
∥

∥ .

Then, by the definition of the map G, we obtain

∆ = ‖SQY {|α|a−1 T (W 1) − (1 + |α|a−1)M(
λ

(1 + |α|a−1)b
,W 1)}−

SQY {|α|a−1 T (W 2) − (1 + |α|a−1)M(
λ

(1 + |α|a−1)b
,W 2)}‖

with W j =
p
∑

i=1

|α|xivi + ωj for j = 1, 2.

By (2.8), the hypotheses (H2i), (H2ii) and (H2iv) we deduce

∆ ≤ γ{|α|a−1 ‖T‖
∥

∥ω1 − ω2
∥

∥ + 2ta(k1 + k2)
∥

∥ω′1 − ω′2
∥

∥ +

2(ρ1 + ρ2)(
∥

∥ω1 − ω2
∥

∥)
∥

∥ω1 − ω2
∥

∥}.

Since ρ1 and ρ2 are increasing functions and ‖ω1 − ω2‖ ≤ 2r2t , then

∆ ≤ γ{|α|a−1 ‖T‖ + 2ta−1(k1 + k2) + 2(ρ1 + ρ2)(2r2t)}
∥

∥ω1 − ω2
∥

∥ .

Therefore, setting

G1(t) = γ{|α|a−1 ‖T‖ + 2ta−1(k1 + k2) + 2(ρ1 + ρ2)(2r2t)}

and since |α|a−1 ∈ I(t) = tI1, we can see that

(2.9) lim
t→0

G1(t) = 0.

Further for ω = tω′, ω′ ∈ D, we have similarly as above

∥

∥G(|α|a−1 , |α|x, ω)
∥

∥

≤ γ{|tα′|a−1 ‖T‖ (|tα′x| + ‖tω′‖) + 2ta(k1 + k2)(|α′x| + ‖ω′‖) +

2t(ρ1 + ρ2)(t(|α′x| + ‖ω′‖))(|α′x| + ‖ω′‖)}
≤ tγ{|tα′|a−1 ‖T‖ + 2ta−1(k1 + k2) +

2(ρ1 + ρ2)(t(r2 + r1))}(r2 + r1).

Setting

G2(t) = tγ{|tα′|a−1 ‖T‖ + 2ta−1(k1 + k2) + 2(ρ1 + ρ2)(t(r2 + r1))},

we can see that

(2.10) lim
t→0

G2(t)

t
= 0.

Consequently by (2.9) and (2.10), we deduce the existence of a real t0 ∈ (0, 1], such

that, 0 < G1(t0) < 1 and G2(t0) ≤ t0r2. Putting I2 = t0I1, D2 = t0D1, then

the mapping G(|α|a−1 , |α|x, ·) is a strict contraction mapping and it maps D2 into
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itself. Applying the Banach Contraction Principle, we conclude that G(|α|a−1 , |α|x, ·)
possesses a fixed point ω(|α|a−1 , |α|x) in D2, i.e,

G(|α|a−1 , |α|x, ω(|α|a−1 , |α|x)) = ω(|α|a−1 , |α|x).

Lemma 2.3. Under the hypotheses of lemma 2.2, there exists a constant k > 0 such

that for any |α|a−1 ∈ I2, |α|x1 ∈ U1, |α|x2 ∈ U1, we have

∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥ ≤ k
∥

∥x1 − x2
∥

∥ .

In particular for all α ∈ I2, ω(|α|a−1 , |α| .) is a continuous mapping with respect to

x ∈ U1.

Proof. Let t0 and γ be given by (2.7) and (2.8), respectively, and let ω(|α|a−1 , |α|xj) =

t0ω
′(|α|a−1 , |α|xj), j = 1, 2. Then by lemma 2.2, the definition of the map G and the

hypotheses (H1), (H2), we obtain:

∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥

=
∥

∥G(|α|a−1 , |α|x1, ω(|α|a−1 , |α|x1)) −G(|α|a−1 , |α|x2, ω(|α|a−1 , |α|x2))
∥

∥

≤ γ{|α|a−1 ‖T‖ (|α| ‖x1 − x2‖ +
∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥)+

2ta−1
0 (k1 + k2)(|α| ‖x1 − x2‖ +

∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥)+

2(ρ1 + ρ2)(|α| ‖x1 − x2‖ +
∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥)

(|α| ‖x1 − x2‖ +
∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥)}
≤ γ{t0 ‖T‖ + 2ta−1

0 (k1 + k2) + 2(ρ1 + ρ2)(2(r1 + r2)t0)}(‖x1 − x2‖+
∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥)

Setting

β(t0) = γ{t0 ‖T‖ + 2ta−1
0 (k1 + k2) + 2(ρ1 + ρ2)(2(r1 + r2)t0)}

and choosing t0 rather small, one can suppose that 0 < β(t0) < 1. Hence we obtain

∥

∥ω(|α|a−1 , |α|x1) − ω(|α|a−1 , |α|x2)
∥

∥ ≤ β(t0)

1 − β(t0)

∥

∥x1 − x2
∥

∥ ,

and then, we take k =
β(t0)

1 − β(t0)
.

2.5. Proof of the main result.

2.5.1. Reduction of the resolution in finite dimension. Let I1, U1, D1 be from Section

2.3 and let δ > 0 be given. Using lemma 2.2, we conclude that there is a neighborhood

I2 of zero in R, I2 ⊂ I1, such that for α ∈ I2, α 6= 0, |α|x ∈ U1 we can find a fixed
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point ω of the mapping G(|α|a−1 , |α|x, ·). Moreover

ω = −SQY {|α|a−1 T (

p
∑

i=1

|α|xivi + ω) −

(1 + |α|a−1)M(
λ

(1 + |α|a−1)b
,

p
∑

i=1

|α|xivi + ω)}.

Applying S−1 = T − L(λ, ·) we obtain realizing S−1ω = QY S
−1ω that

QY {T (ω) − L(λ, ω) + |α|a−1 T (

p
∑

i=1

|α|xivi + ω) −

(1 + |α|a−1)M(
λ

(1 + |α|a−1)b
,

p
∑

i=1

|α|xivi + ω)} = 0.

Together with (2.2), we have

T (

p
∑

i=1

|α|xivi) − L(λ,

p
∑

i=1

|α|xivi) = 0.

Then

QY {(1 + |α|a−1)T (

p
∑

i=1

|α|xivi + ω) − L(λ,

p
∑

i=1

|α|xivi + ω) −

(1 + |α|a−1)M(
λ

(1 + |α|a−1)b
,

p
∑

i=1

|α|xivi + ω)} = 0.(2.11)

By multiplying (2.11) with 1/(1 + |α|a−1) and by using hypothesis (H1), we deduce

QY {T (

p
∑

i=1

|α|xivi + ω) − L(
λ

(1 + |α|a−1)b
,

p
∑

i=1

|α|xivi + ω) −

M(
λ

(1 + |α|a−1)b
,

p
∑

i=1

|α|xivi + ω)} = 0,(2.12)

for all α ∈ I2, α 6= 0, |α|x ∈ U1, which reduce the resolution of the system (2.1) in

finite dimension. By shrinking I2 and D2 if necessary, we may assume that :

λ

(1 + |α|a−1)b
∈ Λ,

∣

∣

∣

∣

λ

(1 + |α|a−1)b
− λ

∣

∣

∣

∣

Λ

< δ and αU∗ ⊂ U∗ for all α ∈ I2.
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2.5.2. Resolution in finite dimension. For each (t, α, x) ∈ [0, 1]×I2×U∗, t 6= 0, α 6= 0,

k = 1, . . . , p, we put ω(t) := ω(|tα|a−1 , |tα|x), λ(α) =
λ

(1 + |α|a−1)b
and

g1k
(t, α, x) =

〈

T (

p
∑

i=1

xivi +
ω(t)

|tα| ), ψk

〉

g2k
(t, α, x) = −

〈

(1 + t |α|a−1) |tα|−aH(λ(α),

p
∑

i=1

|tα|xivi + ω(t)), ψk

〉

g3k
(t, α, x) = −

〈

(1 + t |α|a−1) |tα|−aK(λ(α),

p
∑

i=1

|tα|xivi + ω(t)), ψk

〉

,

and for each α ∈ I, we define the function Aα : [0, 1]×U∗ → R
p,Aα = (Aα1

, . . . ,Aαp
),

by

Aαk
(t, x) =







3
∑

m=1

gmk
(t, α, x) if t 6= 0 and α 6= 0

(Ak
1 + Ak

2)(x) if t = 0 or α = 0,

where k = 1, . . . , p, Ak
i (x), i = 1, 2, are from (2.5).

By lemma 2 in [13], we have

(2.13)
∥

∥ω(|α|a−1 , |α|x)
∥

∥ = o (|α|)

as α→ 0 uniformly in x ∈ U1. Then

(2.14) lim
tα→0

ω(|tα|a−1 , |tα|x)
tα

= 0

uniformly in x ∈ U1. By using the hypotheses (H2ii) and (H2iii) it follows that for

k = 1, . . . , p, we have

(2.15) lim
tα→0

Aαk
(t, x) = (Ak

1 + Ak
2)(x).

By (2.15) and lemma 2.3, we conclude that Aα is a continuous mapping from [0, 1]×U ∗

into R
p. Now, we claim that there is a neighborhood I of zero, I ⊂ I2, such that

(2.16) Aα (t, x) 6= 0 ∀(t, α, x) ∈ [0, 1] × I × ∂U ∗.

Indeed, by contradiction, we take the sequence
{

In
}

of neighborhoods of zero, In+1 ⊂
In ⊂ I2,∩In = {0} and assume that for any n = 3, 4, . . . there are (tn, αn, xn) ∈
[0, 1] × In × ∂U∗ with Aαn

(tn, xn) = 0. By extracting subsequences if necessary, we

may suppose (tn, αn, xn) → (t∗, 0, x∗), (t∗, 0, x∗) ∈ [0, 1] × I × ∂U ∗. It implies from

the continuity of Aα that Aαn
(tn, xn) tends to (A1 +A2)(x

∗) and (A1 +A2)(x
∗) = 0,

which contradicts (H3). Thus we have the proof of (2.16). It then follows that for

any fixed α ∈ I the mapping Aα (1, ·) is homotopic to Aα (0, ·) = A1 + A2 on U∗.
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Therefore by the basic theorem on the topological degree of continuous mapping in a

finite dimensional space and by the hypothesis (H3), we deduce

deg(Aα (1, ·) , U∗, 0) = deg(A1 + A2, U
∗, 0) 6= 0.

Therefore, we conclude that for each α ∈ I, α 6= 0, there is a point x(α) = (x1(α), . . . ,

xp(α)) ∈ U∗ such that

Aα (1, x(α)) = 0.

By the definition of Aα (1, ·) we obtain

(2.17)

〈

T (
v(α)

|α| ) − (1 + |α|a−1) |α|−aM(λ(α), v(α)), ψk

〉

= 0,

for all k = 1, . . . , p, where

v(α) =

p
∑

i=1

|α|xi(α)vi + ω(|α|a−1 , |α|x(α))

=

p
∑

i=1

|α|xi(α)vi + o(|α|) as |α| → 0.

Multiplying both sides of (2.17) with |α|a, we obtain

(2.18)
〈

|α|a−1 T (v(α)) − (1 + |α|a−1)M(λ(α), v(α)), ψk

〉

= 0,

for all k = 1, . . . , p.

Together with the fact that

〈

T (v(α)) − L(λ, v(α)), ψk

〉

=
〈

v(α),
(

T − L(λ, ·)
)∗
ψk

〉

and by (2.3), we have

(2.19)
〈

T (v(α)) − L(λ, v(α)), ψk

〉

= 0,

for all k = 1, . . . , p.

Adding (2.18) and (2.19) we obtain

(2.20)
〈

(1 + |α|a−1)T (v(α)) − L(λ, v(α)) − (1 + |α|a−1)M(λ(α), v(α)), ψk

〉

= 0

for all k = 1, . . . , p.

Dividing it by (1 + |α|a−1) we get

(2.21)

〈

T (v(α)) − L(
λ

(1 + |α|a−1)b
, v(α)) − (M(λ(α), v(α)), ψk

〉

= 0

for all k = 1, . . . , p, therefore

(2.22) PY (T (v(α)) − L(
λ

(1 + |α|a−1)b
, v(α)) −M(λ(α), v(α))) = 0.

This together with (2.12) finishes the proof of Theorem 2.1.
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3. APPLICATION

In this section, we are interested in studying the bifurcation points and bifurcating

solutions of the system of equations :

(3.1)











−∆u = ηv + u |uv| in G

−∆v = µu+ v |u|σ in G

u = v = 0 on ∂G,

with (η, µ) ∈ R
2, σ > 2, G = [0, 1] × [0, 1] × [0, 1] , (u, v) ∈ X = H1

0 (G) ×H1
0 (G).

We define the norm ‖.‖X in X by

‖(u, v)‖X =

(
∫

G

|∇u|2 dG+

∫

G

|∇v|2 dG
)1/2

, (u, v) ∈ X

and the inner product 〈·, ·〉 by

〈(u1, v1), (u2, v2)〉 =

∫

G

∇u1∇u2dG+

∫

G

∇v1∇v2dG, (u1, v1), (u2, v2) ∈ X.

Definition 3.1. We say that (η, µ, u, v) ∈ R
2 ×H1

0 (G) ×H1
0 (G) is a solution of the

system (3.1) if

(3.2)











u = η∆−1v + ∆−1(u |uv|) in G

v = µ∆−1u+ ∆−1(v |u|σ) in G

u = v = 0 on ∂G,

where ∆−1 is the inverse of −∆.

Remark 3.2. Evidently, for any (η, µ) ∈ R
2, (η, µ, 0, 0) is a solution of the above

system.

Next, we define the mappings L : R
2 ×X → X, and H : R

2 ×X → X by

L (λ, u, v) = (L1 (λ, u, v) , L2 (λ, u, v)) = (η∆−1v, µ∆−1u)

H (λ, u, v) = (H1 (λ, u, v) , H2 (λ, u, v)) = (∆−1(u |uv|),∆−1(v |u|σ))

for any λ := (η, µ) ∈ Λ := R
2 and (u, v) ∈ X. Then (3.1) can be written as

(3.3)

{

(u, v) = L (η, µ, u, v) +H (η, µ, u, v) in G,

(u, v) = 0 on ∂G.

The space H1
0 (G) is a Hilbert space with respect to the inner product 〈·, ·〉0 given

by

〈u, v〉0 =

∫

G

∇u∇vdG,

and the system of functions

wm,n,l(x, y, z) =
2
√

2

π (m2 + n2 + l2)1/2
sinmπx sin nπy sin lπz,m, n, l = 1, 2, . . .
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forms an orthonormal system in H1
0 (G). Further if we denote by S (L) the set of all

characteristic values for the pair (id, L), we can see

S (L) = {(η, µ) ∈ R
2, ηµ = π2

(

m2 + n2 + l2
)

for some m,n, l = 1, 2, . . . }.

In the sequel, we assume that (η, µ) ∈ S (L) be fixed. Let (mk, nk, lk, p) ∈ N
∗4

such that the set {(mk, nk, lk), k = 1, . . . , p} be the set of natural numbers satisfying

η µ = π2 (m2
k + n2

k + l2k). We suppose that

m1 = max
1≤k≤p

{mk, nk, lk} .(3.4)

We can easily verify that the couples (wk, wk) , k = 1, . . . , p, with

wk = wmk,nk,lk

wk =
1

η
wk

are eigenfunctions associated with (η, µ) and dim ker(id − L(η, µ, ·, ·)) = p. Further,

by a simple calculation, we obtain

(id− L(η, µ, ·))∗ = id− L∗(η, µ, ·),

with

L∗(η, µ, u, v) =
(

µ∆−1u, η∆−1v
)

and

ker(id− L(η, µ, ·))∗ = [ψ1, . . . , ψp]

where ψk =
(

ψk
1 , ψ

k
2

)

=

(

wk,
1

η
wk

)

. Let us denote

d =
8 (η.µ)3

27µ
, x1 =

√
2d and x = (x1, 0, . . . , 0) ∈ R

p.

We have :

Theorem 3.3. (η, µ, 0) is a bifurcation point of the system (3.1). More precisely,

there exists an open neighborhood U ∗ of x not containing the origin in R
p, to any given

δ > 0 there exists a neighborhood I of zero in R such that for each α ∈ I, α 6= 0, we can

find x(α) = (x1(α), . . . , xp(α)) ∈ U∗ and a nontrivial solution (η(α), µ(α), u(α), v(α))

of the system (3.1) with

(η(α), µ(α)) = (
η

1 + α2
,

µ

1 + α2
),

(u(α), v(α)) = (

p
∑

j=1

|α|xj(α)wj,

p
∑

j=1

|α|xj(α)wj) + o(|α|),

satisfying

|(η(α), µ(α))− (η, µ)| < δ and 0 < ‖(u(α), v(α))‖ < δ.
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Proof. Here we can take D = X = H1
0 (G) × H1

0 (G), Y1 = Y2 = H1
0 (G),Λ = R

2,

T1 = T2 = id and K1 = K2 = 0. We verify (H1)-(H3) and apply Theorem 2.1.

Hypothesis (H1) :

It suffices to take b = 1.

Hypothesis (H2) :

We take a1 = 3 and a2 = σ+1. Then it suffice to prove that H1 and H2 are Lipschitz.

Let (u1, v1) , (u2, v2) be two elements of the unit ball of X and let (η, µ) ∈ R
2, then

‖H1 (η, µ, u1, v1) −H1 (η, µ, u2, v2)‖H1

0
(G) =

∥

∥∆−1 (u1 |u1v1| − u2 |u2v2|)
∥

∥

H1

0
(G)

.

Hence there exists a constant k > 0, such that

‖H1 (η, µ, u1, v1) −H1 (η, µ, u2, v2)‖H1

0
(G) ≤ k ‖u1 |u1v1| − u2 |u2v2|‖L2(G) .

It follows that

‖H1 (η, µ, u1, v1) −H1 (η, µ, u2, v2)‖H1

0
(G) ≤ k ‖u1 |u1v1| − u1 |u2v2|‖L2(G)

+k ‖u1 |u2v2| − u2 |u2v2|‖L2(G)

≤ k ‖u1v1 − u2v2‖L2(G)

+k ‖u1 − u2‖L2(G)

≤ k ‖v1 − v2‖L2(G)

+2k ‖u1 − u2‖L2(G) .

Then, by using Poincare’s inequality, there exists a constant k1 > 0, such that

‖H1 (η, µ, u1, v1) −H1 (η, µ, u2, v2)‖H1

0
(G) ≤ k1 ‖(u1, v1) − (u2, v2)‖X .

Hence H1 is Lipschitz. By the same manner and by using that the map x 7→ |x|σ is

Lipschitz in R, we deduce that H2 is also Lipschitz and the hypothesis (H2) follows.

Hypothesis (H3) :

Following (2.5) and realizing a1 < 1 + σ = a2, we define the mappings Ai : R
p → R

p,

Ai= (A1
i , . . .Ap

i ), i = 1, 2, by

Ak
1(x) =

〈

p
∑

j=1

xjwj −H1(η, µ,

p
∑

j=1

xjwj,

p
∑

j=1

xjwj), ψ
k
1

〉

,

Ak
2(x) =

〈

p
∑

j=1

xjwj, ψ
k
2

〉

,

with x = (x1, . . . , xp) and k = 1, . . . , p.
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It follows that :

(

Ak
1 + Ak

2

)

(x) =

〈

p
∑

j=1

xjwj −H1(η, µ,

p
∑

j=1

xjwj,

p
∑

j=1

xjwj), wk

〉

+

〈

p
∑

j=1

xjwj, wk

〉

.

By the orthonormality of the system (wk) it comes that :

(

Ak
1 + Ak

2

)

(x) = 2xk −
〈

H1(η, µ,

p
∑

j=1

xjwj,

p
∑

j=1

xjwj), wk

〉

.

For j = 1, . . . , p, we have wj =
1

η
wj. Then

(

Ak
1 + Ak

2

)

(x) = 2xk −
1

η

〈

∆−1

(

(
p
∑

j=1

xjwj)
3

)

, wk

〉

= 2xk −
1

η

∫

G
∇
(

∆−1

(

(
p
∑

j=1

xjwj)
3

))

.∇wkdG.

By Green’s formula it follows that

(

Ak
1 + Ak

2

)

(x) = 2xk −
1

η

∫

G

(

p
∑

j=1

xjwj

)3

wkdG.(3.5)

It comes that :

(

Ak
k + Ak

2

)

(x) = 2xk −
1

η
(x1)

3

∫

G

w3
1wkdG.

Using the formula sin4θ =
1

8
cos4θ − 1

2
cos2θ +

3

8
, we obtain

(3.6)

∫

G

w4
1dG =

27

8 (π2 (m2
1 + n2

1 + l21))
2 =

27

8 (η.µ)2 ,

then

(

A1
1 + A1

2

)

(x) = x1

(

2 − 27µ

8 (η.µ)3x
2
1

)

= 0.(3.7)

If k 6= 1 then (mk, nk, lk) 6= (m1, n1, l1) and by using the formula sin3 θ sinω =
1

8
(cos(3θ + ω) − cos(3θ − ω) + 3 cos(θ − ω) − 3 cos(θ + ω)), we obtain

∫

G

w3
1wkdG = 0.

Therefore

(3.8) (Ak
1 + Ak

2)(x) = 0.
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In the other hand by (3.5), for q = 1, . . . , p, we have

∂(Ak
1 + Ak

2)

∂xq
(x) =























2 − 3

η

∫

G

(

p
∑

j=1

xjwj

)2

w2
kdG if q = k,

−3

η

∫

G

(

p
∑

j=1

xjwj

)2

wqwkdG if not.

It follows that

∂(Ak
1 + Ak

2)

∂xq
(x) =















2 − 3x2
1

η

∫

G
w2

1w
2
kdG if q = k,

−3x2
1

η

∫

G
w2

1wqwkdG if not.

By (3.6) we have

(3.9)
∂(A1

1 + A1
2)

∂x1

(x) = −4.

If q = k 6= 1 then (mk, nk, lk) 6= (m1, n1, l1), using the formula sin2 θ sin2 ω =
1

8
(cos 2(θ + ω) + cos 2(θ − ω) − 2 cos 2θ − 2 cos 2ω + 2) and by a simple calculation

we obtain :

(3.10)
∂(Ak

1 + Ak
2)

∂xq
(x) = −2 or

∂(Ak
1 + Ak

2)

∂xq
(x) =

2

9
.

If q 6= k then (mk, nk, lk) 6= (mq, nq, lq), using the formula

sin2 θ sinω sinφ =
1

8
(cos(2θ + ω + φ) + 2 cos(ω − φ) + cos(2θ − ω − φ)

−2 cos(ω + φ) − cos(2θ + ω − φ) − cos(2θ − ω + φ))

and the supposition (3.4), we can easily seen that
∫

G

w2
1wqwkdG = 0,

then

(3.11)
∂(Ak

1 + Ak
2)

∂xq
(x) = 0.

Using (3.10), (3.9) and (3.11) it follows that

(3.12) | det

(

∂(Ak
1 + Ak

2)

∂xj

(x)

)

k,j=1,...,p

|≥ 4

(

2

9

)p−1

.

Finally by (3.8), (3.7) and (3.12) it comes that :










(Ak
1 + Ak

2)(x) = 0,

det

(

∂(Ak
1 + Ak

2)

∂xj
(x)

)

k,j=1,...,p

6= 0,

which gives the hypothesis (H3) by the definition of the topological degree (cf [8]).

Then by theorem 2.1 we deduce theorem 3.3.
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[11] P. Drábek and Y. X. Huang. Bifurcation problems for the p-Laplacian in R
N , Trans. Amer.

Math. Soc. 349:171-188, 1997.

[12] J. B. McLeod and D. H. Sattinger, Loss of stability and bifurcation at double eigenvalue, J.

Funct. Anal. 14:62-84, 1973.

[13] N. X. Tan, Bifurcation problems for equations involving Lipschitz continuous mappings, J. of

Math. Anal. and Appl. 154:22-42, 1991.


