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ABSTRACT. For a class of dynamic systems defined in the positive cone of R
n we prove the

blow up of all solutions starting strictly above the unit point. Explicit conditions are obtained for

blowing up in finite or infinite time, respectively. In 3 dimensions visualizations are presented for the

numerically approximated interface separating the domains of attraction of 0 and ∞, respectively.
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1. INTRODUCTION

In this note we will consider dynamic systems

(1.1) ẋ = f(x) (ẋ =
d

dt
x)

in the open positive cone R
n
+ = {x = (xi) ∈ R

n| 0 < xi for all i = 1, · · · , n}. The

vector functions f = (fi) taken into account are

(1.2) fi(x) = ψi

(

∏

j 6=i

|xj|
aij − |xi|

γi

)

· gi(x),

ψi : R → R being continuous, odd, strictly increasing, ψi(0) = 0, gi being continuous

on a neighbourhood of the closed cone Rn
+, gi(x) ∈ R

1
+, and αij > 0 for i 6= j, αii =

0, γi > 0 denoting constants, where det(δijγj − αij) 6= 0.

The system (1.1) with f from (1.2) is governed by geometric properties of the

matrix α = (δijγj − αij). Namely, if there exists a vector A ∈ R
n, A fulfilling

α ·A = δ ∈ R
n
+ (or equivalently, α being M -matrix [Berman & Plemmons 1979]), then

all solutions of (1.1) starting in R
n
+ at t = 0 exist globally for all t ≥ 0 and have the

limit set {E}, E = (1, · · · , 1)T . Thus the unit point E (being the unique stationary

point of (1.1) in R
n
+) is globally attractive and asymptotically stable. We have proved

this in [Rautmann 1999] using families of flow invariant rectangles contracting to {E}.

Otherwise, if α is not M -matrix and if we additionally assume continuous differ-

entiability of ψi at 0 as well as of gi at E for all i, then E will be unstable [Rautmann

2001].
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In the following we will always suppose that there exists a vector A ∈ R
n
+ fulfilling

α · A = −δ with δ ∈ R
n
+. Thus α will not be M -matrix. In this case families of flow

invariant cones above E exist [Proposition 2.2, Corollary 2.1 below]. Our main result

shows that the open cone above E in R
n
+ belongs to the domain of attraction of

∞ (Theorem 2.1, Corollary 2.3 below). Beyond this, specializing ψi and gi we will

establish explicit conditions for blow up in finite or infinite time, respectively, of all

solutions of (1.1) starting strictly above E (Theorem 3.1, Corollary 3.1 below).

Similar results hold for the dying out of solutions x(t) of (1.1) starting at any

x(0) < E in R
n
+. But, since such a solution possibly will reach the boundary ∂R

n
+

in finite time, where some components fi eventually are vanishing, in order to prove

the flow invariance of rectangles having lower faces on ∂R
n
+, we need an additional

uniqueness condition for (1.1). Sufficient are local Lipschitz conditions for ψi in R

and for gi in a neighbourhood of Rn
+, together with the requirement 1 ≤ αij for

i 6= j, 1 ≤ γi for all i, j = 1, · · · , n, (Remarks 2.2 and 3.1 below). However in view

of the restricted space for this article, in the following we will mainly concentrate on

the blow up of solutions inside R
n
+.

Until now we have studied the global behavior of solutions of (1.1) starting at

x(0) ∈ R
n
+, x(0) being neither above nor below E, merely by numerical methods. In

the last section of this paper, my coworker Robert Breitrück will present visualizations

of his numerical results. The pictures show the interface separating the domains of

attraction of 0 and ∞, respectively, for four different systems (1.1) in R
3
+.

2. BLOW UP IN Q+
1 = {x ∈ R

n|E < x}

For any point a = (ai) ∈ R
n
+ we will denote by Qa = {x ∈ R

n|a ≤ x} the closed

cone with lowest point a. The n− 1-dimensional faces of Qa are Qa,i = {x ∈ Qa|ai =

xi}, i = 1, . . . , n. Here and in the following we always use the partial order of R
n

induced by x ≤ y ⇔ xi ≤ yi, x < y ⇔ xi < yi for all i = 1, · · · , n. We will also write

x ≤ c if xi ≤ c ∈ R for all i.

Proposition 2.1: Assume the continuous map f = (fi) : R
n
+ → R

n fulfills the

direction condition

(2.1) fi|Qa,i
> 0

for all i = 1, . . . , n. Then Qa is flow invariant for the differential equation

(2.2) ẋ = f(x) (ẋ =
d

dt
x) ,

i.e. each solution x(t) of (2.2) starting at any point x(0) ∈ Qa will remain in Qa for

all t of its right maximal interval [0, T ) of existence.

Note: Since (2.1) is excluding fi(x) = 0 for each x ∈ Qa,i, the flow invariance of Qa

does not require any uniqueness condition for (2.2).
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Proof. By contradiction: Let x(t) for t ∈ [0, t1] be a solution of (2.2) with x(0) ∈

Qa, x(t1) 6∈ Qa. Consequently there exists t∗ = sup{t ∈ [0, t1] | x(t) ∈ Qa} < t1, and

we find x(t∗) ∈ ∂Qa =
⋃n

i=1Qa,i. We consider the set J = {i | xi(t
∗) = ai} 6= ∅

of indices i and its complement J ′ = {1, · · · , n} − J . Because of (2.1) we have

0 < ε1 = min
i∈J

{fi(x(t
∗))}, in addition 0 < ε2 = min

j∈J ′

{xj(t
∗) − aj}, since x(t∗) ∈ ∂Qa.

From the continuity of x(t) and f(x) we see that there exists δ ∈ (0, t1− t∗] such that

(a) mini∈J{fi(x(t))} ≥ ε1
2

and (b) minj∈J ′{xj(t)−aj} ≥ ε2
2

hold for all t ∈ [t∗, t∗ + δ].

But then from (b) and the consequence of (a), namely xi(t)− ai =
∫ t

t∗
fi(x(τ))dτ > 0

for all t ∈ (t∗, t∗ + δ] and all i ∈ J we conclude x(t) ∈ Qa for t ∈ [t∗, t∗ + δ] which

contradicts the definition of t∗.

Proposition 2.2: For all i = 1, · · · , n, n ≥ 2, assume fi(x) = ψi

(

∏

j 6=i |xj|
αij − |xi|

γi

)

·

gi(x), where (1) ψi : R → R continuous, odd, strictly monotone increasing, ψi(0) = 0,

(2) gi : R
n
+ → R

1
+ continuous, (3) α = (δijγj − αij), det α 6= 0, (4) αii = 0 < αij, i 6=

j, 0 < γi, (5) ∃A = (Ai) ∈ R
n
+, α · A = −δ, δ = (δi) ∈ R

n
+.

Then, with a+
s = (sAi) ∈ R

n
+, 1 < s, each set Q+

s = {x ∈ R
n
+

∣

∣a+
s ≤ x} is flow

invariant with respect to (2.2).

Proof. The first factor Fi(x) = ψi(
∏

j 6=i |xj|
αij −|xi|

γi) in fi(x) fulfills 0 < bs ≤ Fi(a
+
s )

with a bound bs independent of i. From F = (Fi) being quasimonotone increasing we

see

(2.4) bs ≤ Fi(a
+
s ) ≤ Fi(x),

thus 0 < fi(x) for all x ∈ Q+
s,i and all i = 1, · · · , n, because of our assumption

0 < gi(x). Therefore the flow invariance of Q+
s follows by Proposition 2.1.

Remark 2.1 Under the sharper assumption (2.5) 0 < c0 ≤ gi(x) with a constant c0,

from (2.4) we find

(2.6) 0 < cs ≤ fi(x) with cs = c0bs for all x ∈ Q+
s,i and all i.

In the following we will turn to some subsets of R
n
+ which have evident geometric

relations to the cones Q+
s = {x ∈ R

n
+|a

+
s ≤ x} where a+

s = (sAi). Assume s > 1 : For

ε = (εi) ∈ R
n
+, εi < sAi − 1 we will consider the ε-neighbourhood of Q+

s :

(Q+
s )ε = {x ∈ R

n
+|s

Ai − εi ≤ xi for all i = 1, · · · , n}, ε-retract of Q+
s :

(Q+
s )−ε = {x ∈ R

n
+|s

Ai + εi ≤ xi for all i = 1, · · · , n},

η-cone near Q+
s : η = (ηi) ∈ R

n, |ηi| < sAi − 1,

(Q+
s )η = {x ∈ R

n
+|s

Ai − ηi ≤ xi for all i = 1, · · · , n},

and the ε-neighbourhood of the ith n− 1-dimensional face Q+
s,i of Q+

s :

(Q+
s,i)

ε = {x ∈ (Q+
s )ε| xi ≤ sAi + εi}.
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Remark 2.2: The rectangles Q−
s = {x ∈ R

n|0 ≤ x ≤ a−s } in Rn
+ with the up-

per corner a−s = (s−Ai), s > 1, have the lower faces Q−,−
s,i = {x ∈ Q−

s |xi = 0} in

addition to the upper faces Q−
s,i = {x ∈ Q−

s |xi = a−s,i}. Because of Fi(0) = 0, the

quasimonotonicity of Fi gives 0 ≤ Fi(x), thus 0 ≤ fi(x) for x ∈ Q
−,−
s,i . Similarly from

Fi(a
−
s ) ≤ −bs we get fi(x) < 0 for x ∈ Q−

s,i. Therefore by inspection of the outer

normals Nx in any point x of the k-dimensional edges of Q−
s , k = 0, 1, · · · , n− 1, we

see that the condition Nx · f(x) ≤ 0 holds for the inner product of Nx with f(x) in all

points x ∈ ∂Q−
s . Consequently, if we additionally require a local Lipschitz condition

for f on a neighbourhood of Rn
+, we can apply Bony’s theorem [Redheffer 1972] which

gives us the flow invariance of Q−
s for (2.2).

Remark 2.3: For all s > 1, ε ∈ R
n
+, εi < sAi − 1 there exist σ > s and τ ∈ (1, s) such

that

(a) (Q+
s )−ε ⊂ Q+

σ ⊂ Q+
s and (b) Q+

σ ⊂ (Q+
s )ε ⊂ Q+

τ hold.

In the following, suppose additionally (2b) 0 < c0 ≤ gi(x),

Then with the assumptions of the last Proposition 2.2, the following Corollaries

hold:

Corollary 2.1: ∀s > 1 ∃ δ0 > 0, ∀ε = (εi) ∈ R
n
+:

εi ≤ δ0 ⇒ fi|(Q+

s,i)
ε ≥ cs

2
> 0, ∀i, thus (Q+

s )η being flow invariant for (2.2),

∀η ∈ R
n, |ηj| ≤ εj ∀j.

Proof. We take ε = (εi), 0 < εi ≤ ε0. In order to find a positive lower bound for the

restriction fi|(Q
+
s,i)

ε of fi we project each point x ∈ (Q+
s,i)

ε on the point x(i) ≤ x,

x(i) having the coordinates x(i)i = xi, x(i)j = a+
s,j − εj for j 6= i. From this we see

|x(i) − (a+
s − ε)| ≤ 2εi, and the quasimonotonicity of F = (Fi) gives Fi(x(i)) ≤ Fi(x)

for all i. Choosing ε0 small enough such that

(2.7) |Fi(a
+
s + y) − Fi(a

+
s + z)| ≤

bs

4

for all y, z ∈ R
n, |yi|, |zi| ≤ 2ε0, and all i, from (2.4) we find

bs

2
≤ Fi(a

+
s ) − |Fi(a

+
s ) − Fi(a

+
s − ε)| − |Fi(a

+
s − ε) − Fi(x(i))| ≤ Fi(x),

therefore cs

2
≤ fi(x) by (2.b) for all x ∈ (Q+

s,i)
ε.

Since each n − 1-dimensional face (Q+
s,i)

η of any cone (Q+
s )η near Q+

s , |ηi| ≤ εi

for all i, is subset of (Q+
s,i)

ε, the inequality cs

2
≤ fi|(Q+

s,i)
η follows for all i. Recalling

Proposition 2.1 we find the flow invariance for (2.2) of all cones (Q+
s )η, |ηi| ≤ εi for

all i.

Corollary 2.2: Let x(t) for t ∈ (0,∞) denote a solution of (2.2). Then ∀s > 1 ∃

δ(s) ∈ R
n
+, ∃ τ > 0, such that

x(t0) ∈ (Q+
s )δ(s) ⇒ x(t0 + τ) ∈ (Q+

s )−δ(s).
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Proof. Let x(t) for t ∈ [0,∞) denote a solution of (2.2). By definition of the cones

near Q+
s , the statement x(t) ∈ (Q+

s )η means that for each i = 1, · · · , n

either (a) a+
s,i + ηi ≤ xi(t) or (b) a+

s,i − ηi ≤ xi(t) < a+
s,i + ηi

holds. Taking η ∈ (0, δ0) we find from Corollary 2.1 that inequality (a) is flow invariant

for (2.2): If it holds for any t0 ≥ 0 then it holds for all t ≥ t0, too. If additionally we

require 2η ≤ τ · cs

2
, we conclude from (b) for t = t0 : a+

s,i+ηi ≤ a+
s,i−ηi+τ

cs

2
≤ xi(t0+τ)

for any i = 1, · · · , n, thus x(t0 + τ) ∈ (Q+
s )−η.

Theorem 2.1: For all i = 1, . . . , n, n ≥ 2, assume fi(x) = ψi(
∏

j 6=i |xj|
αij − |xi|

γi) ·

gi(x), where (1)ψi : R → R continuous, odd, strictly monotone increasing, ψi(0) = 0,

(2) gi : R
n
+ → R

1
+ continuous, (2 b) 0 < c0 ≤ gi(x), (3) α = (δijγj − αij), detα 6= 0,

(4) αii = 0 < αij, i 6= j, 0 < γi, (5) ∃ A = (Ai) ∈ R
n
+, α · A = −δ, δ = (δi) ∈ R

n
+.

Let x(t) denote any solution of (2.2), [0, T ) being its right maximal existence interval,

E < x(0).

Then either (i): With t → T ≤ ∞, x(t) is entering each Q+
s , or (ii): s∗ =

sup {s > 1, ∃t = ts, x(ts) ∈ Q+
s } < ∞ holds, and |x(ts)| → ∞ with s → s∗ (thus

ts → T ).

An evident consequence of Theorem 2.1 is the following

Corollary 2.3: The open cone Q+
1 = {x = (xi) ∈ R

n
+

∣

∣1 < xi, ∀i} belongs to the

domain of attraction of ∞.

Proof. of Theorem 2.1: The supremum s∗ is well defined since x(t) ∈ Q+
s holds for

some t ≥ 0, s > 1 because of x(0) > E. (a) In case s∗ = ∞ we have (i). (b) Otherwise

in case s∗ < ∞, there exist a strictly increasing sequence (sk) ↑ s∗ and a sequence

(tk) ⊂ [0, T ) with x(tk) ∈ Q+
sk
, where the sequence (Q+

sk
) is contracting to Q+

s∗. (b1) If

(x(tk)) does not contain a bounded subsequence, we have (ii). (b2) Otherwise there

would exist a bounded subsequence (x(tk′)) ⊂ (x(tk)), |x(tk′)| ≤ M < ∞. But then

(x(tk′)) contains a convergent subsequence (x(tk′′)) −→ x̃, thus x̃ ∈ ∂Q+
s∗ =

⋃n
i=1Q

+
s∗,i.

Without loss of generality we may assume that the related sequences (tk), (tk′′) are

monoton increasing, because each Q+
s is flow invariant for (2.2). (b21) In case (tk′′)

being bounded there exists t∗ = lim
k′′→∞

tk′′ ∈ (0, T ]. Thus by the extension theorem

for ordinary differential equations [Hartman 1964, Lemma 3.1], the solution x(t) can

be extended to [0, t∗] with x(t∗) = x̃, and subsequently to [0, t∗ + τ) for some τ > 0

by the local existence theorem. However, as shown in Corollary 2.1, the vector f(x̃)

is pointing strictly inwards to
◦

Q
+

s∗=
⋃

s>s∗ Q
+
s . From this we get x(t) ∈ Q+

s for

some s > s∗, t > t∗ in contradiction to the definition of s∗. (b22) Otherwise the

sequence (tk′′) is unbounded: We have (tk′′) ↑ ∞ = T . Because of Q+
sk

↓ Q+
s∗, for
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each η ∈ R
n
+ there exists a kη ∈ N such that Q+

sk′′
⊂ (Q+

s∗)
η holds for all k′′ ≥ kη.

Choosing η ∈ (0, δ(s∗)] and recalling Corollary 2.2, from x(tk′′) ∈ (Q+
s∗)

η we find

x(tk′′ + τ) ∈ (Q+
s∗)

−η ⊂
⋃

s>s∗ Q
+
s , which again contradicts the definition of s∗.

3. LOWER AND UPPER BOUNDS FOR SOLUTIONS IN Q+
1

In order to find sub-as well as superfunctions v(t) to any solution x(t) of (2.2) with

x(0) > E, recalling Theorem 2.1 we will represent the parameter s > 1 in a+
s = (sAi)

as a function s = ϕ(t) of time t ≥ 0. Suitable functions ϕ will be constructed by

the methods of differential inequalities. The following systems are cooperative in the

sense of [Hirsch 1982, Smith 1995].

Theorem 3.1: For all i = 1, . . . , n, n ≥ 2, assume fi(x) =
(

∏

j 6=i |xj|
αij − |xi|

γi

)

·

|xi|
ζi, where α = (δijγj − αij), detα 6= 0, αii = 0 < αij, i 6= j, 0 < γi, 0 ≤ ζi,

∃A = (Ai) ∈ R
n
+, α · A = −δ, δ = (δi) ∈ R

n
+.

Then for any solution x(t) of (2.2) with x(0) ∈ Q+
s0

, 1 < s0, (1) each solution

ϕ(t) ∈ R
1
+ of

(3.1) ϕ̇ ≤ ϕ1+δi+Ai(γi+ζi−1) ·
1 − ϕ−δi

Ai
, ∀i, ϕ(0) ≤ ((xi(0))1/Ai),

gives a lower bound a+(ϕ(t)) ≤ x(t), and (2) each solution ψ(t) ∈ R
1
+ of

(3.2) ψ̇ ≥ ψ1+δi+Ai·(γi+ζi−1) ·
1 − ϕ−δi

Ai
, ∀i, ψ(0) ≥ ((xi(0))1/Ai)

gives an upper bound x(t) ≤ a+(ψ(t)). The bounds hold on the right maximal interval,

on which x(t) and ϕ(t) or x(t) and ψ(t) exist, respectively.

Proof. The definition

(3.3) v(t) = (vi) = ((ϕ(t))Ai)

gives

(3.4) v̇i = Aiϕ
Ai−1 · ϕ̇ and fi(v) = ϕAi·(γi+ζi) · (ϕδi − 1).

Since the direction field f in Theorem 3.1 is quasimonotone increasing and locally

Lipschitz continuous in R
n
+ we will get a subfunction v(t) ≤ x(t), if

(3.5) v̇i ≤ fi(v) and vi(0) ≤ xi(0)

holds for all i = 1, · · · , n, c.p. [Walter 1970 ].

A short calculation shows that (3.4) and (3.5) are fulfilled, if we compute ϕ from

the initial value problem

(3.6) ϕ̇ = c1ϕ
1+c2, ϕ(0) = c0,
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where

c0 = min
i
{(xi(0))1/Ai}, c1 = min

i
{
1 − ϕ(0)−δi

Ai
},(3.7)

c2 = min
i
{δi − Ai[1 − (γi + ζi)]}.

The equality signs in (3.5), (3.6) and (3.7) are allowed, since the functions fi in

Theorem 3.1 obey a local Lipschitz conditions inside of R
n
+, cp. [Walter1970]. The

estimate v(t) ≤ x(t) will hold in the right maximal interval [0, T ), on which v(t) and

x(t) both exist.

Similary, if we solve (3.7) but now with

c0 = max
i

{(xi(0))1/Ai}, c1 = (min
i
{Ai})

−1,(3.8)

c2 = max
i

{δi − Ai(1 − (γ1 + ζi))},

we get a superfunction v(t) = (a+
i (ϕ(t))) ≥ x(t) on the right maximal interval [0, T ),

on which v(t) and x(t) both exist.

From the special size of the lower and upper bounds above we get

Corollary 3.1: All solutions of (3.1) starting in Q+
1 blow up to ∞ componentwise,

each approximating ∞ (a) in finite time t, if δi

Ai
> 1− γi − ζi, or (b) in infinite time

only, if δi

Ai
≤ 1 − γi − ζi holds for all i = 1, · · · , n, respectively.

Proof. Since the solution ϕ of (3.6) blows up to ∞, doing this in finite time if and

only if 0 < c2, from (3.7) or (3.8), respectively, we find Corollary 3.1.

Remark 3.1: Quite similar to the proof of Theorem 3.1 we get upper bounds v(t) =

((ϕ(t))−Ai) for a solution x(t) of (2.2) in Q−
1 = {x ∈ R

n|0 ≤ x < E} if we compute

ϕ from (3.6) with

c0 = min
i
{(xi(0))

− 1

Ai } − ε0, c1 = min
i
{
1 − ϕ(0)−δi

Ai
} − ε1,(3.9)

c2 = min
i
{Ai(1 − [γi + ζi])} − ε2

where 0 < εj, and v(t) will become a lower bound of x(t), if we take ϕ from (3.6) with

c0 = max
i

{(xi(0))
− 1

Ai } + ε0, c1 = max
i

{A−1
i },(3.10)

c2 = max
i

{Ai(1 − [γi + ζi])} + ε2.

The requirement εj > 0 for all j = 0, 1, 2 is due to the fact that the direction field

f in Theorem 3.1 possibly does not fulfill a uniqueness condition on ∂R
n
+. Since ϕ(t)

from (3.4) blows up to ∞, approximating ∞ in finite time t if and only if 0 < c2, from

(3.9) or (3.10), respectively, we conclude: All solutions x(t) of (2.2) with x(0) < E,
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f from Theorem 3.1, go to zero, each vanishing (a) in finite time, if 0 < 1 − γi − ζi,

and (b) in infinite time only, if 1− γi − ζi < 0 holds for all i = 1, · · · , n, respectively.

4. VISUALIZATION OF SEPARATING INTERFACES IN R
3
+

The results above relate to solutions x(t) of (2.2) in R
n
+ starting at any point

x(0) ∈ Q+
1 ∪ Q−

1 . Beyond it in R
3
+, numerical experiments show the interface S

separating the domains of attraction of 0 and ∞, respectively, for solutions of (2.2)

with any direction field from Theorem 3.1: We approximate S by subsets Sk of

subcubes taken from successive subdivisions of a suitable cube S0 ⊂ R
3
+, where E ∈

S0. Any subcube Q of the kth subdivision is put into Sk if and only if Q contains

starting points of solutions of (2.2) entering Q+
1 as well as starting points of solutions

entering Q−
1 .

Figure 1. α12 = 0.2, α13 = 3.6, α21 = 2, α23 = 2, α31 = 2.2, α32 =

2, γ1 = γ2 = γ3 = 2, ζ1 = ζ2 = ζ3 = 0.3
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Figure 2. α12 = α13 = α21 = α23 = α31 = α32 = 1, γ1 = γ2 = γ3 =

1, ζ1 = ζ2 = ζ3 = 0 (left), ζ1 = ζ2 = ζ3 = 1 (right)
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