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1. INTRODUCTION

It is well known that certain classical results of functional analysis, like the theo-

rems of Banach-Saks-Mazur [3] [24] and Kakutani-Ky Fan [15] [9], have a fundamental

role in many areas of mathematics, in particular in the theory of differential inclu-

sions in finite (or infinite) dimensional Euclidean spaces. For a fuller information and

bibliography on this subject, see the monographs of Aubin and Cellina [2] and Hu

and Papageorgiou [13].

Let Rd be the real d-dimensional Euclidean space, and let X be the hyperspace

of all nonempty compact convex subsets of Rd.

In the present paper we establish some multivalued analogues of the theorems of

Banach-Saks-Mazur and Kakutani-Ky Fan (see Theorems 3.4, 3.8), which are valid

for maps with values in the hyperspace X. These results turn out to be useful in the

investigation of set differential inclusions.

Denote by Φ a multifunction from I × X, I = [0, 1], to the space of all nonempty

compact convex subsets of X. For A ∈ X, consider the Cauchy problem with Hukuhara

derivative, of the form

DX(t) ∈ Φ(t, X(t)) X(0) = A . (C)

Under Carathéodory assumptions on Φ, it will be proved that the Cauchy problem

(C) has solutions (Theorem 4.4). In our approach we follow some ideas contained in
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the seminal papers of Lasota and Opial [23] and Lasota and Olech [22]. Moreover,

we use an important characterization theorem for integrals of multifunctions, due to

Hermes [10], and the multivalued analogues of the theorems of Banach-Saks-Mazur

and Kakutani-Ky Fan.

Under stronger assumptions on Φ, an existence theorem for the Cauchy problem

(C) has recently been obtained in [6], by using a quite different approach.

It is worth noting that the investigation of set differential equations was started

in 1969 by de Blasi and Iervolino [5]. For developments, also in other directions, see

Brandão Lopes Pinto, de Blasi and Iervolino [4], Kisielewicz [16] [17], Kisielewicz,

Serafin and Sosulski [18], Michta [25] [26], Artstein [1], Plotnikov and Plotnikova [30],

Plotnikov and Rashkov [31], Lakshmikantham, Gnana Bhaskar and Vasumdhara Devi

[21]. Moreover, evidence of the relations of this kind of differential equations with

other areas, as ordinary differential inclusions, control theory, fuzzy and stochastic

differential equations, can be found in Diamond and Kloeden [8], Tolstonogov [32],

Lakshmikantham [19], Michta [27], Michta and Motyl [28], Lakshmikantham, Leela

and Vatsala [20], Plotnikov and Tumbrukaki [29].

The present paper consists of 4 sections, with the introduction. Section 2 contains

notation and preliminaries. Section 3 contains the multivalued versions of the theo-

rems of Banach-Saks-Mazur and Kakutani-Ky Fan. Section 4 contains an existence

theorem for the Cauchy problem (C).

2. NOTATION AND PRELIMINARIES

Let M be a metric space with distance ρ and let P(M) be the space of all

nonempty bounded subsets of M .

If a ∈ M and φ 6= X ⊂ M , put d(a, X) = infx∈X ρ(a, x). For X, Y ∈ P(M) let

e(X, Y ) = sup
x∈X

d(x, Y ) e(Y, X) = sup
y∈Y

d(y, X)

and define

h(X, Y ) = max{e(X, Y ), e(Y, X)} .

h is a semidistance on P(M). It is a distance, said the Pompeiu-Hausdorff metric,

when it is restricted to the space of all nonempty compact subsets of M . The latter

space is complete and separable if so is M .

By BM(a, r) and BM [a, r] we mean an open and a closed ball in M with centre

a and radius r. If φ 6= A ⊂ M and r ≥ 0, we set NM [A, r] = {x ∈ M |d(x, A) ≤ r}.

Let T be a metric space. A map Ψ : T → P(M) is upper semicontinuous

(u.s.c.) (resp. lower semicontinuous (l.s.c.), continuous) at x0 ∈ T if for every ε >

0 there exists δ > 0 such that x ∈ BT (x0, δ) implies e(Ψ(x), Ψ(x0)) < ε (resp.
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e(Ψ(x0), Ψ(x)) < ε, h(Ψ(x), Ψ(x0)) < ε) or, equivalently, Ψ(x) ⊂ NM [Ψ(x0), ε] (resp.

Ψ(x0) ⊂ NM [Ψ(x), ε], h(Ψ(x), Ψ(x0)) < ε).

Let Rd be the usual d-dimensional real Euclidean space with norm | · | induced

by the inner product 〈·, ·〉. Set

X = {A ⊂ R
d|A is nonempty compact convex} .

X is endowed with the Pompeiu-Hausdorff distance h, under which it is a complete

and separable metric space. We introduce in X the Minkowski operations of addition

and multiplication by nonnegative scalars, given by

A + B = {a + b ∈ R
d|a ∈ A , b ∈ B} , λA = {λa ∈ R

d|a ∈ A}

where A, B ∈ X and λ ≥ 0.

Remark 2.1. X is a semilinear space, i.e. X is closed under the above operations and,

moreover, for arbitrary A, B, C ∈ X and λ, µ ≥ 0 the following properties are satisfied:

(i) A+{0} = A (0 the zero of Rd); (ii) A+B = B+A; (iii) A+(B+C) = (A+B)+C;

(iv) 1·A = A; (v) λ(µA) = (λµ)A; (vi) λ(A+B) = λA+λB; (vii) (λ+µ)A = λA+µA.

For convenience we put |A| = sup{|a| |a ∈ A} if A ⊂ Rd is non empty and

bounded.

A set A ⊂ X is convex if (1 − λ)A + λB ∈ A for all A, B ∈ A and λ ∈ [0, 1].

Set

K(X) = {A ⊂ X|A is nonempty compact convex} .

K(X) is endowed with the Pompeiu-Hausdorff distance hK under which it is a complete

and separable metric space. We introduce in K(X) the Minkowski operations of

addition and multiplication by nonnegative scalars, given by

A + B = {A + B ∈ X|A ∈ A, B ∈ B} , λA = {λA ∈ X|A ∈ A} ,

where A, B ∈ K(X) and λ ≥ 0.

Remark 2.2. K(X) is a semilinear space. Moreover, if A ∈ K(X) and ε > 0, then

NX[A, ε] ∈ K(X).

Let J be a bounded and measurable subset of R.

A map U : J → X (resp. Ψ : J → K(X)) is measurable if, for each closed

C ⊂ Rd (resp. C ⊂ X) the set {t ∈ J |U(t) ∩ C 6= φ} (resp. {t ∈ J |Ψ(t) ∩ C 6= φ})

is Lebesgue measurable. If U : J → X is measurable and integrably bounded, i.e.



76 F. S. DE BLASI

∫

J
|U(t)|dt < +∞, then the Hukuhara integral [14] of U on J exists and is denoted

by
∫

J
U(t)dt.

For any A ∈ X and u ∈ Rd, set

(2.1) σ(u, A) = max
a∈A

〈u, a〉 .

The map σ(·, A) : Rd → R defined by (2.1) for each u ∈ Rd, is called the support

function of A. For details see Hörmander [12] and Hu and Papageorgiou [13].

Some elementary properties of the support function are collected in the following

Remark 2.3. Let A, B ∈ X, u ∈ Rd, and α, β ≥ 0. Then, (i) σ(αu, A) = α σ(u, A);

(ii) σ(u, αA+βB) = ασ(u, A)+βσ(u, B); (iii) A ⊂ B if and only if σ(u, A) ≤ σ(u, B)

for every u ∈ Rd; (iv) if un → u and An → A, where un, u ∈ Rd and An, A ∈ X, then

σ(un, An) → σ(u, A); (v) h(A, B) = max|u|=1 |σ(u, A) − σ(u, B)|.

Remark 2.4. If U : I → X is Hukuhara integrable, then

σ

(

u,

∫

I

U(t)dt

)

=

∫

I

σ(u, U(t))dt for each u ∈ R
d .

The space I ×X, where I = [0, 1], is endowed with the metric max{|t− t′|, h(X, X ′)},

(t, X), (t′, X ′) ∈ I × X.

Given Φ : I ×X → K(X) and A ∈ X, consider the Cauchy problem (C). For Φ we

shall use the following assumptions:

(h1) the map t → Φ(t, X) is measurable, for each X ∈ X;

(h2) the map X → Φ(t, X) is u.s.c. for each t ∈ I;

(h3) Φ(t, X) ⊂ BX[0, M ], M > 0, for each (t, X) ∈ I × X.

A map X : I → X is solution of the Cauchy problem (C), if there exists a

measurable map U : I → X such that:

X(t) = A +

∫ t

0

U(s)ds for each t ∈ I ,

U(t) ∈ Φ(t, X(t)) for t ∈ I a.e.

Here the integral is in the sense of Hukuhara.

By virtue of [14], [5], if X is solution of the Cauchy problem (C), then X is

continuous on I, has Hukuhara derivative DX a.e. in I, and DX(t) = U(t) for t ∈ I

a.e.
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3. BANACH-SAKS-MAZUR AND KAKUTANI-KY FAN THEOREMS

FOR MULTIFUNCTIONS

In this section we present some multivalued analogues of the theorems of Banach-

Saks-Mazur and Kakutani-Ky Fan for maps taking their values in the hyperspace X.

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.

We write yn
s
→ y (resp. yn

w
→ y) to mean that yn converges strongly (resp. weakly)

to y in H, as n → +∞.

The following geometric lemma is probably known, yet the author is unable to

furnish any reference. Therefore the proof is included.

Lemma 3.1. Let {yn} ⊂ H be a sequence which converges weakly to y ∈ H. Then

there exists a subsequence {ynk
} such that, for each of its subsequences, the corre-

sponding sequence of the arithmetic means converges strongly to y.

Proof . Without loss of generality we suppose that yn
w
→ 0. Then ‖yn‖ ≤ M , n ∈ N,

for some M ≥ 0.

Set yn1
= y1. As 〈yn1

, yn〉 → 0 as n → ∞, there exists n2 > n1 such that

|〈yn1
, yn〉| ≤

1

2
for every n ≥ n2 .

Analogously, 〈yn1
, yn〉 → 0 and 〈yn2

, yn〉 → 0 as n → +∞, and thus there exists

n3 > n2 such that

|〈yn1
, yn〉| ≤

1

22
, |〈yn2

, yn〉| <
1

22
for every n ≥ n3 .

Then, by induction, one can construct a subsequence {ynk
} of {yn} such that, for

each k ∈ N, one has

|〈yn1
, yn〉| ≤

1

2k
, |〈yn2

, yn〉| ≤
1

2k
, . . . , |〈ynk

, yn〉| ≤
1

2k
for every n ≥ nk+1 .

Set, for simplicity, zk = ynk
. Then the sequence {zk} satisfies for each k ≥ 2 the

following property

(3.1) |〈zi, zk〉| ≤
1

2k−1
, i = 1, 2, . . . , k − 1 .

Let {zkn
} be an arbitrary subsequence of {zk}. For n ≥ 2 we have

‖zk1
+ zk2

+ · · ·+ zkn
‖2 =

n
∑

i=1

‖zki
‖2 + 2[〈zk1

, zk2
〉

+ (〈zk1
, zk3

〉 + 〈zk2
, zk3

〉) + · · ·+
n−1
∑

i=1

〈zki
, zkn

〉].
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In view of (3.1), |〈zki
, zkn

〉| ≤ 1/2kn−1 ≤ 1/2kn−1 ≤ 1/2n−1, for i = 1, 2, . . . , kn−1, and

thus

‖zk1
+ zk2

+ · · ·+ zkn
‖2 ≤ nM2 + 2

[

1

2
+ 2

1

22
+ · · · + (n − 1)

1

2n−1

]

.

Hence
∥

∥

∥

∥

zk1
+ zk2

+ · · ·+ zkn

n

∥

∥

∥

∥

2

<
nM2 + 4

n2
,

which implies that the sequence
{

1
n

∑n

i=1 zki

}

converges strongly to 0, as n → +∞.

This completes the proof.

Set S = {x ∈ Rd| |x| = 1}.

Lemma 3.2. Let A, B ∈ X. For ε > 0, let {ui}
N
i=1 ⊂ S be an ε-net of S. Then,

(3.2)

∣

∣

∣

∣

h(A, B) − max
1≤i≤N

|σ(ui, A) − σ(ui, B)|

∣

∣

∣

∣

≤ ε(|A| + |B|) .

Proof . Let u ∈ S. Take ui, for some 1 ≤ i ≤ N , such that |ui − u| < ε. It is evident

that

|σ(u, A) − σ(ui, A)| ≤ ε|A|, |σ(u, B) − σ(ui, B)| ≤ ε|B|.

From

|σ(u, A) − σ(u, B)| ≤ |σ(u, A) − σ(ui, A)| + |σ(ui, A) − σ(ui, B)|

+ |σ(ui, B) − σ(u, B)|

≤ max
1≤i<N

|σ(ui, A) − σ(ui, B)| + ε(|A| + |B|),

as u ∈ S is arbitrary, one has

h(A, B) ≤ max
1≤i≤N

|σ(ui, A) − σ(ui, B)| + ε(|A| + |B|) .

Since, on the other hand, max1≤i≤N |σ(ui, A)− σ(ui, B)| ≤ h(A, B), then (3.2) holds.

This completes the proof.

We denote by L2(I, X) the space of all measurable multifunctions U : I → X such

that
∫

I
|U(t)|2dt < +∞.

The following is a weaker version of the theorem of Banach and Saks, valid for

multifunctions.

Theorem 3.3. Let {Un} be a sequence of multifunctions Un ∈ L2(I, X) and let U ∈

L2(I, X), with |Un(t)| ≤ m(t), |U(t)| ≤ m(t), t ∈ I a.e., where m ∈ L2(I, R). Suppose

that

(3.3) lim
n→+∞

∫ t

0

Un(s)ds =

∫ t

0

U(s)ds for each t ∈ I .
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Then, for every ε > 0 there exists a subsequence {Unk
} (depending on ε) such that

(3.4) lim sup
k→+∞

∫

I

h2

(

1

k

k
∑

j=1

Unj
(t), U(t)

)

dt ≤ ε .

Proof . Let ε be arbitrary, with

(3.5) 0 < ε <
1

16(K + 1)
where K =

∫

I

m2(t)dt .

Denote by {ui}
N
i=1 ⊂ S an ε-net of the unit sphere S of Rd. Define ϕn : I → RN ,

n ∈ N, and ϕ : I → RN by

ϕn(t) = (σ(u1, Un(t)), σ(u2, Un(t)), . . . , σ(uN , Un(t))) t ∈ I

ϕ(t) = (σ(u1, U(t)), σ(u2, U(t)), . . . , σ(uN , U(t))) t ∈ I ,

and observe that ϕn, ϕ ∈ L2(I, RN) since all coordinates of ϕn and ϕ are in L2(I, R).

We have

(3.6) ϕn
w
→ ϕ in L2(I, RN) .

It is sufficient to show that for i = 1, . . . , N one has σ(ui, Un(·))
w
→ σ(ui, U(·)) in

L2(I, R) or, equivalently,

(3.7) lim
n→+∞

∫ t

0

σ(ui, Un(s))ds =

∫ t

0

σ(ui, U(s))ds for each t ∈ I .

Indeed, by Remark 2.4, for i = 1, . . . , N and each t ∈ I we have
∫ t

0

σ(ui, Un(s))ds = σ

(

ui,

∫ t

0

Un(s)ds

)

,

∫ t

0

σ(ui, U(s))ds = σ

(

ui,

∫ t

0

U(s)ds

)

,

from which (3.7) follows, by virtue of (3.3) and the continuity of σ(ui, ·). Hence (3.6)

holds.

By Lemma 3.1, in view of (3.6), the sequence {ϕn} contains a subsequence {ϕnk
}

such that the sequence of its arithmetic means converges strongly to ϕ, i.e.

(3.8)
1

k

k
∑

j=1

ϕnj

s
→ ϕ in L2(I, RN) .

Clearly,

1

k

k
∑

j=1

ϕnj
(t) =

(

1

k

k
∑

j=1

σ(u1, Unj
(t)), . . . ,

1

k

k
∑

j=1

σ(uN , Unj
(t))

)

=

(

σ(u1,
1

k

k
∑

j=1

Unj
(t)), . . . , σ(uN ,

1

k

k
∑

j=1

Unj
(t))

)

.
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Combining the latter with (3.8) gives, for i = 1, . . . , N ,

∫

I

|σ

(

ui,
1

k

k
∑

j=1

Unj
(t)

)

− σ(ui, U(t))|2dt → 0 , as k → +∞ .

Therefore, there exists k0 ∈ N such that

(3.9)

∫

I

[ max
1≤i≤N

|σ(ui,
1

k

k
∑

j=1

Unj
(t)) − σ(ui, U(t))|]2dt <

ε

4
for each k ≥ k0 .

Let k ≥ k0 be arbitrary. Since {ui}
N
i=1 is an ε-net of S then, by Lemma 3.2,

setting rk(t) =
∣

∣

∣
(1/k)

∑k

j=1 Unj
(t)
∣

∣

∣
+ |U(t)|, one has

h

(

1

k

k
∑

j=1

Unj
(t), U(t)

)

≤ max
1≤n≤N

|σ(ui ,
1

k

k
∑

j=1

Unj
(t)) − σ(ui, U(t))| + εrk(t) ,

and thus
∫

I

h2

(

1

k

k
∑

j=1

Unj
(t), U(t)

)

dt ≤ 2

∫

I

[ max
1≤i≤N

|σ(ui,
1

k

k
∑

j=1

Unj
(t))

− σ(ui, U(t))|]2dt + +2ε2

∫

I

r2
k(t)dt.

On the right hand side, the first integral is less than ε/4, by (3.9), while the

second one is less than 4K, for rk(t) ≤ 2m(t), t ∈ I a.e. Since 8ε2K < ε/2, by (3.5),

and k ≥ k0 is arbitrary, it follows

sup
k≥k0

∫

I

h2

(

1

k

k
∑

j=1

Unj
(t), U(t)

)

dt ≤ ε ,

and thus (3.4) holds. This completes the proof.

The following is a multivalued analogue of the Banach-Mazur theorem.

Theorem 3.4. Let Un, U ∈ L2(I, X), n ∈ N, satisfy the assumptions of Theorem 3.3.

Then, there exists a strictly increasing sequence {mk} ⊂ N and, for each k ∈ N, there

exist an rk ∈ N and rk + 1 constants λi ≥ 0, with λmk
+ λmk+1 + · · · + λmk+rk

= 1,

such that

(3.10) lim
k→+∞

∫

I

h2

(

mk+rk
∑

i=mk

λiUi(t), U(t)

)

dt = 0 .

Proof . Let ε > 0. By Theorem 3.3, there exist a subsequence {Unk
} of {Un} and an

integer k0 ≥ 2 such that

(3.11)

∫

I

h2

(

1

k

k
∑

i=1

Uni
(t), U(t)

)

dt <
ε

4
for every k ≥ k0 .
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Claim. For each integer p ≥ k0 there exists an r ∈ N such that

(3.12)

∫

I

h2

(

1

r + 1

p+r
∑

i=p

Uni
(t), U(t)

)

dt < ε .

Let p ≥ k0. Fix an r ∈ N sufficiently large so that

(3.13) 8K

(

p − 1

r + 1

)2

<
ε

2
where K =

∫

I

m2(t)dt .

Setting Sm(t) = (1/m)
∑m

i=1 Uni
(t), we have

h

(

1

r + 1

p+r
∑

i=p

Uni
(t), U(t)

)

= h

(

p + r

r + 1
Sp+r(t), U(t) +

p − 1

r + 1
Sp−1(t)

)

≤ h

(

p + r

r + 1
Sp+r(t), Sp+r(t)

)

+ h(Sp+r(t), U(t)) +
p − 1

r + 1
|Sp−1(t)|

≤ h(Sp+r(t), U(t)) + 2
p − 1

r + 1
m(t), t ∈ I a.e.,

since |Sp−1(t)| ≤ m(t) and h
(

p+r

r+1
Sp+r(t), Sp+r(t)

)

≤ p−1
r+1

|Sp+r(t)| ≤
p−1
r+1

m(t). Hence,

∫

I

h2

(

1

r + 1

p+r
∑

i=p

Uni
(t), U(t)

)

dt ≤ 2

∫

I

h2(Sp+r(t), U(t))dt

+ 8

(

p − 1

r + 1

)2 ∫

I

m2(t)dt,

from which (3.12) follows, by virtue of (3.11) and (3.13).

Set εk = 1/2k, [a, b] = {n ∈ N|a ≤ n ≤ b}, where a, b ∈ N. In view of Theorem

3.3 and the Claim above, given ε1, there exist a subsequence {Unk
} of {Un} and two

integers p1, s1 ∈ N such that

(3.14)

∫

I

h2

(

1

s1 + 1

p1+s1
∑

i=p1

Uni
(t), U(t)

)

dt < ε1 .

Put m1 = np1
, m1 + r1 = np1+s1

, and define λi = 1
s1+1

if i ∈ {np1
, np1+1, . . . , np1+s1

},

λi = 0 if i ∈ [m1, m1 + r1]\{np1
, np1+1, . . . , np1+s1

}. Then (3.14) can be written in the

form
∫

I

h2

(

m1+r1
∑

i=m1

λiUi(t), U(t)

)

dt < ε1 ,

where the r1 + 1 constants λi ≥ 0 satisfy λm1
+ λm1+1 + · · ·+ λm1+r1

= 1.

Similarly, given ε2, there exist a subsequence, say {Unk
}, of {Un}n≥m1+r1

, and

two integers p2, s2 ∈ N, such that

(3.15)

∫

I

h2

(

1

s2 + 1

p2+s2
∑

i=p2

Uni
(t), U(t)

)

dt < ε2 .
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Setting m2 = np2
, m2 + r2 = np2+s2

and defining λi accordingly as before, then (3.15)

can be written in the form
∫

I

h2

(

m2+r2
∑

i=m2

λiUi(t), U(t)

)

dt < ε2 ,

where the r2 + 1 constants λi ≥ 0 satisfy λm2
+ λm2+1 + · · · + λm2+r2

= 1, and

m2 > m1. In this way, by a simple induction argument, one can construct a strictly

increasing sequence {mk} ⊂ N and, for each k ∈ N, rk + 1 constants λi ≥ 0, with

λmk
+ λmk+1 + · · ·+ λmk+rk

= 1, such that

∫

I

h2

(

mk+rk
∑

i=mk

λiUi(t), U(t)

)

dt < εk .

From this, letting k → +∞, (3.10) follows. This completes the proof.

Let C(I, X) be the space of all continuous maps X : I → X, with distance

hC(X, Y ) = max
t∈I

h(X(t), Y (t)) X, Y ∈ C(I, X) .

C(I, X) is a complete metric space. Moreover, C(I, X) is a semilinear space if endowed

with the operations of addition and multiplication by nonnegative scalars induced by

the corresponding operations in X.

Occasionally, we write C instead of C(I, X) when no confusion can arise.

Define α : C × C × [0, 1] → C by

α(X, Y, λ) = (1 − λ)X + λY, for each (X, Y, λ) ∈ C × C × [0, 1] .

A set A ⊂ C is convex if α(X, Y, λ) ∈ A for every X, Y ∈ A and λ ∈ [0, 1].

Remark 3.5. C(I, X) equipped with the map α is an α-convex metric space (see

[7], Definition 3.1). In fact α is continuous and, moreover, (i) α(X, X, λ) = X for

every X ∈ C and λ ∈ [0, 1]; (ii) α(X, Y, 0) = X, α(X, Y, 1) = Y , for every (X, Y ) ∈

C×C; (iii) hC(α(X, Y, λ), α(X, Y , λ)) ≤ max{hC(X, X), hC(Y, Y )}, for every (X, Y ),

(X, Y ) ∈ C × C and λ ∈ [0, 1]. Hence, by [7] Proposition 3.1, C(I, X) is an α-convex

metric space.

Set

K(C) = {A ⊂ C(I, X)|A is nonempty compact convex}.

The space K(C) is semilinear if endowed with the operations of addition, A + B =

{X + Y ∈ C(I, X)|X ∈ A, Y ∈ B}, and multiplication by scalars λ ≥ 0, λA = {λX ∈

C(I, X)|X ∈ A}, where A, B ∈ K(C). We equip K(C) with the Pompeiu-Hausdorff

metric H induced by the metric hC of C(I, X), i.e.

H(A,B) = max{e(A,B), e(B,A)},

where e(A,B) = supX∈A d(X,B), d(X,B) = infY ∈B hC(X, Y ), and similarly for e(B,A).
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The convex hull coA of a set A ⊂ C(I, X) is given by

coA = {Y ∈ C(I, X)|Y =

n
∑

i=1

λiXi,

for some Xi ∈ A and λi ≥ 0,
n
∑

i=1

λi = 1 , n ∈ N}.

The closed convex hull clC(coA) of A is the closure of coA in C(I, X).

Remark 3.6. Let A, B ⊂ C(I, X). Then, (i) coA and clC(coA) are convex; (ii) if

A ⊂ B and B is closed and convex, then clC(coA) ⊂ B; if A ∈ K(C) and ε > 0, then

NC[A, ε] is closed and convex.

The following is a Mazur type theorem in the space C(I, X).

Theorem 3.7. The closed convex hull clC(coA) of a compact set A ⊂ C(I, X) is

compact and convex.

Proof . Let ε > 0. Let {X1, . . . , Xk} be an ε
2
-net of A. For i = 1, . . . , k the sets Vi =

{Y ∈ C(I, X)|Y = αXi, α ∈ [0, 1]} are in K(C), hence also the set V = V1 + · · · + Vk

is in K(C). Let {Yi, . . . , Yn} be an ε
2
-net of V. Then

A ⊂ NC [{X1, . . . , Xk}, ε/2] ⊂ NC[V, ε/2] ⊂ NC[{Y1, . . . , Yn}, ε] .

NC[V, ε/2] is closed and convex, hence clC(coA) ⊂ NC[V, ε/2], and thus

clC(coA) ⊂ NC[{Y1, . . . , Yn}, ε] .

Therefore clC(coA) is totally bounded and a fortiori compact, for C(I, X) is complete.

The convexity of clC(coA) is obvious. This completes the proof.

A multifunction Γ : M → K(C) is compact if the set R = clC

(

⋃

x∈M

Γ(x)

)

is

compact in C(I, X).

The following theorem is a version of the fixed point theorem of Kakutani-Ky

Fan [15], [9], for multifunctions with values contained in C(I, X).

Theorem 3.8. Let Ω be a nonempty closed convex subset of C(I, X). Let Γ : Ω →

K(C) be an u.s.c. and compact multifunction with values Γ(X) ⊂ Ω, for every X ∈ Ω.

Then, there exists at least one X ∈ Ω such that X ∈ Γ(X).

Proof . By Remark 3.5, C(I, X) is an α-convex complete metric space. Since R =

clC(
⋃

X∈Ω Γ(X)) is compact, then so is Ro = clC(coR), by Theorem 3.7. Moreover,

R0 ⊂ Ω, because R ⊂ Ω and Ω is closed and convex in C(I, X).

Define Γ0 : R0 → K(C) by Γ0(X) = Γ(X) for each X ∈ R0. Since Γ0 is u.s.c.

on R0, a compact convex subset of C(I, X), and takes values Γ(X) ⊂ R0 then, by

virtue of [7] Proposition 7.7, there exists an X ∈ R0 such that X ∈ Γ0(X). As

Γ0(X) = Γ(X), the statement follows, completing the proof.
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4. APPLICATION TO SET DIFFERENTIAL INCLUSIONS

In this section, using the previous results, we establish an existence theorem for

the Cauchy problem (C).

We first prove some lemmas. The following one is a variant (see [6]) of an impor-

tant theorem due to Hermes [10].

Lemma 4.1. Let {Un} be a sequence of measurable maps Un: I → X satisfying

|Un(t)| ≤ M , t ∈ I, M a constant, and suppose that the corresponding sequence {Yn}

of continuous maps Yn : I → X, given by

(4.1) Yn(t) =

∫ t

0

Un(s)ds for each t ∈ I ,

converges uniformly to Y : I → X. Then there exists a measurable map U : I → X,

with |U(t)| ≤ M , t ∈ I, such that

(4.2) Y (t) =

∫ t

0

U(s)ds for each t ∈ I .

Lemma 4.2. Let Φ : I × X → K(X) satisfy the assumption (h1), (h2), (h3). Then,

for each X ∈ C(I, X), the set

(4.3) U(X) = {U : I → X|U is a measurable selection of Φ(·, X(·)) on I}

is nonempty and convex.

Proof . U(X) is non empty. To see this, for n ∈ N, set ti = i/2n, i = 0, 1, . . . , 2n,

Ii = [ti−1, ti), i = 1, . . . , 2n − 1, I2n = [t2n−1, 1], and define Sn : I → X, by

Sn(t) =
2n
∑

i=1

X(ti−1)χIi
(t) for each t ∈ I ,

where χ
Ii

stands for the characteristic function of Ii. It is evident that Sn → X

uniformly on I.

For each n ∈ N, consider the multifunction t → Φ(t, Sn(t)), t ∈ I. Clearly

Φ(t, Sn(t)) =

2n
∑

i=1

Φ(t, X(ti−1))χIi
(t) for each t ∈ I .

By (h1), each Φ(·, X(ti−1)) restricted to Ii, i = 1, . . . , 2n, is measurable and hence

it admits a measurable selection (see Himmelberg [11]). Therefore there exists a

measurable map U : I → X satisfying

(4.4) Un(t) ∈ Φ(t, Sn(t)) for each t ∈ I ,

where, by (h3), |Un(t)| ≤ M for each t ∈ I. For n ∈ N, let Yn : I → X be given by (4.1).

By Arzelà-Ascoli’s theorem, the sequence {Yn} ⊂ C(I, X) contains a subsequence, say

{Yn}, which converges uniformly to some Y ∈ C(I, X). An application of Lemma 4.1
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gives a measurable U : I → X, with |U(t)| ≤ M for each t ∈ I, so that (4.2) is

valid. Since (3.3) trivially holds then, by virtue of Theorem 3.4, there exists a strictly

increasing sequence {mk} ⊂ N and, for each k ∈ N, there are rk +1 constants λi ≥ 0,

with
∑mk+rk

i=mk
λi = 1, such that, setting Wmk

(t) =
∑mk+rk

i=mk
λiUi(t), t ∈ I, we have

lim
k→+∞

∫

I

h2(Wmk
(t), U(t))dt = 0 .

It follows that a subsequence {Wmkj
} of {Wmk

} satisfies

(4.5) lim
j→+∞

h(Wmkj
(t), U(t)) = 0 for each t ∈ I\I0 ,

where I0 is a subset of I of measure zero.

We claim that

(4.6) U(t) ∈ Φ(t, X(t)) for each t ∈ I\I0 .

In fact, let t ∈ I\I0 and ε > 0. By (h2), Φ(t, ·) is u.s.c. at X(t), and thus there exists

δ > 0 such that

(4.7) Φ(t, Z) ⊂ NX[Φ(t, X(t)), ε] for each Z ∈ BX(X(t), δ) .

Fix j0 ∈ N so that Smkj
(t) ∈ BX(X(t), δ), for all j ≥ j0. Then, in view of (4.4) and

(4.7), we have

Wmkj
(t) ∈

mkj
+rkj
∑

i=mkj

λiΦ(t, Si(t))

⊂

mkj
+rkj
∑

i=mkj

λiNX[Φ(t, X(t)), ε] = NX[Φ(t, X(t)), ε].

From this and (4.5) it follows that U(t) ∈ NX[Φ(t, X(t)), ε]. As ε > 0 and t ∈ I\I0

are arbitrary, (4.6) holds and thus U ∈ U(X). The convexity of U(X) is obvious.

This completes the proof.

Lemma 4.3. Let Φ : I × X → K(X) satisfy the assumptions (h1), (h2), (h3) and let

A ∈ X. For X ∈ C(I, X), set

Γ(X) = {Z ∈ C(I, X)| there is U ∈ U(X) such that(4.8)

Z(t) = A +

∫ t

0

U(s)ds for each t ∈ I} ,

where U(X) is given by (4.3). Then, Γ(X) ∈ K(C). Moreover, the map Γ : C(I, X) →

K(C) defined by (4.8) is u.s.c.
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Proof . Γ(X) ∈ K(C). In fact Γ(X) is nonempty and convex, for so is U(X), by

Lemma 4.2. It remains to prove that Γ(X) is compact. Let {Zn} ⊂ Γ(X). Then, for

some Un ∈ U(X),

(4.9) Zn(t) = A +

∫ t

0

Un(s)ds for each t ∈ I .

Consider the sequence {Yn} ⊂ C(I, X), where Yn is given by (4.1). By Arzelà-Ascoli’s

theorem a subsequence, say {Yn}, converges uniformly to some Y ∈ C(I, X). Hence

{Zn} converges uniformly to Z = A + Y . An application of Lemma 4.1 gives a

measurable U : I → X for which (4.2) is valid. Then, as in the proof Lemma 4.2,

retaining the same notation, one can construct a sequence {Wmkj
} for which (4.5)

holds. Moreover, for each t ∈ I\I0,

Wmkj
(t) =

mkj
+rkj
∑

i=mkj

λiUi(t) ∈

mkj
+rkj
∑

i=mkj

λiΦ(t, X(t)) = Φ(t, X(t)) .

From this, letting j → +∞, it follows that U(t) ∈ Φ(t, X(t)), t ∈ I a.e., and thus

U ∈ U(X). Since, in addition,

(4.10) Z(t) = A +

∫ t

0

U(s)ds for each t ∈ I ,

it follows that Z ∈ Γ(X). Hence Γ(X) is compact, and thus Γ(X) ∈ K(C).

Γ is u.s.c. In the contrary case, there exist X ∈ C(I, X), ε > 0, and a sequence

{Xn} ⊂ C(I, X) converging to X, such that e(Γ(Xn), Γ(X)) > ε for every n ∈ N. In

each Γ(Xn) take a Zn such that

(4.11) d(Zn, Γ(X)) > ε for each n ∈ N .

Then, for some Un ∈ U(Xn), Zn satisfies (4.9). Consider the sequence {Yn}, where

Yn is given by (4.1). By Arzelà-Ascoli’s theorem a subsequence, say {Yn}, converges

uniformly to some Y ∈ C(I, X). Thus, {Zn} converges uniformly to Z = A + Y .

An application of Lemma 4.1 gives a measurable U : I → X such that (4.2) holds.

Likewise in Lemma 4.2, retaining the same notation, one can construct a sequence

{Wmkj
} for which (4.5) is valid. Then, arguing as in Lemma 4.2 (with Sp(t) replaced

by Xp(t), p ∈ N) one can show that U(t) ∈ Φ(t, X(t)), t ∈ I, a.e. and thus U ∈ U(X).

Since, in addition, Z satisfies (4.10), it follows that Z ∈ Γ(X). This contradicts (4.11),

since Zn → Z as n → +∞. Therefore Γ is u.s.c. This completes the proof.

We now are ready to prove an existence result for the Cauchy problem (C).

Theorem 4.4. Let Φ : I × X → K(X) satisfy the assumptions (h1), (h2), (h3) and let

A ∈ X. Then the set S of all solutions X : I → X of the Cauchy problem (C) is a

nonempty compact subset of C(I, X).
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Proof . S is nonempty. For each X ∈ C(I, X) let Γ(X) be given by (4.8). By

Lemma 4.3, (4.8) defines an u.s.c. multifunction

Γ : C(I, X) → K(C) .

Γ is compact, i.e. the set

(4.12) R = clC





⋃

X∈C(I,X)

Γ(X)





is compact in C(I, X). In fact, let {Zn} ⊂ R. By (4.12) there exists a sequence {Z̃n},

where Z̃n ∈ Γ(Xn) for some Xn ∈ C(I, X), such that hC(Zn, Z̃n) < 1/n, n ∈ N. As

Z̃n ∈ Γ(Xn), for some Un ∈ U(Xn) we have

Z̃n(t) = A +

∫ t

0

Un(s)ds for each t ∈ I .

By Arzelà-Ascoli’s theorem {Z̃n} contains a subsequence, say {Z̃nk
}, which converges

uniformly to a Z ∈ R. Since {Znk
} converges to Z, it follows that Γ is compact.

By virtue of Theorem 3.8, there exists an X ∈ C(I, X) such that X ∈ Γ(X).

Therefore, for some measurable U : I → X, we have

X(t) = A +

∫ t

0

U(s)ds for each t ∈ I ,

U(t) ∈ Φ(t, X(t)) for t ∈ I a.e. ,

i.e. X : I → X is a solution of the Cauchy problem (C). Hence S 6= φ. The

compactness of S in C(I, X) can be proved by an easy adaptation of the argument of

Lemma 4.3. This completes the proof.

REFERENCES

[1] Z. Artstein, “A calculus for set-valued maps and set-valued evolution equations”, Set-valued

anal. 3 (1995), 216–261.

[2] J.P. Aubin and A. Cellina, Differential Inclusions , Springer-Verlag, Berlin, 1984.

[3] S. Banach and S. Saks, “Sur la convergence forte dans le champ L
p”, Studia Math. 2 (1930),

51–57.

[4] A.I. Brandão Lopes Pinto, F.S. de Blasi and F. Iervolino, “Uniqueness and existence theorems

for differential equations with convex valued solutions”, Boll. Un. Mat. Ital. (4) 3 (1970), 1–12.

[5] F.S. de Blasi and F. Iervolino, “Equazioni differenziali con soluzioni a valore compatto convesso”,

Boll. Un. Mat. Ital. (4) 2 (1969), 194–501.

[6] F.S. de Blasi, V. Lakshmikantham and T. Gnana Bhaskar, An existence theorem for set differ-

ential inclusions in a semilinear metric space (submitted).

[7] F.S. de Blasi and G. Pianigiani, “Approximate solutions in α-convex metric spaces and topo-

logical degree”, Topol. Methods Nonlinear Anal. (4) (2004), 347–375.

[8] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications , World

Scientific, River Edge, N.J., 1994.

[9] Ky Fan, “Fixed point theorems and minimax theorems in locally convex topological linear

spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126.



88 F. S. DE BLASI

[10] H. Hermes, “Calculus of set valued functions and control”, J. Math. Mech. 18 (1968), 43–59.

[11] C.J. Himmelberg, “Measurable relations”, Fund. Math. 87 (1975), 53–72.
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