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ABSTRACT. In this paper, we will establish some new oscillation criteria for the second-order

superlinear neutral delay dynamic equation of Emden-Fowler type

[

a(t)(y(t) + r(t)y(τ(t)))∆
]∆

+ p(t) |y(δ(t))|γ signy(δ(t)) = 0,

on a time scale T; here γ > 1, a(t), r(t), τ(t), p(t) and δ(t)real-valued positive functions defined

on T. Our results in the special case when T = R, improve the oscillation results for superlinear

neutral delay differential equations and are essentially new on the other different types of time scales.

We illustrate the main results by some examples. To the best of our knowledge nothing is known

regarding the qualitative behavior of these equations on time scales, so this paper initiates the study

of these equations.

AMS (MOS) Subject Classification. 34K11, 39A10, 39A99 (34A99, 34C10, 39A11).

1. INTRODUCTION

The study of dynamic equations on time scales, which goes back to its founder

Stefan Hilger [18], is an area of mathematics that has recently received a lot of at-

tention. It has been created in order to unify the study of differential and difference

equations. Many results concerning differential equations carry over quite easily to

corresponding results for difference equations, while other results seem to be com-

pletely different from their continuous counterparts. The study of dynamic equations

on time scales reveals such discrepancies, and helps avoid proving results twice - once

for differential equations and once again for difference equations.

The general idea is to prove a result for a dynamic equation where the domain

of the unknown function is a so-called time scale, which may be an arbitrary closed

subset of the reals. This way results not only related to the set of real numbers or

set of integers but those pertaining to more general time scales are obtained. A time

scale T is an arbitrary closed subset of the reals, and the cases when this time scale is
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equal to the reals or to the integers represent the classical theories of differential and

of difference equations. Since we are interested in asymptotic behavior of solutions,

we will suppose that the time scale T under consideration is not bounded above, i.e.,

it is a time scale interval of the form [t0,∞)T = [t0,∞) ∩ T.

The three most popular examples of calculus on time scales are differential cal-

culus, difference calculus, and quantum calculus that has interesting applications on

physics. Dynamic equations on a time scale have an enormous potential for applica-

tions such as in population dynamics. For example, it can model insect populations

that are continuous while in season, die out in say winter, while their eggs are incu-

bating or dormant, and then hatch in a new season, giving rise to a nonoverlapping

population. Many other interesting time scales exist, and they give rise to many ap-

plications (see [5]). A book on the subject of time scales, by Bohner and Peterson [5],

summarizes and organizes much of time scale calculus, see also the book by Bohner

and Peterson [6] for advances results of dynamic equations on time scales.

In recent years there has been much research activity concerning the oscillation

and nonoscillation of solutions of dynamic equations on time scales, we refer the

reader to the papers [2-4, 7-16, 19-24]. Recently, some authors have been interested

in obtaining sufficient conditions for the oscillation and/or nonoscillation of solutions

of first and second-order linear and nonlinear neutral delay dynamic equations on

time scales, we refer to the papers [3] and [19].

In [19], Mathsen et. al. considered the first-order neutral delay dynamic equation

(1.1) [y(t) − r(t)y(τ(t))]
∆

+ p(t)y(δ(t)) = 0, t ∈ T,

and established some new oscillation criteria which as a special case involve some

well-known oscillation results for first-order neutral delay differential equations.

In [3], Agarwal et. al. considered the second-order nonlinear neutral delay dy-

namic equation

(1.2) (r(t)((y(t) + p(t)y(τ(t)))∆)γ)∆ + f(t, y(δ(t))) = 0,

on a time scale T, where γ > 0 is a quotient of odd positive integers, and the delay

functions τ(t) and δ(t) satisfy τ(t) : T → T and δ(t) : T → T for all t ∈ T, r(t) and

p(t) are real valued positive functions defined on T, and

(h1). r(t) > 0,
∫

∞

t0

(

1
r(t)

)
1

γ

∆t = ∞ and 0 ≤ p(t) < 1,

(h2). f : T × R → R is continuous function such that uf(t, u) > 0 for all u 6= 0 and

there exists a nonnegative function q(t) defined on T such that |f(t, u)| ≥ q(t) |uγ| ,
and established some oscillation criteria for all solutions of Eq.(1.2).
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In this paper, we are concerned with oscillation of the second-order neutral delay

dynamic equation of Emden-Fowler type

(1.3)
[

a(t)(y(t) + r(t)y(τ(t)))∆
]∆

+ p(t) |y(δ(t))|γ signy(δ(t)) = 0,

on a time scale T.

Our aim in this paper is motivated by the question posed in [19]: What can be

said about higher-order neutral dynamic equations on time scales and the various

generalizations?

Equation (1.3) is the prototype of a wide class of nonlinear dynamic equa-

tions called Emden-Fowler superlinear dynamic equations. It is interesting to study

Eq.(1.3) because the continuous version, i.e., when t is continuous variable, has sev-

eral physical applications, see, e.g. [25] and when t is a discrete variable it becomes

the difference equation of Emden-Fowler type and also is important in application.

Recall a solution y(t) of (1.3) is said to be oscillatory if it is neither eventually

positive nor eventually negative, otherwise it is nonoscillatory. The equation itself

is called oscillatory if all its solutions are oscillatory. Our attention is restricted to

those solutions of (1.3) which exist on some half line [t1,∞) and satisfy sup{|y(t)| :

t > t2} > 0 for any t2 ≥ t1.

Throughout this paper we assume that:

(H1). γ > 1;

(H2). The delay functions τ(t) : T → T, δ(t) : T → T, τ(t) ≤ t, δ(t) ≤ t for all

t ∈ T, and limt→∞ τ(t) = limt→∞ δ(t) = ∞.

(H3). a(t), r(t) and p(t) are rd-positive continuous functions defined on T such

that a∆(t) ≥ 0,
∫

∞

t0

1
a(t)

∆t = ∞ and 0 ≤ r(t) < 1.

We note that in the special case when T = R, we have σ(t) = 0, µ(t) = 0,

f∆(t) = f ′(t) and (1.3) becomes the second-order superlinear neutral delay differential

equation

(1.4) [a(t)(y(t) + r(t)y(τ(t)))′]
′
+ p(t) |y(δ(t))|γ signy(δ(t)) = 0, t ∈ [t0,∞),

that has been studied in [1]. Unfortunately, most of the oscillation criteria in [1]

are unsatisfactory since additional assumptions have to be imposed on the unknown

solutions. Also, the author proved that if
∫

∞

t0

1

a(t)
dt =

∫

∞

t0

p(t)dt = ∞,

then every solution of (1.4) oscillates for every r(t) > 0. But one can easily see that

this result cannot be applied when p(t) = t−α for α > 0.

In the case when T = Z, we have σ(t) = t + 1, µ(t) = 1,

y∆(t) = ∆y(t) = y(t + 1) − y(t),
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and (1.3) becomes the second-order superlinear neutral delay difference equation

(1.5) ∆[a(t)∆(y(t) + r(t)y(τ(t)))] + p(t) |y(δ(t))|γ signy(δ(t)) = 0, t ∈ [t0,∞).

In the case when T =hZ, h > 0, we have σ(t) = t + h, µ(t) = h,

y∆(t) = ∆hy(t) =
y(t + h) − y(t)

h
,

and (1.3) becomes the second-order superlinear neutral delay difference equation with

constant step size

(1.6) ∆h[a(t)∆h(y(t) + r(t)y(τ(t)))] + p(t) |y(δ(t))|γ signy(δ(t)) = 0, t ∈ [t0,∞).

In the case when T=qN = {t : t = qk, k ∈ N, q > 1}, we have σ(t) = q t, µ(t) = (q−1)t,

x∆(t) = ∆qx(t) =
x(q t) − x(t)

(q − 1) t
,

and (1.3) becomes the second-order superlinear q−neutral delay difference equation

(1.7) ∆q[a(t)∆q(y(t) + r(t)y(τ(t)))] + p(t) |y(δ(t))|γ signy(δ(t)) = 0.

In the case when T = N
2
0 = {t2 : t ∈ N0}, we have σ(t) = (

√
t+1)2 and µ(t) = 1+2

√
t,

∆Ny(t) =
y((

√
t + 1)2) − y(t)

1 + 2
√

t
, for t ∈ [t20,∞),

and (1.3) becomes the second-order superlinear neutral delay difference equation

(1.8) ∆N(a(t)∆N (y(t) + r(t)y(τ(t)))) + p(t) |y(δ(t))|γ signy(δ(t)) = 0.

In the case when T = Tn = {Hn : n ∈ N0} where Hn are the so-called harmonic

numbers defined by

H0 = 0, Hn =
n

∑

k=1

1

k
, n ∈ N0,

we have µ(Hn) = 1
n+1

,

y∆(Hn) = ∆n(y(Hn)) = (n + 1)∆y(Hn), for Hn ∈ [0,∞),

and (1.3) becomes the second-order superlinear neutral difference equation

(1.9) ∆n(a(Hn)∆n(y(Hn) + r(Hn)y(τ(Hn))) + p(Hn) |y(δ(Hn))|γ signy(δ(Hn)) = 0.

The paper is organized as follows: In the next Section, we present some basic defi-

nitions concerning the calculus on time scales. In Section 3, by developing the Riccati

transformation technique, we establish some new sufficient conditions for oscillation

of Eq.(1.3). Our results in the special case when T = R, improve the oscillation re-

sults established in [1] for second-order neutral delay differential equation (1.4), and

are essentially new for equations (1.5)-(1.9). Also, our results includes as a special

some well-known oscillation results for second order dynamic equations without delay.

Some examples are considered in Section 4 to illustrate our main results.
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2. SOME PRELIMINARIES ON TIME SCALES

A time scale T is an arbitrary nonempty closed subset of the real numbers R. On

any time scale T, we define the forward and backward jump operators by:

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T, s < t}. (2.1)

A point t ∈ T, t > inf T, is said to be left–dense if ρ(t) = t, right–dense if t < sup T

and σ(t) = t, left–scattered if ρ(t) < t and right–scattered if σ(t) > t. The graininess

function µ for a time scale T is defined by µ(t) := σ(t) − t.

A function p : T → R is called positively regressive (we write p ∈ <+) if it is

rd-continuous function and satisfies 1 + µ(t)p(t) > 0 for all t ∈ T. For a function

f : T → R the (delta) derivative is defined by

f∆(t) =
f(σ(t)) − f(t)

σ(t) − t
. (2.2)

if f is continuous at t and t is right–scattered. If t is not right–scattered then the

derivative is defined by

f∆(t) = lim
s→t

f(t) − f(s)

t − s
, (2.3)

provided this limit exists. A function f : [a, b] → R is said to be right–dense contin-

uous if it is right continuous at each right–dense point and there exists a finite left

limit at all left–dense points, and f is said to be differentiable if its derivative exists.

A useful formula is

fσ = f(σ(t)) = f(t) + µ(t)f∆(t). (2.4)

We will make use of the following product and quotient rules for the derivative of the

product fg and the quotient f/g (where ggσ 6= 0, here gσ = g ◦ σ = g(σ(t))) of two

differentiable functions f and g

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ, (2.5)

and
(

f

g

)∆

=
f∆g − fg∆

ggσ
. (2.6)

For a, b ∈ T, and a differentiable function f, the Cauchy integral of f∆ is defined by
∫ b

a

f∆(t)∆t = f(b) − f(a).

An integration by parts formula reads
∫ b

a

f(t)g∆(t)∆t = [f(t)g(t)]ba −
∫ b

a

f∆(t)gσ∆t, (2.7)

and infinite integral is defined as
∫

∞

a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t.
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3. MAIN RESULTS

In this Section, by using the Riccati transformation technique and the formula

(xγ(t))∆ = γ

1
∫

0

[hxσ + (1 − h)x]γ−1 dhx∆(t),

which is a simple consequence of Keller’s chain rule [5, Theorem 1.90], we will establish

some new sufficient conditions for oscillation of Eq.(1.3). Throughout this Section,

these assumptions will be supposed to hold. Let T0 = mint∈T{τ(t), δ(t) : t ≥ t0} and

let δ−1(t) and τ−1(t) are the inverse functions of τ and δ. Clearly δ−1(t) and τ−1(t) ≥ t

for t ≥ T0, τ−1(t) is nondecreasing and coincides with the inverses of τ and δ when

the inverses exist. We define the functions Q(t) and Q1(t) by

Q(t) := p(t)(1 − r(δ(t)))γ, and Q1(t) := Q(t)

(

δ(t)

t

)γ

.

In what follows it will be assumed that

(3.1)

∫

∞

t0

Q(t)(δ(t))γ∆t = ∞,

is fulfilled.

Theorem 3.1. Assume that (H1)− (H3) hold. Furthermore, assume that there

exists a positive ∆−differentiable function η(t) such that for all constants M > 0

(3.2) lim sup
t→∞

∫ t

t0

[

η(s)Q1(s) −
a(s)

(

η∆(s)
)2

4γMγ−1η(s)

]

∆s = ∞.

Then every solution of equation (1.3) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.3)

and let t1 ≥ t0 be such that y(t) 6= 0 for all t ≥ t1. Without loss of generality, we

may assume that y is an eventually positive solution of (1.3) with y(t), y(τ(t)) and

y(δ(t)) > 0 for all t > t1 sufficiently large. Set

(3.3) x(t) = y(t) + r(t)y(τ(t)).

In view of (1.3) and (3.3), we have

(3.4) (a(t)
(

x∆(t)
)

)∆ = −p(t)yγ(δ(t)) < 0, for t ≥ t1.

Since p(t) is a positive function, then a(t)x∆(t) is an eventually decreasing function

and it is either eventually positive or eventually negative. Suppose that there ex-

ists t2 ≥ t1 such that a(t2)x
∆(t2) = c < 0. Then from (3.4), we have a(t)x∆(t) <

a(t2)x
∆(t2) = c for t ≥ t2, and so

x∆(t) ≤ c
1

a(t)
,
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which implies by (H3) that

x(t) ≤ x(t1) + c

∫ t

t2

1

a(s)
∆s → −∞ as t → ∞.

This contradicts the fact that x(t) > 0 for all t ≥ t1, and hence a(t)x∆(t) is eventually

nonnegative. Therefore, there is some t2 > t1 such that

(3.5) x(t) > 0, x∆(t) ≥ 0, (a(t)x∆(t))∆ < 0, t ≥ t2.

This implies for t ≥ τ−1(t2), that

y(t) = x(t) − r(t)y(τ(t)) = x(t) − r(t)[x(τ(t)) − r(τ(t))y(τ(τ(t)))]

≥ x(t) − r(t)x(τ(t)) ≥ (1 − r(t))x(t).

Then for t ≥ t3 = δ−1(τ−1(t2)), we have

y(δ(t)) ≥ (1 − r(δ(t))x(δ(t)).

From (3.4) and the last inequality, we obtain

(3.6) (a(t)x∆(t))∆ + Q(t)xγ(δ(t)) ≤ 0, t ≥ t3.

Now, we define the function w(t) by the Riccati substitution

(3.7) w(t) := η(t)
a(t)x∆(t)

xγ(t)
, for t ≥ t3.

Then w(t) > 0, and using (2.5) and (2.6) yield that

w∆(t) =
(

ax∆
)σ

[

η(t)

xγ(t)

]∆

+
η(t)

xγ(t)

(

a(t)x∆(t)
)∆

=
η(t)

xγ(t)

(

a(t)x∆(t)
)∆

+
(

ax∆
)σ

[

xγ(t)η∆(t) − η(t)(xγ(t))∆

xγ(t)(xσ)γ

]

.(3.8)

In view of (3.6) and (3.8), we have

(3.9) w∆(t) ≤ −η(t)Q(t)

(

x(δ(t))

x(t)

)γ

+
η∆(t)

ησ
wσ − η(t)

(

ax∆
)σ

(xγ(t))∆

xγ(t)(xσ)γ
.

Now, since γ > 1, the chain rule and (3.5) imply that

(xγ(t))∆ = γ

1
∫

0

[hxσ + (1 − h)x]γ−1 dhx∆(t)

≥ γ

1
∫

0

[hx(t) + (1 − h)x]γ−1 dhx∆(t) = γ

1
∫

0

[x(t)]γ−1 dhx∆(t)

= γ [x(t)]γ−1 x∆(t) ≥ γ [x(t0)]
γ−1 x∆(t) = γMγ−1x∆(t),(3.10)

where we put M = x(t0) > 0. Also, from (3.5) since a∆(t) ≥ 0 we can easily verify

that x∆∆(t) ≤ 0 for t ≥ t3.
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Now, we claim that x(t)/t is nonincreasing. Define X(t) := x(t) − tx∆(t).

Since X∆(t) = −σ(t)x∆∆(t) > 0 for t ≥ t3, we have either x(t) − tx∆(t) ≥ 0 or

x(t)− tx∆(t) < 0. To prove that x(t) ≥ tx∆(t) it suffices to prove that the latter case

is impossible. Indeed, otherwise
(

x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
> 0, for t ≥ t3,

whence x(t) ≥ dt with some d > 0, and then x(δ(t)) ≥ d(δ(t)) for t ≥ t3. Integrating

(3.6) from t3 to t, we have

a(t)x∆(t) − a(t3)x
∆(t3) +

∫ t

t3

Q(s)xγ(δ(s))∆s ≤ 0.

This implies that

a(t3)x
∆(t3) ≥ a(t)x∆(t) +

∫ t

t3

Q(s)xγ(δ(s))∆s

≥
∫ t

t3

Q(s)xγ(δ(s))∆s ≥ dγ

∫ t

t3

Q(s)(δ(s))γ∆s,

which is a contradiction with (3.1). Thus

(

x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
< 0.

This implies that x(δ(t))/(δ(t)) ≥ x(t)/t, and so we have x(δ(t))/x(t) ≥ (δ(t))/t.

This, (3.9) and (3.10) imply that

w∆(t) ≤ −η(t)Q1(t) +
η∆(t)

ησ
wσ − γMγ−1η(t)

(

ax∆
)σ

x∆(t)

xγ(t)(xσ)γ
.

Also, from (3.5) since x(t) is positive and nondecreasing and a(t)x∆(t) is nonincreas-

ing, we see that

(3.11) w∆(t) ≤ −η(t)Q1(t) +
η∆(t)

ησ
wσ − γMγ−1η(t)

((

ax∆
)σ)2

a(t)(xσ)2γ
.

From (3.7) and (3.11), we have

(3.12) w∆(t) ≤ −η(t)Q1(t) +
η∆(t)

ησ
wσ − γMγ−1η(t)

a(t)(ησ)2
(wσ)2 .

Integrating (3.12) from t3 to t (t ≥ t3), we obtain

(3.13)
∫ t

t3

η(s)Q1(s)∆s ≤ −
∫ t

t3

w∆(s)∆s +

∫ t

t3

η∆(s)

ησ
wσ∆s −

∫ t

t3

γMγ−1η(s)

a(s)(ησ)2
(wσ)2 ∆s.

Hence

(3.14)

∫ t

t3

η(s)Q1(s)∆s ≤ w(t3) +

∫ t

t3

η∆(s)

ησ
wσ(s) ∆s −

∫ t

t1

γMγ−1η(s)

a(s)(ησ)2
(wσ)2∆s.
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Then, we have

∫ t

t3

[

η(s)Q1(s) −
a(s)

(

η∆(s)
)2

4γMγ−1η(s)

]

∆s ≤ w(t3)

−
∫ t

t3

[
√

γMγ−1η(s)

a(s)(ησ)2
wσ +

√

a(s)η∆(s)

2
√

γMγ−1η(s)

]2

∆s.(3.15)

Hence
∫ t

t3

[

η(s)Q1(s) −
a(s)

(

η∆(s)
)2

4γMγ−1η(s)

]

∆s < w(t3),

which contradicts the condition (3.2). Thus every solution of (1.3) oscillates. The

proof is complete.

Remark 3.1. From Theorem 3.1, we can obtain different conditions for oscilla-

tion of all solutions of (1.3) by different choices of η(t). For instance, let η(t) = t, for

t ≥ t0. From Theorem 3.1, we have the following oscillation result.

Corollary 3.1. Assume that (H1) − (H3) hold. Furthermore, assume that

(3.16) lim sup
t→∞

∫ t

t0

[

sp(s)(1 − r(δ(s)))γ

(

δ(s)

s

)γ

− a(s)

4γMγ−1s

]

∆s = ∞,

then every solution of (1.3) is oscillatory on [t0,∞)T.

Let η(t) = 1, t ≥ t0. From Theorem 3.1, we have the following result which can

be considered as the extension of the Leighton–Wintner Theorem.

Corollary 3.2. (Leighton-Wintner extension Theorem). Assume that (H1) −
(H3) hold, and

(3.17)

∫

∞

t0

p(s)(1 − r(δ(s)))γ

(

δ(s)

s

)γ

∆s = ∞,

then every solution of (1.3) is oscillatory on [t0,∞)T.

Note that when γ = 1, r(t) = 0 and τ(t) = δ(t) = t, Eq.(1.3) reduces to the

second-order dynamic equation

(3.18) (a(t)y∆(t))∆ + p(t)y(t) = 0,

and Corollary 3.2 becomes the following well-known Leighton-Wintner Theorem.

Corollary 3.3 [5] (Leighton-Wintner Theorem ). Assume that
∫

∞

t0

1

a(s)
∆s = ∞, and

∫

∞

t0

p(s)∆s = ∞,

then every solution of (3.18) is oscillatory on [t0,∞)T.

This show that our results include as a special case some of the well-known oscil-

lation results in the literature. In the following theorem, we present new oscillation

criteria for Eq.(1.3) of Kamenev-type.
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Theorem 3.2. Assume that (H1)−(H3) hold. Let η(t) be as defined in Theorem

3.1. If

(3.19) lim sup
t→∞

1

tm

∫ t

t0

[

(t − s)mη(s)Q1(s) −
(ησ)2B2(t, s)

4γMγ−1η(s)(t − s)m

]

∆s = ∞,

where m > 1 is a positive integer, and

B(t, s) = (t − s)m η∆(s)

ησ
− m(t − σ(s))m−1, t ≥ σ(s) ≥ t0.

Then every solution of (1.3) is oscillatory on [t0,∞)T.

Proof. We proceed as in the proof of Theorem 3.1 to get (3.12) for all t ≥ t3

sufficiently large. Multiplying (3.12) by (t−s)m and integrating from t3 to t, we have

∫ t

t3

(t − s)mη(s)Q1(s)∆s ≤ −
∫ t

t3

(t − s)mw∆(s)∆s +

∫ t

t3

(t − s)m η∆(s)

ησ
wσ∆s

−
∫ t

t3

(t − s)mγMγ−1η(s)

a(s)(ησ)2
(wσ)2 ∆s.(3.20)

Using formula (2.7), we have

(3.21) −
∫ t

t3

(t − s)mw∆(s)∆s = − (t − s)mw(s)|tt3 +

∫ t

t3

((t − s)m)∆s wσ∆s.

Now, we prove that

(3.22) ((t − s)m)∆s ≤ −m(t − σ(s))m−1..

We consider the following two cases: (i) µ(t) = 0, (ii) µ(t) 6= 0. If (i) holds, then

(3.23) ((t − s)m)∆s = −m(t − s)m−1..

If (ii) holds, then we have

((t − s)m)∆ =
1

µ(s)
[((t − σ(s))m) − ((t − s)m)]

= − 1

σ(s) − s
[((t − s)m) − ((t − σ(s))m)] .

Using the inequality (cf. [17])

xm − ym ≥ γym−1(x − y) for all x ≥ y > 0 and m ≥ 1,

we have

[(t − s)m − (t − σ(s))m] ≥ m((t − σ(s))m−1(σ(s) − s).

Hence

(3.24) ((t − s)m)∆s ≤ −m(t − σ(s))m−1.
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Then, from (3.23) and (3.24), since in the general case σ(s) ≥ s, we see that (3.22)

holds. From (3.20)-(3.24), we obtain

∫ t

t3

(t − s)mη(s)Q1(s)∆s

≤ w(t3) (t − t3)
m +

∫ t

t3

[

(t − s)m η∆(s)

ησ
− m(t − σ(s))m−1

]

wσ(s) ∆s

−
∫ t

t3

(t − s)mγMγ−1η(s)

a(s)(ησ)2
(wσ)2∆s.(3.25)

Hence
∫ t

t3

[

(t − s)mη(s)Q1(s) −
a(s)(ησ)2B2(t, s)

4γMγ−1η(s)(t − s)m

]

∆s ≤ w(t3) (t − t3)
m ,

which implies that

lim sup
t→∞

1

tm

∫ t

t3

[

(t − s)mη(s)Q1(s) −
a(s)(ησ)2B2(t, s)

4γMγ−1η(s)(t − s)m

]

≤ w(t3).

This contradicts the condition (3.19). Thus every solution of (1.3) oscillates. The

proof is complete.

In the following theorem, we present new oscillation criteria for Eq.(1.3), which

can be considered as the generalization of the Kamenev-type oscillation criteria.

First, we define < by H ∈ < provided H : [t0,∞)T × [t0,∞)T → R satisfies

H(t, t) ≥ 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0,

H∆s(t, s) ≤ 0, for t ≥ s ≥ a, and for each fixed t, H(t, s) is right-dense continuous

with respect to s. As a simple and important example, note that if T = R, then

H(t, s) := (t − s)n is in <.

Theorem 3.3. Assume that (H1)− (H3) hold and let h, H : D → R be rd−continuous

functions such that H belongs to the class < and

(3.26) h(t, s) = −H∆s(t, s)
√

H(t, s)
.

If there exists a positive ∆−differentiable function η(t) such that

(3.27) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

H(t, s)

[

η(s)Q1(s) −
a(s) (ησ)2

4γMγ−1η(s)
R2(t, s)

]

∆s = ∞,

where

R(t, s) =

[

h(t, s)/
√

H(t, s) − η∆(s)

ησ

]

.

Then every solution of equation (1.3) is oscillatory on [t0,∞)T.



640 S. H. SAKER

Proof. We proceed as in the proof of Theorem 3.1 to prove that (3.12) holds for

t ≥ t3. Multiplying (3.12) by H(t, s) and integrating from t3 to t, we have

t
∫

t3

H(t, s)η(s)Q1(s)∆s ≤ −
t

∫

t3

H(t, s)w∆(s)∆s +

t
∫

t3

H(t, s)
η∆(s)

ησ
wσ∆s

−
t

∫

t3

H(t, s)
γMγ−1η(s)

a(s) (ησ)2 (wσ)2∆s.(3.28)

Using formula (2.7), we have

t
∫

t3

H(t, s)w∆(s)∆s = |H(t, s)w(s)|tt3 −
t

∫

t3

H∆s(t, s)wσ∆s

= −H(t, t3)w(t3) −
t

∫

t3

H∆s(t, s)wσ∆s.(3.29)

where H(t, t) = 0. Substituting from (3.29) in (3.28) and use (3.26), we get

t
∫

t3

H(t, s)η(s)Q1(s)∆s ≤ H(t, t3)w(t3) −
t

∫

t3

h(t, s)
√

H(t, s)wσ∆s

+

t
∫

t3

H(t, s)
η∆(s)

ησ
wσ∆s −

t
∫

t3

H(t, s)
γMγ−1η(s)

a(s) (ησ)2
(wσ)2∆s.(3.30)

Hence,

t
∫

t3

H(t, s)η(s)Q1(s)∆s ≤ H(t, t3)w(t3) −
t

∫

t3

[

h(t, s)
√

H(t, s) − H(t, s)η∆(s)

ησ

]

wσ∆s

−
t

∫

t3

γH(t, s)Mγ−1η(s)(wσ)2

a(s) (ησ)2 ∆s.(3.31)

Therefore
t

∫

t3

H(t, s)η(s)Q1(s)∆s ≤ H(t, t3)w(t3)

−
t

∫

t3





√

γH(t, s)Mγ−1η(s)
√

a(s)ησ
wσ +

ησ
√

a(s)
[

h(t, s)
√

H(t, s) − H(t,s)η∆(s)
ησ

]

2
√

γH(t, s)Mγ−1η(s)





2

∆s

+

t
∫

t3

a(s) (ησ)2 H(t, s)

4γMγ−1η(s)

[

h(t, s)/
√

H(t, s) − η∆(s)

ησ

]2

∆s.

(3.32)



NEUTRAL DYNAMIC EQUATIONS 641

Then
t

∫

t3

H(t, s)

[

η(s)Q1(s) −
a(s) (ησ)2

4γMγ−1η(s)

[

h(t, s)/
√

H(t, s) − η∆(s)

ησ

]2
]

∆s

< H(t, t3)w(t3),(3.33)

and this implies that

(3.34)
1

H(t, t3)

t
∫

t3

H(t, s)

[

η(s)Q1(s) −
a(s) (ησ)2 R2(t, s)

4γMγ−1η(s)

]

∆s < w(t3),

for all large t, which contradicts (3.27). Thus every solution of (1.3) oscillates. The

proof is complete.

As an immediate consequence of Theorem 3.3 we have the following oscillation

result.

Corollary 3.4. Let the assumption (3.27) in Theorem 3.1 be replaced by

(3.35) lim
t→∞

sup
1

H(t, t0)

∫ t

t0

H(t, s)η(s)Q1(s)∆s = ∞,

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

a(s)H(t, s) (ησ)2

η(s)

[

h(t, s)/
√

H(t, s) − η∆(s)

ησ

]2

∆s < ∞,

then every solution of equation (1.3) is oscillatory on [t0,∞)T.

Remark 3.2. With an appropriate choice of the functions H and h we can

derive a number of oscillation criteria for Eq.(1.3) on different types of time scales.

Consider, for example the function H(t, s) = (t− s)λ, (t, s) ∈ D with λ ≥ 1 is an odd

integer. Evidently H belongs to the class < and then (3.27) reduces to the oscillation

criterion of Kamenev-type. Also, one can use the factorial function H(t, s) = (t−s)(k)

where t(k) = t(t − 1)...(t − k + 1), t(0) = 1. In this case

H∆s(t − s)(λ) =
(t − σ(s))(k) − (t − s)(k)

µ(s)
= −(t − s)(k) − (t − σ(s))(k)

µ(s)

≥ −(k)(t − s)(k−1).

4. EXAMPLES

In this Section, we give some examples which illustrate our main results.

Example 4.1. Consider the following second-order superlinear neutral delay

dynamic equation

(4.1)

[

y(t) +
1

t
y(τ(t))

]∆∆

+
λ

t(δ(t) − 1)2
|y(δ(t))|2 signy(δ(t)) = 0, t ∈ [t0,∞)T,

where [t0,∞)T = [t0,∞) ∩ T, (t0 > 0), γ = 2 and λ is a nonnegative constant and

τ(t) ≤ t and δ(t) < t are defined on T such that limt→∞ τ(t) = limt→∞ δ(t) = ∞ and
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∫

∞

t0

[

(δ(s))2

s3

]

∆s = ∞. In Eq.(4.1) a(t) = 1, p(t) = λ
t(δ(t)−1)2

, r(t) = 1
t
. It is easy to see

that the assumptions (H1) − (H3) hold. To apply Corollary 3.2 it remains to satisfy

the conditions (3.1) and (3.17). First, we prove that (3.1) holds. From the definitions

of p(t) and r(t) we have
∫

∞

t0

(1 − r(δ(t)))γ(δ(t))γp(t)∆t =

∫

∞

t0

(

1 − 1

(δ(t))

)2

(δ(t))2 1

t(δ(t) − 1)2
∆t

=

∫

∞

t0

1

t
∆t = ∞.

Hence (3.1) is fulfilled. Also, we note that

lim
t→∞

sup

∫ t

t0

(1 − r(δ(s)))γ

(

δ(s)

s

)γ

p(s)∆s

= lim
t→∞

sup

∫ t

1

(

1 − 1

(δ(s))

)2

(δ(s))2 λ

s(δ(s) − 1)2

(

δ(s)

s

)2

∆s

= λ lim
t→∞

sup

∫ t

t0

[

(δ(s))2

s3

]

∆s = ∞ if λ > 0.

Hence, (3.17) holds and by Corollary 3.2 every solution of Eq.(4.1) oscillates if λ > 0.

As a second example we consider the case when T = R.

Example 4.2. Consider the following second-order superlinear neutral delay

differential equation

(4.2)

(

y(t) +
1

t2
y(t − π

2
)

)′′

+
(t − 1)3

t (t − 2)3
|y(t − 1)|3 signy(t − 1) = 0, t ≥ 2.

Then, the functions a(t) = 1, r(t) = 1
t2

, p(t) = (t−1)3

t (t−2)3
and Q1(t) = 1

t
satisfy conditions

(H1)−(H3) and (3.1). Now, we apply Corollary 3.4, when T = R. By taking η(t) = 1
t

and H(t, s) = ln2 t
s

for t ≥ s ≥ 2, we obtain

lim sup
t→∞

1

H(t, 2)

t
∫

2

H(t, s)η(s)Q1(s) ds = lim sup
t→∞

1

ln2 t
2

t
∫

2

ln2 t

s
· ds

s2
= ∞,

lim inf
t→∞

1

H(t, 2)

t
∫

2

H(t, s)
a(s) (ησ)2

4γMγ−1η(s)

[

h(t, s)/
√

H(t, s) − η
′

(s)

ησ

]2

ds

= lim inf
t→∞

1

ln2 t
2

t
∫

2

1

s3

(

2 + ln
t

s

)2

< ∞ .

Conditions of Corollary 3.4 are satisfied and hence every solution of (4.2) is oscillatory.

Remark 4.1. Note, in the special case when T = R, the results in [1] cannot be

applied for Eq.(4.1) and (4.2), so our results improve the results in [1] for differential

equations, and essentially new for difference equation (1.4) and also are essentially

new for the equations 1.5-1.9.
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It remains an open problem to extend the above results in the sublinear case, i.

e., when 0 < γ < 1 and this will be of our interest in future work.

Acknowledgement. The author thanks the referee for his/her helpful sugges-

tions.
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Applications, Birkhäuser, Boston, 2001.

[6] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser,
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