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OSCILLATIONS OF FIRST ORDER DELAY

DYNAMIC EQUATIONS
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ABSTRACT. Consider the first order linear delay dynamic equation of the form

x∆(t) + p(t)x(τ(t)) = 0. (E)

New oscillation criteria are established which contain well-known criteria for delay differential and

difference equations as special cases. Illustrative examples are given to show that the results obtained

essentially improve known oscillation results for Eq. (E).
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1. INTRODUCTION AND PRELIMINARIES

A time scale T is an arbitrary nonempty closed subset of the real numbers. The

theory of time scales was introduced in 1988 by Hilger [7] in his Ph.D. Thesis in order

to unify continuous and discrete analysis. Several authors have expounded on various

aspect of this new theory, see [1, 2, 8] and the references cited therein.

First we give a short review on the time scales calculus extracted from [1]. For

any t ∈ T, we define the forward and backward jump operators by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

respectively, while the graininess function µ : T → [0,∞) is defined by µ(t) := σ(t)−t.

A point t ∈ T is said to be right-dense if t < sup T and σ(t) = t, left-dense if t > inf T

and ρ(t) = t. Also, t is said to be right-scattered if σ(t) > t, left-scattered if t > ρ(t).

A function f : T → R is called rd-continuous if it is continuous at right-dense points

in T and its left-sided limits exist (finite) at left-dense points in T.

For a function f : T → R, if there exists a number α ∈ R such that for all ε > 0

there exists a neighborhood U of t with |f(σ(t)) − f(s) − α(σ(t) − s)| ≤ ε|σ(t) − s|,
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for all s ∈ U , then f is ∆-differentiable at t, and we call α the derivative of f at t

and denote it by f∆(t).

f∆(t) =
f(σ(t)) − f(t)

σ(t) − t

if t is right-scattered. When t is a right-dense point, then the derivative is defined by

f∆(t) = lim
s→t

f(t) − f(s)

t − s
,

provided this limit exists.

If f : T → R is ∆-differentiable at t ∈ T, then f is continuous at t. Furthermore,

we assume that g : T → R is ∆-differentiable. The following formulae are useful:

f(σ(t)) = f(t) + µ(t)f∆(t), (fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t).

A function F with F ∆ = f is called an antiderivative of f , and then we define
∫ b

a

f(t)∆t = F (b) − F (a),

where a, b ∈ T. It is well known that rd-continuous functions possess antiderivatives.

Note that if T = R, we have σ(t) = t, µ(t) = 0, f∆(t) = f ′(t) and

(1.1)

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

and if T = N, we have σ(t) = t + 1, µ(t) = 1, f∆ = ∆f and

(1.2)

∫ b

a

f(t)∆t =

b−1
∑

t=a

f(t).

If f is rd-continuous, then

(1.3)

∫ σ(t)

t

f(s)∆s = µ(t)f(t).

Intermediate Value Theorem [8]. The continuous mapping f : [r, s] → R, is

assumed to fulfill the condition f(r) < 0 < f(s), r, s ∈ T. Then there is a δ ∈ [r, s)

with f(δ)f(σ(δ)) ≤ 0.

In recent years, there has been an increasing interest in the oscillation of solutions

of some dynamic equations. See [1, 2, 14] and the references cited therein. However,

few papers only ([3, 13, 18, 19]) deal with delay dynamic equations even in the case

of first order linear equations. In this paper, we are concerned with the oscillatory

behavior of the first order linear delay dynamic equation

x∆(t) + p(t)x(τ(t)) = 0, (E)

where t ∈ T, τ : T → T is nondecreasing, τ(t) < t, limt→∞ τ(t) = ∞ and p : T → R

is a nonnegative rd-continuous function.

If x : T → R is defined and ∆-differentiable for t ∈ T and satisfies Eq. (E) for

t ∈ T, then x is called a solution of Eq. (E). A solution x has a generalized zero at t
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in case x(t) = 0. We say x has a generalized zero on [a, b] in case x(t)x(σ(t)) < 0 or

x(t) = 0 for some t ∈ [a, b), where a, b ∈ T and a ≤ b (x has a generalized zero at

b, in case x(ρ(b))x(b) < 0 or x(b) = 0). A nontrivial solution of Eq. (E) is said to be

oscillatory on [tx,∞) if it has infinitely many generalized zeros when t ≥ tx. Finally,

Eq. (E) is called oscillatory if all its solutions are oscillatory.

We list the following well-known oscillation criteria for the equation (E) in special

cases of T. If T = R, then Eq. (E) reduces to the first order delay differential equation

x′(t) + p(t)x(τ(t)) = 0. (ER)

In 1972, Ladas et. al. [11] proved that Eq. (ER) is oscillatory if

lim sup
t→∞

∫ t

τ(t)

p(s)ds > 1, (SR)

while, in 1979, Ladas [10] and in 1982 Koplatadze and Chanturia [9], proved that the

same conclusion holds if

lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1

e
. (IR)

Similarly, in case that T = N, Eq. (E) reduces to the first order delay difference

equation

xn+1 − xn + pnxn−k = 0, k ∈ N, n > k ≥ 1. (EN)

In 1989, Erbe and Zhang [5] proved that Eq. (EN ) is oscillatory provided that

lim sup
n→∞

n
∑

i=n−k

pi > 1. (SN)

In the same year, Ladas et. al. [12] presented the condition

lim inf
n→∞

n−1
∑

i=n−k

pi >
( k

k + 1

)k+1

(IN)

for Eq. (EN ) to be oscillatory.

In 2002, Zhang and Deng [18], using cylinder transforms, and in 2005, Bohner [3],

using exponential functions notation, proved the following result for any time scale

T.

Theorem 1.1. Define

(1.4) α := lim sup
t→∞

sup
λ∈E

{λ exp
−λp(τ(t), t)}

where

exp
−λp(τ(t), t) = exp

∫ t

τ(t)

ξµ(s)(−λp(s))∆s,
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E = { λ | λ > 0, 1 − λp(t)µ(t) > 0, t ∈ T}, and

ξh(z) =















log(1 + hz)

h
if h 6= 0

z if h = 0.

If Eq. (E) has an eventually positive solution, then α ≥ 1.

The following corollary was also given in [18].

Corollary 1.2. If α < 1, then all solutions of Eq. (E) are oscillatory.

In 2004, Zhang and Lian [19] studied the distribution of generalized zeros of

solutions of the delay dynamic Eq. (E). Note that in [18] and [3], the conditions (IR)

and (IN) are derived as a special case when T = R and T = N, respectively.

It is obvious that there is a gap between the conditions (SR) and (IR) (or similarly

between the conditions (SN) and (IN)) when the limit

lim
t→∞

∫ t

τ(t)

p(s)ds
(

or lim
n→∞

n−1
∑

i=n−k

pi

)

does not exist. How to fill this gap is an interesting problem which has been recently

investigated by several authors. See [4, 15, 16, 17] and the references cited therein.

The purpose of this paper is to establish new sufficient conditions for the oscil-

lation of all solutions to the dynamic equation (E). Moreover, the above mentioned

problem is handled for some special cases of time scales T, and some results previously

obtained are compared with the results presented in this paper. Several illustrative

examples are given.

2. MAIN RESULTS

Since we deal with the oscillatory behavior of the dynamic equation (E) on time

scales, we assume throughout the paper that the time scale T under consideration

satisfies sup T = ∞. The following lemmas are needed in our proofs.

Lemma 2.1. Assume that f : T → R is rd-continuous, g : T → R is nonincreasing

and τ : T → T is nondecreasing. If v < u, then

(2.1)

∫ σ(u)

v

f(s)g(τ(s))∆s ≥ g(τ(u))

∫ σ(u)

v

f(s)∆s.

Proof. Since v < u, we can divide the integral into two parts
∫ σ(u)

v

f(s)g(τ(s))∆s =

∫ u

v

f(s)g(τ(s))∆s +

∫ σ(u)

u

f(s)g(τ(s))∆s.
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Using the fact that τ is nondecreasing and g is nonincreasing, the first part gives

(2.2)

∫ u

v

f(s)g(τ(s))∆s ≥ g(τ(u))

∫ u

v

f(s)∆s.

Since f(g ◦ τ) is rd-continuous, in view of (1.3), the second part yields

(2.3)
∫ σ(u)

u

f(s)g(τ(s))∆s = µ(u)f(u)g(τ(u))g(τ(u))
(

µ(u)f(u)
)

g(τ(u))

∫ σ(u)

u

f(s)∆s.

Combining (2.2) and (2.3), we obtain

∫ σ(u)

v

f(s)g(τ(s))∆s ≥ g(τ(u))

(

∫ u

v

f(s)∆s+

∫ σ(u)

u

f(s)∆s

)

= g(τ(u))

∫ σ(u)

v

f(s)∆s.

The proof is complete.

In case v = u, the monotonocity property of τ is not needed. In view of (2.3),

the following corollary is immediate.

Corollary 2.2. Assume that f, g : T → R are rd-continuous and τ : T → T is

rd-continuous. Then

(2.4)

∫ σ(u)

u

f(s)g(τ(s))∆s = g(τ(u))

∫ σ(u)

u

f(s)∆s.

For the following lemma see [3] and [19].

Lemma 2.3. Assume that x is an eventually positive solution of Eq. (E) and that for

some positive constant M

(2.5) lim inf
t→∞

∫ t

τ(t)

p(s)∆s > M.

Then

(2.6)
x(τ(t))

x(t)
≤ 4

M2
, for all large t.

Proof. For some sufficiently large t0, x(t) > 0 when t ≥ t0. From Eq. (E), we have

x∆(t) ≤ 0 for t ≥ τ−1(t0) = t1. By (2.5), it is possible to find a sufficiently large

number t2 ≥ τ−1(t1) such that

(2.7)

∫ t

τ(t)

p(s)∆s ≥ M, ∀t ≥ t2.

Since τ−1(t) > t ≥ t2, by (2.7) we get

(2.8)

∫ τ−1(t)

t

p(s)∆s ≥ M, ∀t ≥ t2.

Define

G(r) :=

∫ r

t

p(s)∆s − M

2
,
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for r ∈ [t, τ−1(t)]. It is clear that G : [t, τ−1(t)] → R is continuous and nondecreasing.

We also have

G(t) = −M

2
< 0 and G(τ−1(t)) ≥ M − M

2
=

M

2
> 0.

By Intermediate Value Theorem for time scales, there exists a t∗ ∈ [t, τ−1(t)) such that

G(t∗)G(σ(t∗)) ≤ 0. Since G is nondecreasing, we conclude that G(t∗) ≤ 0 < G(σ(t∗)).

Hence there exists a t∗ ∈ [t, τ−1(t)) such that

(2.9)

∫ t∗

t

p(s)∆s ≤ M

2
and

∫ σ(t∗)

t

p(s)∆s >
M

2
, for t ≥ t2.

By (2.5) and the first part of (2.9), we also have

(2.10)

∫ σ(t)

τ(t∗)

p(s)∆s ≥
∫ t∗

τ(t∗)

p(s)∆s −
∫ t∗

t

p(s)∆s ≥ M

2
, for t ≥ t2.

Using (2.1) and the decreasing character of x, we obtain

(2.11)

∫ σ(t)

τ(t∗)

p(s)x(τ(s))∆s ≥ x(τ(t))
M

2
,

and

(2.12)

∫ σ(t∗)

t

p(s)x(τ(s))∆s ≥ x(τ(t∗))
M

2
.

Integrating Eq. (E) from t to σ(t∗) and using (2.11) and (2.12), we obtain for t ≥ t2,

x(t) ≥ x(t) − x(σ(t∗)) =

∫ σ(t∗)

t

p(s)x(τ(s))∆s

≥ M

2
x(τ(t∗)) ≥

M

2
[x(τ(t∗)) − x(σ(t))]

M

2

∫ σ(t)

τ(t∗)

p(s)x(τ(s))∆s

≥ M2

4
x(τ(t)).

The proof is complete.

Note that Lemma 2.3 is a generalization of the results in [9] and [6].

Theorem 2.4. If

(2.13) lim sup
t→∞

∫ σ(t)

τ(t)

p(s)∆s > 1,

then Eq. (E) is oscillatory.

Proof. Assume, for the sake of contradiction, that Eq. (E) has a nonoscillatory solution

x. We may assume that x is eventually positive by replacing x by −x, otherwise. Since

τ(t) → ∞ as t → ∞, there is a positive number t1 ≥ t0, such that x(τ(t)) > 0 for

t ≥ t1. In view of Eq. (E),

(2.14) x∆(t) = −p(t)x(τ(t)) < 0, t ≥ t1.
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Integrating Eq. (E) from τ(t) to σ(t), we have

(2.15) x(σ(t)) − x(τ(t)) +

∫ σ(t)

τ(t)

p(s)x(τ(s))∆s = 0.

Since x is ∆-differentiable, it is rd-continuous, Lemma 2.1 is applicable for the integral

term in the previous equation. In view of (2.1), it is easy to see that

(2.16)

∫ σ(t)

τ(t)

p(s)x(τ(s))∆s ≥ x(τ(t))

∫ σ(t)

τ(t)

p(s)∆s.

Using (2.16) in (2.15), we obtain

(2.17) x(σ(t)) + x(τ(t))
(

∫ σ(t)

τ(t)

p(s)∆s − 1
)

≤ 0, for t ≥ t1,

which, by (2.13), leads to a contradiction. The proof is complete.

Observe that Theorem 2.4 unifies previous results related with the oscillation of

first order delay equations in the continuous and discrete case. In particular, if T = R

or T = N, condition (2.13) of Theorem 2.4 takes the form (SR) or (SN ), respectively.

Theorem 2.5. Assume that there exists a positive constant M such that

(2.18) lim inf
t→∞

∫ t

τ(t)

p(s)∆s > M

and

(2.19) lim sup
t→∞

∫ t

τ(t)

p(s)∆s > 1 − M2

4
.

Then Eq. (E) is oscillatory.

Proof. Assume that x is an eventually positive solution of Eq. (E) such that x(t) > 0

and x(τ(t)) > 0 for t ≥ t1. As in the proof of Theorem 2.4, integrating Eq. (E) from

τ(t) to t, we have

0 = x(t) − x(τ(t)) +

∫ t

τ(t)

p(s)x(τ(s))∆s

≥ x(t) + x(τ(t))
(

∫ t

τ(t)

p(s)∆s − 1
)

= x(τ(t))
( x(t)

x(τ(t))
+

∫ t

τ(t)

p(s)∆s − 1
)

, for t ≥ t1.

Now using Lemma 2.3, we obtain

x(τ(t))
(M2

4
+

∫ t

τ(t)

p(s)∆s − 1
)

≤ 0, for all t ≥ t1,

which, in view of condition (2.19), leads to a contradiction. The proof is complete.
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Note that, in view of Theorem 2.4, it makes sense to consider in Theorem 2.5

the case when 0 < M < 1. Also observe that [4, Theorem 2.2] for Eq. (ER) can be

derived from Theorem 2.5 when the time scale T is chosen as R.

Consider a time scale of the form

(2.20) T = {tn : n ∈ Z},

where {tn} is a strictly increasing sequence of real numbers such that T is closed. For

such time scales, Bohner [3] presented the following result.

Theorem 2.6. [3, Theorem 2] Consider a time scale as described in (2.20). Let

k ∈ N and τ(tn) = tn−k for all n ∈ N. If Eq. (E) has an eventually positive solution,

then

(2.21) lim inf
t→∞

∫ t

τ(t)

p(s)∆s ≤
( k

k + 1

)k+1

.

An immediate consequence is the following result.

Corollary 2.7. Consider a time scale as described in (2.20). Let k ∈ N and τ(tn) =

tn−k for all n ∈ N. If

(2.22) lim inf
t→∞

∫ t

τ(t)

p(s)∆s >
( k

k + 1

)k+1

,

then Eq. (E) is oscillatory.

Observe that when condition (2.22) is not satisfied, then from Corollary 2.7, we

cannot conclude anything about the oscillatory behavior of Eq. (E). However, from

Theorem 2.5, we have the following conclusion.

Corollary 2.8. Assume that there exist a positive real number M such that

(2.23) M < lim inf
t→∞

∫ t

τ(t)

p(s)∆s ≤
( k

k + 1

)k+1

and

lim sup
t→∞

∫ t

τ(t)

p(s)∆s > 1 − M2

4
.

Then Eq. (E) is oscillatory on the time scales described in (2.20) with k ∈ N and

τ(tn) = tn−k for all n ∈ N.

Note that for Eq. (EN ), [17, Theorem 2.6] can be derived from Corollary 2.8 when

the time scale T is chosen as N.
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3. EXAMPLES

Example 3.1. Let T = hN = {hn : n ∈ N}. Consider the following equation

(3.1) x∆(t) + p x(τ(t)) = 0, t ≥ t0

where p > 0 and τ(t) = t − (k − 1)h, for any positive integer k > 1. Since

lim sup
t→∞

∫ σ(t)

τ(t)

p ∆s = pkh,

from Theorem 2.4, we conclude that if

pkh > 1,

then Eq. (3.1) is oscillatory.

Example 3.2. Assume that in equation (3.1), p = 1, k = 9, and h = 1
10

. Since

pkh = 9/10 is not greater than 1, Theorem 2.4 cannot be applied. However, it is easy

to see that there exists a positive real number M ∈ (
√

2/5, 9/10) so that (2.18) and

the condition (2.19)

lim sup
t→∞

∫ t

τ(t)

p(s)∆s = pkh =
9

10
> 1 − M2

4

are satisfied. So, by Theorem 2.5, all solutions of Eq. (3.1) are oscillatory.

Example 3.3. Consider the equation on T = N

(3.2) xn+1 − xn + pnxn−3 = 0, n ∈ N,

where

p2n =
8

100
, p2n+1 =

8

100
+

746

1000
sin2 nπ

2
, n ∈ N.

Then

lim inf
n→∞

n−1
∑

i=n−3

pi =
24

100
<
(3

4

)4

,

which means that the condition (2.22) of Corollary 2.7 is not satisfied. However, it is

easy to see that there exists a positive real number M ∈ (
√

7/53, 24/100) such that

lim sup
n→∞

n−1
∑

i=n−3

pi =
24

100
+

746

1000
> 1 − M2

4
.

So, by Corollary 2.8, all solutions of Eq. (3.2) are oscillatory.

Example 3.4. Consider the delay difference equation

(3.3) xn+1 − xn + pnxn−1 = 0.

where

p2n =
1

5
, p2n+1 =

127

128
, n ∈ N.
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By Theorem 1.1,

α = lim sup
t→∞

sup
λ∈E

{λ exp
−λp(τ(t), t)}

= lim sup
n→∞

sup
λ∈E

λ(1 − λpn−1)

= lim sup
n→∞

1

4pn−1
,

because λ(1 − λpn−1) takes its maximum value at λ =
1

2pn−1

. Thus,

α = lim sup
n→∞

1

4pn−1
=

5

4
> 1,

and therefore, Corollary 1.2 cannot be applied. Also

lim inf
n→∞

n−1
∑

i=n−1

pi =
1

5
<
(1

2

)2

that is, condition (2.22) is not satisfied and therefore Corollary 2.7 cannot be applied.

However

lim sup
n→∞

n−1
∑

i=n−1

pi =
127

128
,

and taking M ∈ (1/4
√

2, 1/5), conditions (2.18) and (2.19) of Theorem 2.5 are satis-

fied. Therefore, all solutions of Eq. (3.3) are oscillatory.
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