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ABSTRACT. We introduce and investigate a new sort of stochastic differential inclusions given

in terms of mean derivatives of a stochastic process, introduced by E. Nelson for the needs of the

so called stochastic mechanics. This class of stochastic inclusions is ideologically the closest one to

ordinary differential inclusions. We consider three types of inclusions: with forward mean derivatives,

with backward mean derivatives and with current velocities (symmetric mean derivatives). These

types have different properties and physical meaning. Some existence of solutions results are proved.
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INTRODUCTION

The notion of mean derivatives was introduced by Edward Nelson (see [14, 15, 16])

for the needs of stochastic mechanics (a version of quantum mechanics). The equation

of motion in this theory (called the Newton-Nelson equation) was the first example

of equations in mean derivatives. Later it turned out that the equations in mean

derivatives arose also in the description of motion of viscous incompressible fluid (see,

e.g., [5, 6, 9, 10]), in the description of Navier-Stokes vortices (see, e.g., [11]), etc. In

[7, 8] (see also [10]) investigation of the equations in mean derivatives as a special

class of stochastic differential equations was started.

In all above-mentioned cases the solutions of the equations were supposed to be

Ito diffusion type processes (or even Markov diffusion processes) whose diffusion sum-

mand was given a priory since the classical Nelson’s mean derivatives yield, roughly

speaking, only the drift term (forward, backward, etc.) of a stochastic process. In

this paper we present a two-fold generalization of the theory. First, giving a slight

modification of a certain Nelson’s idea, we introduce a new type of mean derivative

that is responsible for diffusion term. And second, we investigate the differential

inclusions with mean derivatives, i.e., equations with set-valued right-hand sides.
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The stochastic differential inclusions with mean derivatives is ideologically the

closest class to ordinary differential inclusions and so they arise in applications in

more direct way than usual stochastic differential inclusions. Here we introduce and

investigate the first order inclusions with forward mean derivatives, with backward

mean derivatives and with current velocities (symmetric mean derivatives) and prove

some existence of solutions theorems for them. As usual, the inclusions with forward

mean derivatives play the basic role for the entire theory. Probably the inclusions

with current velocities are the most interesting from the physical point of view since

the current velocity is considered for stochastic processes as an analog of ordinary

velocity of a deterministic trajectory.

The structure of our paper is as follows. In Section 1 we describe necessary

preliminary facts from the theory of mean derivatives and from stochastic differential

equations.

Section 2 is devoted to differential inclusions with forward mean derivatives. This

type of inclusions looks the most natural for describing stochastic processes with

control and in other cases analogous to those where ordinary differential inclusions

arise. The results of this section also give the basis for the next sections.

Equations and inclusions with backward mean derivatives appear in applications

as well. Say, the above-mentioned equation, arising in description of viscous incom-

pressible fluids, is an equation with backward mean derivatives. In Section 2 we

present the simplest results on inclusions with backward derivatives.

In Section 3 we consider inclusions with current velocities, probably the most

interesting from the physical point of view, but essentially more complicated for

investigation than the other types of inclusions with mean derivatives.

Some remarks on notations. In this paper we deal with equations and inclusions

in the linear space R
n, for which we always use coordinate presentation of vectors

and linear operators. Vectors in R
n are considered as columns. If X is such a vector,

the transposed row vector is denoted by X∗. Linear operators from R
n to R

n are

represented as n × n matrices, the symbol ∗ means transposition of a matrix (pass

to the matrix of conjugate operator). The space of n × n matrices is denoted by

L(Rn, Rn).

By S(n) we denote the linear space of symmetric n×n matrices that is a subspace

in L(Rn, Rn). The symbol S+(n) denotes the set of positive definite symmetric n× n

matrices that is a convex open set in S(n). Its closure, i.e., the set of positive semi-

definite symmetric n × n matrices, is denoted by S̄+(n).

Everywhere below for a set B in R
n or in L(Rn, Rn) we use the norm introduced

by usual formula ‖B‖ = sup
y∈B

‖y‖.
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For the sake of simplicity we consider equations, their solutions and other objects

on a finite time interval t ∈ [0, T ].

Everywhere in the paper we use Einstein’s summation convention with respect

to the coinciding upper and lower indices.

1. MEAN DERIVATIVES

In this section we briefly describe preliminary facts about mean derivatives. See

details in [15, 16, 5, 6, 10].

Consider a stochastic process ξ(t) in R
n, t ∈ [0, T ], given on a certain probability

space (Ω,F , P) and such that ξ(t) is an L1 random element for all t. It is known that

such a process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) “the past” Pξ
t generated by preimages of Borel sets from R

n under all map-

pings ξ(s) : Ω → R
n for 0 ≤ s ≤ t;

(ii) “the future” F ξ
t generated by preimages of Borel sets from R

n under all

mappings ξ(s) : Ω → R
n for t ≤ s ≤ T ;

(iii) “the present” (“now”) N ξ
t generated by preimages of Borel sets from R

n

under the mapping ξ(t) : Ω → R
n.

All the above families we suppose to be complete, i.e., containing all sets of

probability zero.

For the sake of convenience we denote by E
ξ
t the conditional expectation E(·|N ξ

t )

with respect to the “present” N ξ
t for ξ(t).

Following [14, 15, 16], introduce the following notions of forward and backward

mean derivatives.

Definition 1.1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant t

is an L1 random element of the form

(1.1) Dξ(t) = lim
4t→+0

E
ξ
t (

ξ(t + 4t) − ξ(t)

4t
),

where the limit is supposed to exist in L1(Ω,F , P) and 4t → +0 means that 4t

tends to 0 and 4t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

(1.2) D∗ξ(t) = lim
∆t→+0

E
ξ
t (

ξ(t) − ξ(t − ∆t)

∆t
)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F , P) and ∆t → +0

means that ∆t → 0 and ∆t > 0.

Remark 1.2. If ξ(t) is a Markov process then evidently E
ξ
t can be replaced by

E(·|Pξ
t ) in (1.1) and by E(·|F ξ

t ) in (1.2). In initial Nelson’s works there were two
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versions of definition of mean derivatives: as in our Definition 1.1 and with condi-

tional expectations with respect to “past” and “future” as above that coincide for

Markov processes. We shall not suppose ξ(t) to be a Markov process and give the

definition with conditional expectation with respect to “present” taking into account

the physical principle of locality: the derivative should be determined by the present

state of the system, not by its past or future.

We also shall use the following generalizations of the notions of forward and

backward mean derivatives (see, e.g., [10]):

Definition 1.3. The forward mean derivative Dξη(t) of η(t) with respect to ξ(t) at

the time instant t is an L1 random element of the form

(1.3) Dξη(t) = lim
4t→+0

E
ξ
t (

η(t + 4t) − η(t)

4t
),

and backward derivative of Dξ
∗η(t) of η(t) with respect to ξ(t) by the formula

(1.4) Dξ
∗η(t) = lim

∆t→+0
E

ξ
t (

η(t) − η(t − ∆t)

∆t
)

where the limits are supposed to exist in L1(Ω,F , P) and 4t → +0 means that 4t

tends to 0 and 4t > 0.

Introduce the differential operator D2 that differentiates an L1 random process

ξ(t), t ∈ [0, T ] according to the rule

(1.5) D2ξ(t) = lim
4t→+0

E
ξ
t (

(ξ(t + 4t) − ξ(t))(ξ(t + 4t) − ξ(t))∗

4t
),

where (ξ(t+4t)− ξ(t)) is considered as a column vector (vector in R
n), (ξ(t+4t)−

ξ(t))∗ is a row vector (transposed, or conjugate vector) and the limit is supposed to

exists in L1(Ω,F , P). We emphasize that the matrix product of a column on the left

and a row on the right is a matrix so that D2ξ(t) is a symmetric semi-positive definite

matrix function on [0, T ] × R
n. We call D2 the quadratic mean derivative.

Remark 1.4. From the properties of conditional expectation (see, e.g., [17]) it follows

that there exist Borel mappings a(t, x), a∗(t, x) and α(t, x) from R × R
n to R

n and

to S̄+, respectively, such that Dξ(t) = a(t, ξ(t)), D∗ξ(t) = a∗(t, ξ(t)) and D2ξ(t) =

α(t, ξ(t)). Following [17] we call a(t, x), a∗(t, x) and α(t, x) the regressions.

Ito process is a process ξ(t) of the form

ξ(t) = ξ0 +

t
∫

0

a(s)ds +

t
∫

0

A(s)dw(s),

where a(t) is a process in R
n whose sample paths a.s. have bounded variation; A(t)

is a process in L(Rn, Rn) such that for any element A
j
i (t) of matrix A(t) the condition
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P(ω|
∫ T

0
(Aj

i )
2dt < ∞) = 1 holds; w(t) is a Wiener process in R

n; the first integral is

Lebesgue integral, the second one is Itô integral and all integrals are well-posed.

Recall that for an Itô process the column vector a(t) is called drift and α(t) =

A(t)A∗(t) ∈ S̄+(n), where A∗(t) is the transposed matrix, is called the diffusion

coefficient. Notice that indeed AA∗ is a square symmetric positive semi-definite n×n

matrix, i.e., a matrix from S̄+(n).

Definition 1.5. An Itô process ξ(t) is called a process of diffusion type if a(t) and

A(t) are not anticipating with respect to P ξ
t and the Wiener process w(t) is adapted

to Pξ
t . If a(t) = a(t, ξ(t)) and A(t) = A(t, ξ(t)), where a(t, x) and A(t, x) are Borel

measurable mappings from [0, T ] × R
n to R

n and to L(Rn, Rn), respectively, the Itô

process is called a diffusion process.

Diffusion type processes are solutions of the so called diffusion type equations that

are described as follows. Denote by C0([0, T ], Rn) the Banach space of continuous

maps (curves) from the interval [0, T ] ⊂ R to R
n. Consider the mappings

a : [0, T ] × C0([0, T ], Rn) → R
n,

A : [0, T ] × C0([0, T ], Rn) → L(Rn, Rn).

Let a(t, x(·)) and A(t, x(·)) be continuous jointly in all variables and let for all t ∈ [0, T ]

the mappings a(t, ·) and A(t, ·) be measurable with respect to the σ-algebra, generated

by cylinder sets with bases on [0, t].

Definition 1.6. The Itô type equation

(1.6) ξ(t) =

t
∫

0

a(t, ξ(·))dτ +

t
∫

0

A(t, ξ(·))dw(τ)

is called a diffusion type stochastic differential equation.

Let us turn back to mean derivatives. Taking into account the properties of

conditional expectation and the fact that N ξ
t is a σ-subalgebra in Pξ

t , it is clear (see,

e.g., [10]) that for any martingale η(t) with respect to P ξ
t the equality Dξη(t) = 0

holds. Since for a diffusion type process the integral
∫ t

0
A(s)dw(s) is a martingale

with respect to Pξ
t , the following statement takes place (see, e.g., [5, 6, 10]):

Theorem 1.7. For an Itô diffusion type process ξ(t) the mean derivative Dξ(t) exists

and equals E
ξ
t (a(t)). In particular, if ξ(t) a diffusion process, Dξ(t) = a(t, ξ(t)).

Theorem 1.8. Let ξ(t) be a diffusion type process. Then D2ξ(t) = E
ξ
t [α(t)] where

α(t) is the diffusion coefficient. In particular, if ξ(t) is a diffusion process, D2ξ(t) =

α(t, ξ(t)) where α is the diffusion coefficient.
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Proof. Since ξ(t + 4t) − ξ(t) =
∫ t+4t

t
a(s)ds +

∫ t+4t

t
A(s)dw(s), taking into ac-

count the properties of Lebesgue and Itô integrals one can see that (ξ(t + 4t) −
ξ(t))(ξ(t + 4t)− ξ(t))∗ is approximated by a(t)a∗(t)(∆t)2 + (a(t)∆t)(A(t)∆w(t))∗ +

(A(t)∆w(t))(a(t)∆t)∗ +A(t)A∗(t)∆t. Applying formula (1.5) we obtain the assertion

of Theorem since AA∗ = α (see above).

Definition 1.9. The derivative DS = 1
2
(D+D∗) is called the symmetric mean deriv-

ative. The derivative DA = 1
2
(D − D∗) is called the antisymmetric mean derivative.

Consider the vectors vξ(t, x) = 1
2
(a(t, x) + a∗(t, x)) and uξ(t, x) = 1

2
(a(t, x) −

a∗(t, x)).

Definition 1.10. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity of the

process ξ(t); uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic velocity of the process

ξ(t).

The physical meaning of vξ and uξ is as follows (cf. [15, 16]). Let ξ(t) describe

the motion of a physical process, say the motion of a particle (we are sure that

all physical motions are random with very small dispersion so that it usually looks

natural to omit randomness from consideration). Then the current velocity vξ is

what we usually consider as ordinary physical velocity while the osmotic velocity uξ

shows how fast the particle “diffuses” into the enveloping continuum, i.e., how fast

the “randomness” is changing. This interpretation has the following mathematical

motivation.

Consider an autonomous smooth field of non-degenerate linear operators A(x) :

R
n → R

n, x ∈ R
n. Suppose that ξ(t) is a diffusion type process whose diffusion

integrand is A(ξ(t)). Then its diffusion coefficient A(x)A∗(x) is a smooth field of

symmetric positive definite matrices α(x) = (αij(x)). Since all those matrices are

non-degenerate, the field of inverse matrices (αij) exists and is smooth and at any

x the matrix (αij)(x) is symmetric and positive definite. Thus it defines a new

Riemannian metric α(·, ·) = αijdxidxj on R
n. Consider the Riemannian volume form

of this Riemannian metric Λα =
√

det(αij)dx1 ∧ dx2 ∧ · · · ∧ dxn (see, e.g., [19]).

Denote by ρξ(t, x) the probability density of ξ(t) with respect to the volume form

dt ∧ Λα =
√

det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ]× R
n, i.e., for any continuous

bounded function f : [0, T ] × R
n → R the relation

T
∫

0

E(f(t, ξ(t)))dt =

T
∫

0

(

∫

Ω

f(t, ξ(t))dP)dt =

∫

[0,T ]×Rn

f(t, x)ρξ(t, x)dt ∧ Λα

holds. Then (see [16])

(1.7) uξ(t, x) =
1

2
Grad log ρξ(t, x) = Grad log

√

ρξ(t, x),
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where Grad denotes the gradient with respect to the Riemannian metric α(·, ·), and

for vξ(t, x) and ρξ(t, x) the so called equation of continuity

(1.8)
∂ρξ(t, x)

∂t
= −Div(vξ(t, x)ρξ(t, x))

holds, where Div denotes divergence with respect to the Riemannian metric α(·, ·).

2. DIFFERENTIAL INCLUSIONS WITH FORWARD MEAN

DERIVATIVES

Let Borel measurable mappings a(t, x) and α(t, x) from [0, T ]× R
n to R

n and to

S̄+(n), respectively, be given. We call the system of the form

(2.1)

{

Dξ(t) = a(t, ξ(t)),

D2ξ(t) = α(t, ξ(t)),

a first order differential equation with forward mean derivatives.

Taking into account Remark 1.4, Theorem 1.7 and Theorem 1.8, one can easily

see that the problem of finding a diffusion type process that P-a.s. satisfies (2.1), is

well-posed. It is clear that the first equation of (2.1) determines the drift and the

second one determines the diffusion coefficient of the process.

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × R
n to R

n and to

S̄+(n), respectively. The system of the form

(2.2)

{

Dξ(t) ∈ a(t, ξ(t)),

D2ξ(t) ∈ α(t, ξ(t)).

will be called a first order differential inclusion in forward mean derivatives.

Definition 2.1. We say that (2.2) has a weak solution on [0, T ] with initial condition

ξ(0) = x0, if there exist a probability space (Ω,F , P) and a process ξ(t) given on

(Ω,F , P) and taking values in R
n such that P-a.s. and for almost all t (2.2) is satisfied.

Analogous definitions are also valid for inclusions with backward derivatives and

with current velocities below.

In this section we shall mainly look for weak solutions in the class of diffusion

type processes.

Further on we shall need the following technical statement.

Lemma 2.2. Let α(t, x) be a jointly continuous (measurable, smooth) mapping from

[0, T ] × R
n to S+(n). Then there exists a jointly continuous (measurable, smooth,

respectively) mapping A(t, x) from [0, T ] × R
n to L(Rn, Rn) such that for all t ∈ R,

x ∈ R
n the equality A(t, x)A∗(t, x) = α(t, x) holds.
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Proof. Since the symmetric matrices α(t, x) are positive definite, all diagonal minors

of α(t, x) are positive and, in particular, are not equal to zero. Then for α(t, x) the

Gauss decomposition is valid (see Theorem II.9.3 [23]): α = ζδz, where ζ is a lower-

triangle matrix with units on the diagonal, z is an upper-triangle matrix with units

on the diagonal and δ is a diagonal matrix. In addition, the elements of matrices ζ,

δ and z are rationally expressed via the elements of α, hence if the matrices α(t, x)

are continuous (measurable, smooth) jointly in t, x, the matrices ζ, δ and z are also

continuous (measurable, smooth, respectively) jointly in variables t, x. From the fact

that α are symmetric matrices one can easily derive that z = ζ∗ (i.e., z equals the

transposed ζ). One also can easily see that the elements of diagonal matrix δ are

positive. Thus the diagonal matrix
√

δ is well-posed: its diagonal contains the square

roots of the corresponding diagonal elements of δ. Consider the matrix A(t, x) = ζ
√

δ.

By the construction A(t, x) is jointly continuous (measurable, smooth, respectively)

in t, x and A(t, x)A∗(t, x) = ζ(t, x)δ(t, x)z(t, x) = α(t, x).

Theorem 2.3. Suppose that a(t, x) is a uniformly bounded, Borel measurable set-

valued mapping from [0, T ] × R
n to R

n with closed images.

Let α(t, x) be a uniformly bounded, Borel measurable set-valued mapping from

[0, T ]×R
n to S+(n) with closed images and let there exist ε0 > 0 such that for all t, x

the ε0-neighbourhood of α(t, x) in S(n) does not intersect the set S0(n) of symmetric

degenerate n × n matrices.

Then for any initial condition ξ(0) = ξ0 ∈ R
n inclusion (2.2) has a weak solution

that is well-posed on the entire interval t ∈ [0, T ].

Proof. As a(t, x) and α(t, x) are Borel measurable, they have Borel measurable se-

lectors a(t, x) and α(t, x), and from the hypothesis of Theorem it follows that those

selectors are uniformly bounded. By Lemma 2.2 there exists Borel measurable A(t, x)

such that α(t, x) = A(t, x)A∗(t, x). By the construction A(t, x) is uniformly bounded

and uniformly separated from S0(n). Then the equation

ξ(t) = ξ0 +

∫ t

0

a(s, ξ(s))ds +

∫ t

0

A(s, ξ(s))dw(s)

satisfies the hypothesis of theorem II.6.1 [13] and so it has a weak solution that is

evidently a weak solution of (2.2).

For the next two existence results we need the following technical statement:

Lemma 2.4. For a solution of the diffusion type stochastic differential equation

ξ(t) = ξ0 +

t
∫

0

a(s, ξ(·))ds +

t
∫

0

A(s, ξ(·))dw(s)
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in R
n, t ∈ [0, T ], whose coefficients satisfy the estimates

(2.3) ‖a(t, x(·))‖ < K(1 + ‖x(·)‖),

(2.4) ‖A(t, x(·))‖ < K(1 + ‖x(·)‖)

for some K > 0, for any integer p > 1 there exists a constant Cp > 0, depending only

on K and T , such that the inequality E(sup
t≤T

‖ξ(t)‖p) < Cp holds.

The proof of Lemma 2.4 can be found in [4] (see Lemma III.2.1 and the remark

after it).

For considering upper semicontinuous mean forward differential inclusions we

need to recall the following

Definition 2.5. Let X and Y be metric spaces. For a given ε > 0 a continuous single-

valued mapping fε : X → Y is called an ε-approximation of the set-valued mapping

F : X → Y , if the graph of f , as a set in X × Y , belongs in ε-neighbourhood of the

graph of F .

It is known (see, e.g., [3]), that for upper semicontinuous set-valued mappings

with convex closed images in normed linear spaces the ε-approximations exist for each

ε > 0.

Theorem 2.6. Let a(t, x) be an upper semicontinuous set-valued mapping with closed

convex images from [0, T ] × R
n to R

n and let it satisfy the estimate

(2.5) ‖a(t, x)‖2 < K(1 + ‖x‖2)

for some K > 0.

Let α(t, x) be an upper semicontinuous set-valued mapping with closed convex

images from [0, T ] × R
n to S̄+(n) such that for each α(t, x) ∈ α(t, x) the estimate

(2.6) ‖trα(t, x)‖ < K(1 + ‖x‖2)

takes place for some K > 0.

Then for any initial condition ξ(0) = ξ0 ∈ R
n inclusion (2.2) has a weak solution

that is well-posed on the entire interval t ∈ [0, T ].

Proof. As the norm in S(n) we take the restriction to S(n) of Euclidean norm (i.e.,

the square root from the sum of squares of all elements of a matrix) in the space

L(Rn, Rn) isomorphic to R
n2

. Since all norms in the finite-dimensional space S(n) are

equivalent to each other, for this norm (2.6) is valid as well, perhaps with another

constant, for which we keep the notation K.

Since a(t, x) is an upper semicontinuous set-valued mapping with closed convex

images, for any there ε > 0 there exists its ε-approximation (see above).
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Choose a sequence εi → 0 such that εi > 0 for all i ∈ N . Denote by ai(t, x)

continuous εi-approximations of a(t, x) in R
n. It is clear that all ai(t, x) satisfy

(2.5) with a certain constant that is bigger than K from the condition of Theorem.

Nevertheless we keep the notation K for this constant. Since clearly 1 + ‖x‖2 ≤
(1 + ‖x‖)2, for ai(t, x) estimate (2.3) is valid as well.

As well as a(t, x), α(t, x) has in S̄+(n) an ε-approximation for any ε > 0 since

α(t, x) is an upper semicontinuous set-valued mapping with closed convex images. For

the sequence εi (see above) consider εi

2
-approximations ᾱi(t, x) of α(t, x). Introduce

αi(t, x) = ᾱi(t, x)+ εi

4
I where I is the unit matrix. Immediately from the construction

it follows that αi(t, x) for any i is a continuous εi-approximation of α(t, x) and that

at any (t, x) it belongs to S+(n), i.e., it is strictly positive definite. Besides, αi(t, x)

satisfy (2.6) where the constant K > 0 is bigger than the constant from the hypothesis

of Theorem but nevertheless we keep the notation K for it.

By Lemma 2.2 there exist continuous Ai(t, x) such that αi(t, x) = Ai(t, x)A∗
i (t, x).

Directly from the definition of trace we obtain that trαi(t, x) is equal to the sum of

squares of all elements of Ai(t, x), i.e., it is the square of the Euclidean norm in

L(Rn, Rn). Hence form (2.6) and from the obvious inequality 1 + ‖x‖2 ≤ (1 + ‖x‖)2

it follows that Ai(t, x) satisfies (2.4).

Thus the stochastic differential equation

(2.7) ξ(t) = ξ0 +

∫ t

0

ai(s, ξ(s))ds +

∫ t

0

Ai(s, ξ(s))dw(s),

satisfies the hypothesis of Theorem III.2.4 [4] and so there exists its weak solution

that is well-posed on the entire interval [0, T ]. Denote by ξi(t) that solution.

Consider the Banach space Ω = C0([0, T ], Rn) with usual norm ‖x(·)‖C0 =

sup
t∈[0,T ]

‖x(t)‖. Via F we denote the σ-algebra on it, generated by cylinder sets. By Pt

we denote the σ-subalgebra of F , generated by cylinder sets with bases on [0, t].

On the measure space ([0, T ],B), where B is Borel σ-algebra, by λ1 we denote

the Lebesgue measure.

The process ξi(t) determines a measure µi on (Ω,F). On the probability space

(Ω,F , µi) the process ξi(t) is the coordinate one, i.e., ξi(t, x(·)) = x(t), x(·) ∈ Ω.

Since ai(t, x) satisfies (2.3) and Ai(t, x) satisfies (2.4) (see above), equations (2.7)

satisfy the hypothesis of Lemma 2.4 for all i and so the estimate

(2.8) E(sup
t≤1

‖ξi(t)‖2) ≤ C2.

is valid for all ξi. In addition by corollary III.2 [4] the set of measures {µi} is weakly

compact, i.e., it is possible to select a subsequence weakly convergent to a certain

measure µ. Denote by ξ(t) the coordinate process on the probability space (Ω,F , µ).
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Let us use the following fact (see [20, 18]): since Ω = C0([0, T ], Rn) is a separable

metric space and the measures µi weakly converge to µ, there exists a certain proba-

bility space (Ω̄, F̄ , P̄) and random elements ξ̄i : Ω̄ → Ω and ξ̄ : Ω̄ → Ω such that the

measures on (Ω,F), generated by them, coincide with µi and µ, respectively, and ξ̄i

converge to ξ̄ P̄-almost surely. Denote elementary events from Ω̄ by ω̄.

As ‖ai(t, ξ̄i(t))‖2 ≤ K(1 + ‖ξ̄i(t)‖2) by (2.5), then, taking into account (2.8), one

can easily see that

(2.9)

∫

Ω̄×[0,T ]

‖ai(t, ξ̄i(t))‖2dP̄ × dλ1 ≤ K1

and so ai(t, ξ̄i(t)) are uniformly bounded with respect to norm in the Hilbert space

L2([0, T ] × Ω̄, Rn). Hence this set is weakly relatively compact in L2([0, T ] × Ω̄, Rn).

Thus it is possible to select a subsequence that weakly in L2([0, T ]× Ω̄, Rn) converges

to a certain ā : [0, T ] × Ω̄ → R
n. Notice (see [17]) that there exists a measurable

mapping a : [0, T ] × Ω → R
n such that ā(t, ω̄) = a(t, ξ̄(ω̄)). By general properties of

weak convergence in Lp-spaces (see [12]) this means that for any set B ∈ F̄ × B the

convergence lim
i→∞

∫

B
ai(t, ξ̄i)dP̄ × dλ1 =

∫

B
a(t, ξ̄)dP̄ × dλ1 takes place.

Denote by a(t, x(·)) the conditional expectation E(a(t, x(·)) | Pt) on the probabi-

lity space (Ω,F , µ). Thus, a(t, x(·)) is measurable with respect to Pt and for any set

Q ∈ Pt the equality
∫

Q

a(t, x(·))dµ =

∫

ξ̄(ω̄)∈Q

ā(t, ω̄)dP̄

holds.

From weak convergence of ai(t, ξ̄i) to a(t, ξ̄) in L2([0, T ] × Ω̄, Rn) it is easy to

derive that for any continuous bounded real function f on Ω at any t ∈ [0, T ] and for

any ∆t > 0 the convergence lim
i→∞

∫

Ω̄

f(ξ̄)[
t+∆t
∫

t

(ai(s, ξ̄i) − a(s, ξ̄))ds]dP̄ = 0 takes place.

Hence for any continuous bounded real function ft on Ω, that is measurable with

respect to Pt, we get

(2.10) lim
i→∞

∫

Ω̄

ft(ξ̄)[

t+∆t
∫

t

(ai(s, ξ̄i) − a(s, ξ̄))ds]dP̄ = 0.

Choose δ > 0. By Egorov theorem there exists a set Kδ ⊂ Ω̄ such that P̄Kδ > 1−δ

and on this set ξ̄i converge to ξ̄ uniformly. Let ht be a uniformly continuous bounded

real function on Ω that is measurable with respect to Pt. Then on Kδ the functions

ht(ξ̄i) uniformly converge to ht(ξ̄). From this it is easy to see that

(2.11) lim
i→∞

∫

Kδ

[(ht(ξ̄) − ht(ξ̄i))(

t+∆t
∫

t

ai(t, ξ̄i)ds)]dP̄ = 0.
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The random elements [ht(ξ̄)−ht(ξ̄i)]ai(t, ξ̄i) are uniformly integrable. This follows

from the facts that ht(ξ̄) − ht(ξ̄i) are bounded, that

‖ai(t, ξi(t))‖ < K(1 + ‖ξi(t)‖),

that by Lemma 2.4 sup
i

∫

Ω̄

‖ξ̄i‖2
C0dP̄ < C and that

∫

‖ξ̄i‖>c

‖ξ̄i‖C0dµi <
1

c

∫

‖ξ̄i‖>c

‖ξ̄i‖2
C0dP̄

(see [2]). Thus ‖
∫

Ω̄\Kδ
[(ht(ξ̄)−ht(ξ̄i))(

∫ t+∆t

t
ai(s, ξ̄i)ds)]dP̄‖ becomes smaller than any

positive number when δ → 0. Together with (2.11) this means that

(2.12) lim
i→∞

∫

Ω̄

[(ht(ξ̄) − ht(ξ̄i))(

∫ t+∆t

t

ai(s, ξ̄i)ds)]dP̄ = 0.

Replace ft in (2.10) with ht from (2.12). Then, taking into account (2.10) and

(2.12), we obtain

lim
i→∞

(

∫

Ω̄

ht(ξ̄)(

t+∆t
∫

t

a(s, ξ̄)ds)dP̄ −
∫

Ω̄

ht(ξ̄i)(

t+∆t
∫

t

ai(s, ξ̄i)ds)dP̄) =

= lim
i→∞

(

∫

Ω̄

ht(ξ̄)(

t+∆t
∫

t

a(s, ξ̄)ds)dP̄ −
∫

Ω̄

ht(ξ̄)(

t+∆t
∫

t

ai(s, ξ̄i)ds)dP̄+

+

∫

Ω̄

ht(ξ̄)(

t+∆t
∫

t

ai(s, ξ̄i)ds)dP̄ −
∫

Ω̄

g(ξ̄i)(

t+∆t
∫

t

ai(s, ξ̄i)ds)dP̄) =

lim
i→∞

(

∫

Ω̄

ht(ξ̄)[

t+∆t
∫

t

(a(s, ξ̄) − ai(s, ξ̄i))ds]dP̄+

(2.13) +

∫

Ω̄

[ht(ξ̄) − ht(ξ̄i)](

t+∆t
∫

t

ai(s, ξ̄i)ds)dP̄) = 0.

Notice that the random elements ht(ξ̄i)ξ̄i are uniformly integrable. Indeed, ht is

bounded, i.e., |ht(ξ̄i)| < Ξ for all i where Ξ > 0 is a certain constant, by Lemma 2.4

sup
i

‖ξ̄i‖2
C0 < C2 and

∫

|ht(ξ̄i)|‖ξ̄i‖C0>c

|ht(ξ̄i)|‖ξ̄i‖C0dP <
1

c

∫

|ht(ξ̄i)|‖ξ̄i‖C0>c

|ht(ξ̄i)|‖ξ̄i‖2
C0dP <

ΞC2

c
.

Since ht(ξ̄i)ξ̄i converge to ht(ξ̄)ξ̄ P̄-a.s., from this it follows that

(2.14) lim
i→∞

∫

Ω̄

ht(ξ̄i)ξ̄idP̄ =

∫

Ω̄

ht(ξ̄)ξ̄dP̄.
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From (2.13) and (2.14) it follows that on (Ω,F) for any uniformly continuous

bounded real function ht : Ω → R, that is measurable with respect to Pt, the relation

lim
i→∞

∫

Ω

[(x(t + ∆t) − x(t)) −
t+∆t
∫

t

ai(s, x(s))ds]ht(x(·))dµi =

=

∫

Ω

[(x(t + ∆t) − x(t)) −
t+∆t
∫

t

a(s, x(·))ds]ht(x(·))dµ

takes place. Since, by construction, the process ξi(t)−
t
∫

0

ai(s, ξi(s))ds is a martingale

with respect to Pt for any i, then

∫

Ω

[(x(t + ∆t) − x(t)) −
t+∆t
∫

t

ai(s, x(s))ds]ht(x(·))dµi = 0

for all i. Hence

∫

Ω

[(x(t + ∆t) − x(t)) −
t+∆t
∫

t

a(s, x(s))ds]ht(x(·))dµ = 0.

From this evidently follows

Lemma 2.7. The process ξ(t) −
t
∫

0

a(s, ξ(s))ds is a martingale with respect to Pt.

Now let us turn to αi and Ai.

Since ‖Ai(t, x(t))‖2 ≤ K(1+‖x(t)‖2), on the probability space (Ω̄, F̄ , P̄) we obtain

(2.15)

∫

[0,T ]×Ω̄

‖Ai(t, ξ̄i)‖2dP̄ × dλ1 ≤ K2

and so Ai(t, ξ̄i) are uniformly bounded by the norm in Hilbert space L2([0, T ] ×
Ω̄, L(Rn, Rn)), i.e., the set of Ai(t, ξ̄i) is weakly relatively compact in L2([0, T ] ×
Ω̄, L(Rn, Rn)).

Notice that from the equality αi(t, x) = Ai(t, x)A∗
i (t, x) it follows that the ele-

ments of the matrix αi(t, x) are sums of products of elements of Ai(t, x). Then from

the fact that trαi(t, x) is equal to the sum of squares of all elements of Ai(t, x), from

(2.6) and from Lemma 2.4 one can easily derive that for all i the estimate

(2.16)

∫

[0,T ]×Ω̄

‖αi(t, ξ̄i)‖2dP̄ × dλ1 ≤ K3

holds, i.e., the set of αi(t, ξ̄i) for all i is uniformly bounded by the norm in the space

L2([0, T ] × Ω̄, S(n)) and so this set is weakly relatively compact.
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Thus we can select a sequence of indices i so that Ai(t, ξ̄i) weakly in L2([0, T ] ×
Ω̄, L(Rn, Rn)) converge to a certain Ā : [0, T ] × Ω̄ → L(Rn, Rn) and also αi(t, ξ̄i)

weakly in L2([0, T ] × Ω̄, S(n)) converge to a certain ᾱ : [0, T ] × Ω̄ → S(n). By the

construction α(t, ω̄) = A(t, ω̄)A∗(t, ω̄).

From the properties of conditional expectations it follows that there exist the

measurable mappings A : [0, T ] × Ω → L(Rn, Rn) such that Ā(t, ω̄) = A(t, ξ̄(ω̄)),

and ℵ : [0, T ] × Ω → S(n) such that ᾱ(t, ω̄) = ℵ(t, ξ̄(ω̄)). Consider the following

conditional expectations on probability space (Ω,F , µ): A(t, x(·)) = E(A(t, x(·)) | Pt)

and α(t, x(·)) = E(ℵ(t, x(·)) | Pt). By construction, at each t ∈ [0, T ] they are

measurable with respect to Pξ
t .

By an elementary modification of arguments, used above for ai(t, x(t)), one can

show that for any uniformly continuous, bounded, real function ht : Ω → R, that is

measurable with respect to Pt, the convergence

lim
i→∞

∫

Ω

[(x(t + ∆t) − x(t))(x(t + ∆t) − x(t))∗

−
t+∆t
∫

t

Ai(s, x(s))A∗
i (s, x(s))ds]ht(x(·)dµi =

=

∫

Ω

[(x(t + ∆t) − x(t))(x(t + ∆t) − x(t))∗

−
t+∆t
∫

t

A(s, x(·))A∗(s, x(·))ds]ht(x(·)dµ

holds. Also for each i
∫

Ω

[(x(t + ∆t) − x(t))(x(t + ∆t) − x(t))∗

−
t+∆t
∫

t

Ai(s, x(s))A∗
i (s, x(s))ds]ht(x(·)dµi = 0

and, consequently,
∫

Ω

[(x(t + ∆t) − x(t))(x(t + ∆t) − x(t))∗

−
t+∆t
∫

t

A(s, x(·))A∗(s, x(·))ds]ht(x(·)dµ = 0.

By Lemma 2.7 for the coordinate process ξ(t) on the probability space (Ω,F , µ)

the process ξ(t) −
∫ t+∆t

t
a(s, ξ(·))ds is a martingale with respect to Pt. From this,
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by methods of [4], one can derive from the above arguments that ξ(t) satisfies the

equality

ξ(t) = ξ0 +

∫ t

0

a(s, ξ(·))ds +

∫ t

0

A(s, ξ(·))dw(s),

where w(t) is a certain Wiener process on (Ω,F , µ), adapted to Pt. By the construc-

tion of ξ(t), for each t the σ-algebra Pt is the ”past” for ξ(t). Hence ξ(t) is a diffusion

type process. Then by Theorem 1.7 Dξ = E
ξ
t (a(t, ξ(·))) and by Theorem 1.8 D2ξ(t) =

E
ξ
t (A(t, ξ(·))A∗(t, ξ(·))) = E

ξ
t (α(t, ξ(·))).

It remains to show that µ-a.s. E
ξ
t (a(t, ξ(·))) ∈ a(t, ξ(t)) and that E

ξ
t (α(t, ξ(·)) ∈

α(t, ξ(t)). By Mazur’s lemma (see, e.g., [22]), for a weakly convergent sequence

ai(t, ξ̄i(t)) to ā : [0, T ]× Ω̄ → R
n in L2([0, T ]× Ω̄, Rn) there exists a sequence of finite

convex combinations of its elements that converges in the same space strongly (in

norm). The convex combinations have the form

ãk(t, ξ̄i) =

n(k)
∑

i=j(k)

βiai(t, ξ̄i)

where βi ≥ 0, i = j(k), . . . , n(k) and
n(k)
∑

i=j(k)

βi = 1. As a has convex images, ãi are

ε-approximations with ε → 0. Since the convergence is strong in L2([0, T ] × Ω̄, Rn),

the limit a(t, ξ̄) belongs to a P̄-a.s.

For α the proof is completely analogous.

Theorem 2.8. Suppose that α(t, x) takes values in the space S̄+(n) of positive semi-

definite symmetric matrices, has closed convex images, it is lower semicontinuous and

for each α ∈ α(t, x) the following estimate

(2.17) ‖trα(t, x)‖ < K(1 + ‖x‖)2

holds for some K > 0. Let also a(t, x) be Borel measurable set-valued mapping and

satisfy the estimate

(2.18) ‖a(t, x)‖ < K(1 + ‖x‖)

for some K > 0. Then for any initial condition ξ(0) = ξ0 there exists a weak solution

of (2.2) that is well-posed on the entire interval t ∈ [0, T ].

Proof. From Michael’s theorem it follows that under the conditions of Theorem 2.8 the

set-valued mapping α(t, x) has a single-valued continuous selector α(t, x). Obviously

α(t, x) belongs to S̄+(n) at any t, x. The Borel measurable set-valued mapping a(t, x)

has a Borel measurable single-valued selector a(t, x).

Take a sequence of positive εi → 0. Introduce αi(t, x) = α(t, x) + εiI where I is

the unit n×n matrix. Obviously αi are strictly positive definite and continuous. Then

by Lemma 2.2 there exists a continuous Ai(t, x) such that Ai(t, x)A∗
i (t, x) = αi(t, x).
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Recall that trαi(t, x) is equal to the sum of squares of all elements of Ai(t, x), i.e.,

it is the square of the Euclidean norm in L(Rn, Rn). Since in the finite-dimensional

linear space S(n) all norms are equivalent, from (2.17) it immediately follows that

‖A(t, x)‖ < K(1 + ‖x‖) for some K > 0. As αi(t, x) is positive definite, the matrix

Ai(t, x) is not degenerate at all t, x. Since a(t, x) is measurable and satisfies (2.17),

under the above-mentioned properties of Ai(t, x) by Theorem III.3.3 [4] there exists

a weak solution of the stochastic differential equation

(2.19) ξi(t) = ξ0 +

∫ t

0

a(s, ξi(s))ds +

∫ t

0

Ai(s, ξi(s))dw(s),

well-posed on the entire interval t ∈ [0, T ]. Denote by ξi(t) this solution of (2.19).

It determines a measure µi on (Ω,F) where (Ω,F) was introduced in the Proof of

Theorem 2.6.

The rest of the proof is quite analogous to that of Theorem 2.6. All equations

(2.19) satisfy the hypothesis of Lemma 2.4. The set of measures {µi} is weakly com-

pact so that there exists a subsequence that weakly converges to a certain measure µ.

Denote by ξ(t) the coordinate process on the probability space (Ω,F , µ). Construct

A(t, x(·)) in complete analogy with that in Theorem 2.6, i.e., as a weak limit in the cor-

responding space L2 of the bounded (and so weakly compact) set Ai. The process ξ(t)

satisfies the equality ξ(t) = ξ0+
∫ t

0
a(s, ξ(s))ds+

∫ t

0
A(s, ξ(·))dw where w(t) is a certain

Wiener process. Since by construction αi converge to α uniformly, one can easily show

that

E
ξ
t (AA∗) = α. Taking into account Theorems 1.7 and 1.8, this means that ξ(t)

is a weak solution of (2.2) that we are looking for.

3. DIFFERENTIAL INCLUSIONS WITH BACKWARD MEAN

DERIVATIVES

Equations and inclusions with backward mean derivatives arise in description of

some special stochastic processes of mathematical physics. Say (see, e.g., [9, 10]) a

second order equation in backward mean derivatives of the group of Sobolev diffeo-

morphisms is derived that describes a process whose expectation is a flow of viscous

incompressible fluid. It should be pointed out that such equations and inclusions are

much more complicated for investigation than those with forward mean derivatives.

Nevertheless there exists a simple method of using inverse time direction for solutions

of equations and inclusions with forward mean derivatives, that allows one to obtain

some results for the case of backward mean derivatives. In this section we illustrate

this method on some examples.
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The system

(3.1)

{

D∗ξ(t) = a(t, ξ(t))

D2ξ(t) = α(t, ξ(t))

is called a first order differential equation with backward mean derivatives.

Notice that we do not introduce the notion of backward analog of operator D2

since, applying the properties of Itô integral, one can easily prove that for a diffusion

type process ξ(t) the result of application of that analog coincides with D2ξ(t) (for

the case of diffusion processes this follows from the results of [15, 16]).

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × R
n to R

n and to

S̄+(n), respectively. The system of the form

(3.2)

{

D∗ξ(t) ∈ a(t, ξ(t)),

D2ξ(t) ∈ α(t, ξ(t)).

is called a first order differential inclusion in backward mean derivatives.

Consider a weak solution η(t), given on t ∈ [0, T ], with initial condition η(0) = 0

of the following differential inclusion with forward mean derivatives

(3.3)

{

Dη(t) ∈ −a(1 − t, η(t)),

D2η(t) ∈ α(1 − t, η(t)).

Theorem 3.1. The process ξ(t) = ξ0 − η(T ) + η(T − t) is a weak solution of (3.2)

with initial condition ξ(0) = ξ0 where η(t) is a solution of (3.3) with initial condition

η(0) = 0.

Indeed, D∗ξ(t) = −Dη(T − t) ∈ a(t, η(T − t)) = a(t, ξ(t)). For D2ξ(t) the

arguments are analogous.

4. DIFFERENTIAL INCLUSIONS WITH CURRENT VELOCITIES

As it is mentioned in Section 1, the meaning of current velocities is analogous

to that of ordinary velocity for a non-random process. Thus the case of equations

and inclusions with current velocities is probably the most natural from the physical

point of view.

The system

(4.1)

{

DSξ(t) = v(t, ξ(t))

D2ξ(t) = α(t, ξ(t))

is called a first order differential equation with current velocities.
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Theorem 4.1. Let v : [0, T ] × R
n → R

n be smooth and α : R
n → S+(n) be smooth

and autonomous (so, it determines the Riemannian metric α(·, ·) on R
n, introduced

in Section 1). Let also they satisfy the estimates

(4.2) ‖v(t, x)‖ < K(1 + ‖x‖),

(4.3) tr α(x) < K(1 + ‖x‖2)

for some K > 0. Let ξ0 be a random element with values in R
n whose probability

density ρ0 with respect to the the volume form Λα of α(·, ·) on R
n (see Section 1), is

smooth and nowhere equal to zero. Then for the initial condition ξ(0) = ξ0 equation

(4.1) has a weak solution that is well posed on the entire interval t ∈ [0, T ].

Proof. Since v(t, x) is smooth and estimate (4.2) is fulfilled, its flow gt is well posed

on the entire interval t ∈ [0, T ]. By gt(x) we denote the orbit of the flow (i.e., the

solution of equation x′(t) = v(t, x)) with the initial condition g0(x) = x. Since v(t, x)

is smooth, its flow is also smooth.

Continuity equation (1.8) obviously can be transformed into the form

(4.4)
∂ρ

∂t
= −α(v, Grad ρ) − ρ Div v.

Suppose that ρ(t, x) nowhere in [0, T ]× R
n equals zero. Then we can divide (4.4) by

ρ so that it is transformed into the equation

(4.5)
∂p

∂t
= −α(v, Grad p) − Div v

where p = log ρ. Introduce p0 = log ρ0.

Show that the solution of (4.5) with initial condition p(0) = p0 is described by

the formula p(t, x) = p0(g−t(x)) −
∫ t

0
(Div v)(s, gs(g−t(x)) ds. Introduce the product

[0, T ] × R
n and consider the function p0 as given on the level surface (0, Rn). Con-

sider the vector field (1, v(t, x)) on [0, T ] × R
n. The orbits of its flow ĝt, starting

at the points of (0, Rn), have the form ĝt(0, x) = (t, gt(x)) and the flow is smooth

as well as gt. Also introduce on [0, T ] × R
n the Riemannian metric α̂(·, ·) by the

formula α̂((X1, Y1), (X2, Y2)) = X1X2 + α(Y1, Y2). Notice that for any (t, x) the

point ĝ−t(t, x) belongs to (0, Rn) where the function p0 is given. Thus on the one

hand (1, v)p(t, x), the derivative of p(t, x) in the direction of (1, v), by construc-

tion equals −Div v(t, x). And on the other hand one can easily calculate that

(1, v)p(t, x) = ∂
∂t

p(t, x) + α(v(t, x), Grad p(t, x)). Thus (4.5) is satisfied.

Notice that ρ = ep is indeed nowhere zero and so our arguments are well-posed.

Since ρ(t, x) is well-posed for all t ∈ [0, T ], it determines a process ξ(t) with

this probability density and so with initial density ρ0. By the construction DSξ(t) =

v(t, ξ(t)).

Introduce u = 1
2
Grad p = Grad log

√
ρ and a(t, x) = v(t, x) + u(t, x).



DIFFERENTIAL INCLUSIONS 67

From Lemma 2.2 and from the hypothesis of Theorem it follows that there exists

smooth A(t, x) such that A(t, x)A∗(t, x) = α(t, x) and the relation ‖A(t, x)‖ < K(1+

‖x‖) holds. Then ξ(t) satisfies the stochastic differential equation

(4.6) ξ(t) = ξ0 +

t
∫

0

a(s, ξ(s))ds +

t
∫

0

A(s, ξ(s))dw(s)

and so by Theorem 1.8 D2ξ(t) = α(ξ(t)).

Lemma 4.2. Let α(x), ρ(t, x) and Λα be the same as in Theorem 4.1. Let also

the vector field v from Theorem 4.1 be autonomous. Then the flow ĝt of vector field

(1, v(x)) on [0, T ] × R
n preserves the volume form ρ(t, x)dt ∧ Λα (i.e., ĝ∗

t (ρ(t, x)dt ∧
Λα) = ρ0(x)dt ∧ Λα where ĝ∗

t is the pull back) and so for any measurable set Q ⊂ R
n

and for any t ∈ [0, T ]
∫

Q

ρ0(x)Λα =

∫

gt(Q)

ρ(t, x)Λα.

Proof. It is enough to show that L(1,v)(ρ(t, x)dt ∧ Λα) = 0 where L(1,v) is the Lie

derivative along (1, v). Obviously

L(1,v)(ρ(t, x)dt ∧ Λα) = (L(1,v)ρ(t, x))dt ∧ Λα + ρ(t, x)(L(1,v)dt ∧ Λα).

For a function the Lie derivative coincides with the derivative in direction of vector

field, hence L(1,v)ρ(t, x) = ∂ρ

∂t
+ α(v, Grad ρ) (see the proof of Theorem 4.1) and so

(L(1,v)ρ(t, x))dt∧Λα = (∂ρ

∂t
+ α(v, Grad ρ))dt∧Λα. Since neither the form Λα nor the

vector filed v(x) depend on t, L(1,v)dt∧Λα = dt∧ (LvΛα) = Div v ( dt∧Λα) as the Lie

derivative along v of the volume form Λα equals (Div v)Λα (see, e.g., [19]). Taking

into account (4.4), we obtain L(1,v)(ρ(t, x)dt ∧ Λα) = 0.

Let v(t, x) and α(t, x) be set-valued mappings from [0, T ] × R
n to R

n and to

S̄+(n), respectively. The system of the form

(4.7)

{

DSξ(t) ∈ v(t, ξ(t)),

D2ξ(t) ∈ α(t, ξ(t)).

is called a first order differential inclusion with current velocities.

To avoid some technical difficulties we investigate the first order differential in-

clusion with current velocities on flat n-dimensional torus T
n, i.e. the Riemannian

metric on T
n is inherited from R

n after factorization with respect to the integer lat-

tice. As usual this problem can be considered as the one in R
n with periodical data.

The key fact that makes the use of T
n more simple for investigation is that T

n is a

compact manifold and so all our smooth objects become bounded.

It should be also pointed out that the theory of mean derivatives and so the

corresponding equations or inclusions on general Riemannian manifolds are naturally
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connected with the theory of Itô equations in Belopolskaya-Daletskii form (see, e.g.,

[1, 5, 6, 10]) that involves serious geometric structures (we suppose to consider this

theory in another publication). But this is not the case for flat torus since locally it

is the same as R
n.

Notice also that the tangent bundle TT
n to T

n is trivial: TT
n = T × R

n, and

so all vector fields on T
n can be considered as mappings from T

n to R
n as well as

symmetric semi-positive definite (2, 0)-tensor fields (like α above) can be considered

as mappings from T
n to S̄+(n).

Here we shall proof existence of solutions of (4.7) only in the simplest situation

where a single-valued α takes the form α = σ2I for I being the unit matrix, σ > 0

being a constant, and a set-valued v satisfies a rather strong hypothesis:

Theorem 4.3. Let v(x) be a uniformly bounded autonomous set-valued mapping from

T
n to R

n with closed convex images. Suppose that there exists a sequence of positive

numbers εi → 0 such that for any εi the mapping v(x) has a smooth εi-approximation

vi(x) and all those approximations have uniformly bounded first partial derivatives
∂vi

∂xj
.

Let ξ0 be a random element with values in T
n whose probability density ρ0 with

respect to the Euclidean volume form dt∧dx1∧· · ·∧dxn on T
n is smooth and nowhere

equal to zero. Then for the initial condition ξ(0) = ξ0 inclusion

(4.8)

{

DSξ(t) ∈ v(ξ(t))

D2ξ(t) = σ2I

has a weak solution that is well-posed on the entire interval t ∈ [0, T ].

Proof. Notice that the Riemannian metric on T
n, generated by the field of matrices

σ2I, is 1
σ2 (·, ·) where (·, ·) is the Euclidean metric inherited from R

n. In particular

this means that for any function f we get Grad f = σ2grad f where grad f is the

ordinary gradient corresponding to the Euclidean metric.

Denote by ξi(t) the solution of equation
{

DSξi(t) = vi(ξi(t))

D2ξi(t) = σ2I

with initial condition ξ(0) = ξ0 that exists by Theorem 4.1. By ρi(t, x) we denote the

corresponding density. Recall that ξi(t) satisfies the Itô equation

(4.9) ξi(t) = ξ0 +

t
∫

0

ai(s, ξi(s))ds + σw(t)

where ai(t, x) = vi(x) + Grad pi(t, x) for pi(t, x) = log
√

ρi(t, x).
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Consider Ω = C0([0, T ], Tn) and the σ-algebra F on it generated by cylinder sets.

Denote by µi the measure on (Ω,F) generated by ξi(t).

By Lemma 4.2 ρi(t, x)dt∧ dx1 ∧ · · · ∧ dxn = ĝ
(i)∗
t ρ0(t, x)dt∧ dx1 ∧ · · · ∧ dxn where

ĝ
(i)
t is the flow of vector field (1, vi) on [0, 1] × T

n. Hence ∂ρi

∂xj
equals (T ĝ−t

∂
∂xj )ρ0, the

derivative of ρ0 in the direction of vector field (T ĝ−t
∂

∂xj ) where T ĝ−t is the tangent

mapping to ĝ−t. Since all partial derivatives of all vi are uniformly bounded, all T ĝ−t

are also uniformly bounded and we obtain that the derivatives ∂ρi

∂xj
are uniformly

bounded for all i = 1, . . .∞ and all j = 1, 2, . . . , n as well as all ∂pi

∂xj . Thus all

vector fields Grad pi for all i are uniformly bounded. Since all vi(x) are evidently also

bounded, this means that all ai(t, x) form equations (4.9) are uniformly bounded.

Hence corollary III.2 [4] is valid for equations (4.9), i.e., the set of measures {µi}
is relatively weakly compact and so we can choose a subsequence in {µi} that weakly

converges to a certain measure µ. For the sake of simplicity let {µi} itself be that

subsequence. Denote by ξ(t) the coordinate process on probability space (Ω,F , µ).

As well as in the proof of Theorem 2.6 we can introduce a probability space

(Ω̄, F̄ , P̄) and random elements ξ̄i : Ω̄ → Ω and ξ̄ : Ω̄ → Ω such that the measures

on (Ω,F), generated by them, coincide with µi and µ, respectively, and ξ̄i converge

to ξ̄ P̄-almost surely. Recall that in this case P̄-a.s. convergence means that for

P̄-almost all ω̄ the curves ξ̄i(ω̄) uniformly on [0, T ] converge to ξ̄(ω̄). Evidently, if

h is a uniformly continuous function on Ω, then for P̄-almost all ω̄ we obtain that

h(ξ̄i(ω̄))ξ̄i(ω̄)(s) uniformly in s ∈ [0, T ] converge to h(ξ̄(ω̄))ξ̄(ω̄)(s).

Notice that the sets {ai(t, ξ̄i(t))} and {vi(ξ̄i(t))} are weakly compact in L2([0, T ]×
Ω̄, Rn) and so we can take weakly convergent subsequences from them. As usual we

suppose that the sequences {ai(t, ξ̄i(t))} and {vi(ξ̄i(t))} are weakly convergent. In

complete analogy with the proof of Theorem 2.6 introduce ā : [0, T ] × Ω̄ → R
n as a

weak limit of ai(t, ξ̄i(t)) and v̄ : [0, T ] × Ω̄ → R
n as a weak limit of vi(ξ̄i(t)). Also

denote by a : [0, T ] × Ω → R
n and by v : [0, T ] × Ω → R

n measurable mappings,

existing by [17], such that ā(t, ω̄) = a(t, ξ̄(ω̄)) and v̄(t, ω̄) = v(t, ξ̄(ω̄)). As well as in

Theorem 2.6 ξ(t) satisfies the equation

ξ(t) = ξ0 +

t
∫

0

a(s, ξ(s))ds + σw(t).

where a(t, x(·)) = E(a(t, x(·)) | Pt) on the probability space (Ω,F , µ), Pt is the σ-

algebra generated by cylinder sets with bases over [0, t] (see the proof of Theorem 2.6

for details). From this by Theorem 1.8 it follows that D2ξ(t) = σ2I.

Denote by Nt the σ-algebra generated by cylinder sets with bases over the point

t and by v(x) = E(v(t, x(·)) | ξ̄(t) = x) denote the regression for the conditional

expectation E(v(t, x(·)) | Nt) on the probability space (Ω,F , µ). Notice that by

construction v(x) is a measurable vector field on R
n such that v(ξ̄(t)) = v(t, ξ̄).
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Again analogously to the proof of Theorem 2.6 we can derive from weak conver-

gence of vi(ξ̄i(t)) to v(t, ξ̄) in L2([0, t] × Ω̄, Rn) that for any s ∈ [0, T ] and for any

continuous bounded real function ft on Ω, that is measurable with respect to Nt, at

any s ∈ [0, T ] we get

(4.10) lim
i→∞

∫

Ω̄

ft(ξ̄)(vi(ξ̄i(s)) − v(ξ̄(s)))dP̄ = 0

and that for a uniformly continuous bounded real function ht on Ω, measurable with

respect to Nt, we can derive from P̄-a.s. uniform in s ∈ [0, T ] convergence of ht(ξ̄i)ξ̄i

to ht(ξ̄)ξ̄ (see above) that for any s ∈ [0, T ]

(4.11) lim
i→∞

∫

Ω̄

ht(ξ̄i)ξ̄i(s)dP̄ =

∫

Ω̄

ht(ξ̄)ξ̄(s)dP̄.

By definition of DS we get for any i

lim
∆t→+0

1

2∆t

∫

Ω̄

ht(ξ̄i)(ξ̄i(t + ∆t) − ξ̄i(t − ∆t))dP̄ =

∫

Ω̄

ht(ξ̄i)vi(ξ̄i(t))dP̄.

To show that DSξ(t) = v(ξ(t)) it is enough to prove that

lim
∆t→+0

1

2∆t

∫

Ω̄

ht(ξ̄)(ξ̄(t + ∆t) − ξ̄(t − ∆t))dP̄ =

∫

Ω̄

ht(ξ̄)v(ξ̄(t))dP̄.

From (4.11) it follows that for given ε > 0 there exists N such that for all i > N

‖
∫

Ω̄

ht(ξ̄i)(ξ̄i(t + ∆t) − ξ̄i(t − ∆t))dP̄ −
∫

Ω̄

ht(ξ̄)(ξ̄(t + ∆t) − ξ̄(t − ∆t))dP̄‖ < ε

for any ∆t. Thus for ∆t small enough

‖1

2

∫

Ω̄

ht(ξ̄)(ξ̄(t + ∆t) − ξ̄(t − ∆t))dP̄ −
∫

Ω̄

ht(ξ̄i)vi(ξ̄i(t))dP̄∆t‖ < ε.

Taking into account (4.10) and P̄-a.s. uniform convergence of ht(ξ̄i) to ht(ξ̄) one can

easily show that
∫

Ω̄

ht(ξ̄i)vi(ξ̄i(t))dP̄ −
∫

Ω̄

ht(ξ̄)v(ξ̄(t))dP̄ =

∫

Ω̄

(ht(ξ̄i) − ht(ξ̄))vi(ξ̄i(t))dP̄ +

∫

Ω̄

ht(ξ̄)(vi(ξ̄i(t)) − v(ξ̄(t))dP̄

becomes less than any ε for i large enough. This completes the proof that DSξ(t) =

v(ξ(t)).

The fact that v(t, ξ(·)) ∈ v(ξ(t)) µ-a.s. is proved analogously to that in the Proof

of Theorem 2.6 by application of Mazur’s lemma.
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