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ABSTRACT. We consider the application of the topological degree theory for noncompact mul-

tivalued vector fields to the problem of existence of an optimal feedback control in the presence of

delay for the model of the motion of a visco-elastic fluid satisfying the Voight rheological relation.

The notion of a weak solution to the problem is introduced and the operator treatment of the prob-

lem allows to reduce it to the existence of a fixed point for a certain condensing multivalued map.

We give an a priori estimate for solutions of the problem and the use of the degree method allows to

prove the non-voidness and compactness of the solution set. As the result we obtain the existence

of a solution minimizing the given quality functional.
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INTRODUCTION

Problems of optimal control in hydrodynamics have attracted the attention of

many researchers (see, for example, monographs [2], [6], [7] and the bibliography

therein). In the most of these works the authors considered the fluids described by

Navier–Stokes type equations. In some recent papers methods of multivalued analysis

were used to obtain certain optimization results in problems of control of the motion

for non-Newtonean visco-elastic fluids (see [8], [13]).

In the present paper we apply the topological degree theory for condensing mul-

tivalued vector fields to prove the existence of an optimal feedback control in the

Voight model of a visco-elastic fluid. This model describes media which need some

time to start the motion under the action of an applied external force (see, e.g., [12]).

It should be mentioned that the solvability of the initial – boundary value problem

in the Voight model (and generalized Voight-Kelvin model) was initially studied in

the works of A. P. Oskolkov [9], [10]. In our paper we consider the situation when

the external force is the result of the joint action of the force which is the subject to
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a delay feedback control depending on the velocity of the fluid and the other force

which is determined by the velocity of the fluid and its derivative with respect to

time.

The paper is organized in the following way. In the first section we present

necessary notions and definitions from the theory of multivalued maps, measures of

noncompactness, and condensing maps. In the second section we are describing the

model, introduce the notion of a weak solution to the problem, and give the formula-

tion of our main result. The next section is devoted to the operator treatment of the

problem, where finally the problem under consideration is reduced to the existence

of a fixed point for a condensing multivalued map. In the last section we give an a

priori estimate for solutions of the problem, allowing to apply the multivalued topo-

logical degree methods to verify the non-voidness and compactness of the solution

set. As the result we obtain the existence of a solution minimizing the given quality

functional, proving the main result of the paper.

1. PRELIMINARIES

We will suppose that the considered fluid fills a container with rigid walls modelled

by a bounded domain Ω in R
n, n ∈ {2, 3}, the boundary ∂Ω is supposed to be

Lipschitz. The density of the fluid is supposed to be constant and equal to one.

By X∗ we will denote the space dual to a real Banach space X and by 〈g, y〉 we

denote the action of the functional g ∈ X∗ on the element y ∈ X, the scalar product

in an arbitrary Hilbert space H is denoted by (·, ·)H.

We will use Lp(Ω)n, W 1
2(Ω)n as the standard notation of Lebesgue and Sobolev

spaces of functions defined on Ω with the values in R
n. Let D(Ω)n be the space of of

functions of the class C∞ with the values in R
n and a compact support in Ω and

Ds(Ω)n = {v ∈ D(Ω)n : div v = 0}.

We will consider also the following spaces (see, for example, [11]):

The closures of Ds(Ω)n in the norms of the spaces L2(Ω)n and W 1
2(Ω)n will be

denoted respectively by H and V . The space V is Hilbert with the scalar product

defined by (ϕ, ψ)V =
∑n

i=1

(
∂ϕ

∂xi
, ∂ψ
∂xi

)
L2(Ω)n

.

We use the notation C([a, b];X) and C 1([a, b];X) for the spaces of continuous

and continuously differentiable functions, respectively, defined on the interval [a, b]

with the values in X. We consider the usual norm in the space C([a, b];X):

(1.1) ‖v‖C([a,b],X) = max
t∈[a,b]

‖v(t)‖X ,

For T > 0, let us introduce the following notation:

C = C([0, T ], V ), C∗ = C([0, T ], V ∗).
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For a given h > 0, by the symbol C1 we will denote a Banach space of functions

v ∈ C([−h, T ];V ) such that ṽ = v|[0,T ] ∈ C1([0, T ];V ) with the norm

‖v‖C1 = ‖v‖C([−h,T ];V ) + ‖ṽ ′‖C([0,T ];V ).

As one of the main tools in our studies we will use some aspects of the theory of

multivalued maps.

Let us briefly describe necessary preliminaries (see, e.g. [1], [4] for details).

Let X and Y be metric spaces and K(Y ) denote the collection of all nonempty

compact subsets of Y .

A multivalued map (multimap) F : X → K(Y ) is said to be:

(i) upper semicontinuous (u.s.c.) if the small pre-image F−1
+ (W ) = {x ∈ X :

F (x) ⊂ W} of each open subset W ⊂ Y is open in X;

(ii) closed if its graph is a closed subset of the space X × Y ;

(iii) compact if its range F (X) is relatively compact in Y ;

(iv) completely continuous if it is u.s.c. and the image F (D) of each bounded set

D ⊂ X is relatively compact in Y .

We recall that an u.s.c. multimap F : X → K(Y ) is closed.

Proposition 1.1. A closed and locally compact multimap F : X → K(Y ) is u.s.c.

Proposition 1.2. If a multimap F : X → K(Y ) is u.s.c. then the image F (M) of

each compact set M ⊂ X is compact.

A function χ : 2X → [0,+∞],

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}

is said to be the Hausdorff measure of noncompactness (MNC) in X.

It is clear that the Hausdorff MNC is regular, i.e., the equality χ(Ω) = 0 is

equivalent to the relative compactness of Ω.

Let us mention also the following properties (see [4]).

Proposition 1.3. If X and Y are normed spaces with the Hausdorff MNCs χ0 and

χ1 respectively and L : X → Y is a bounded linear operator then

χ1(LΩ) ≤ ‖L‖χ0(Ω)

for each bounded set Ω ⊂ X.

Proposition 1.4. Let E be a separable Banach space; a multifunction G : [a, b] → 2E

be integrably bounded and admit an integrable selection. If

χ(G(t)) ≤ q(t)
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for a.e. t ∈ [a, b], where q(·) ∈ L1[a, b] then

χ

(∫ t

a

G(s)ds

)
≤

∫ t

a

q(s)ds,

where
∫ t
a
G(s)ds := {

∫ t
a
g(s)ds : g ∈ L1[0, t]; g(τ) ∈ G(τ) for a.e. τ ∈ [0, t]}

Let χ0 and χ1 be the Hausdorff MNCs in metric spaces X and Y respectively.

For some k ≥ 0, a multimap F : X → K(Y ) is said to be (k, χ0, χ1)–bounded provided

χ1(F (Ω)) ≤ k χ0(Ω)

for each bounded Ω ⊂ X.

In case X = Y and 0 ≤ k < 1 we will say that F is (k, χ)–condensing or simply

condensing (with respect to χ).

As a particular case of Proposition 2.2.2 of [4] we have the following statement.

Proposition 1.5. Let E0, E1 be Banach spaces; χ0, χ1 the Hausdorff MNCs in E0

and E1 respectively; X ⊂ E0 a bounded closed subset. If a multimap F : X → K(E1)

is compact and a map f : X → E is k-Lipschitz, k ≥ 0 then their sum F + f : X →

K(E1) is (k, χ0, χ1)–bounded.

Now, let E be a Banach space, Kv(E) denote the collection of all nonempty

compact convex subsets of E and U ⊂ E be an open bounded set.

Suppose that an u.s.c. multimap F : U → Kv(E) is condensing and the fixed

points set FixF = {x ∈ U : x ∈ F (x)} does not intersect the boundary ∂U . In

this situation the integer characteristic, the topological degree deg(i − F, U) of the

corresponding multifield Φ = i − F , Φ(x) = x − F (x), is well defined and possesses

the standard properties among which we will select the following.

a) The homotopy invariance. Let G : U × [0, 1] → Kv(E) be an u.s.c. (k, χ)–

condensing family in the sense that

χ(G(Ω) × [0, 1]) ≤ k χ(Ω)

for each Ω ⊂ U . Suppose that x /∈ G(x, λ) for all (x, λ) ∈ ∂U × [0, 1]. Then

deg(i−G(·, 0), U) = deg(i−G(·, 1), U) .

b) The fixed point property. If deg(i− F, U) 6= 0 then ∅ 6= FixF ⊂ U .
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2. THE STATEMENT OF THE PROBLEM AND THE

FORMULATION OF THE MAIN RESULT

It is well known that the motion of a fluid is described by the following system

of differential equations in the Cauchy form

(2.1)
∂v

∂t
(t, x) +

n∑

i=1

vi(t, x)
∂v

∂xi
(t, x) + grad p (t, x) − Div σ(t, x) =

= f(t, x), (t, x) ∈ QT .

In this relation we use the following notation: t is the time parameter varying on

the interval [0, T ] , T > 0; QT = [0, T ] × Ω; x = (x1, . . . , xn) ∈ Ω; v = (v1, . . . , vn) is

the field of velocities of fluid particles; p is the function of the pressure of the fluid,

grad p =
(
∂p

∂x1

, . . . , ∂p

∂xn

)
; f is the vector of the density of external forces exerted on the

fluid; σ is the deviator of the tensions tensor, Div σ =

(
n∑
j=1

∂σ1j

∂xj
,
n∑
j=1

∂σ2j

∂xj
, . . . ,

n∑
j=1

∂σnj

∂xj

)
.

It will be supposed that the fluid under consideration is subjected to the Voight

rheological relation

(2.2) σ = 2µ1E + 2µ2
∂E

∂t
, where µ1, µ2 = const, withµ2 > 0,

and E = E(v) =
(
Eij(v)

)
is the tensor of velocities of deformations:

Eij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

After the substitution of relation (2.2) into equation (2.1) it takes the form

(2.3)
∂v

∂t
+

n∑

i=1

vi
∂v

∂xi
+ grad p− µ14v − µ2

∂4v

∂t
= f.

We will assume that the action of external forces f on the fluid can be represented

as the sum of two vectors,

f = f1 + f2,

where f1 is the controlled function which is chosen at each moment t ∈ [0, T ] in

accordance with a multivalued feedback relation with the time delay and f2 describes a

certain natural force depending on the distribution of velocities v and their derivatives

with respect to time.

To be more exact, denote C = C([−h, 0];V ) and let E be a Banach space of

control parameters. We will assume that a feedback multimap U : [0, T ]×C → Kv(E)

satisfies the following conditions:

(U1) the multifunction U(·, c) : [0, T ] → Kv(E) has a strongly measurable selection

for each c ∈ C;

(U2) the multimap U(t, ·) : C → Kv(E) is u.s.c. for a.e. t ∈ [0, T ];
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(U3) the multimap U is globally bounded, i.e., there exists a constant M > 0 such

that

‖U(t, c)‖ := sup{‖u‖ : u ∈ U(t, c)} ≤ M

for a.e. t ∈ [0, T ] and all c ∈ C;

(U4) for each bounded D ⊂ C, the set U(t, D) is relatively compact for a.e. t ∈ [0, T ].

Let us note that conditions (U1)–(U3) imply that for every v ∈ C1 the set

PU (v) = {u ∈ L1([0, T ];E) : u(t) ∈ U(t, vt) for a.e. t ∈ [0, T ]}

is non-empty (see, e.g. [1], [4]). Here vt ∈ C denotes, for t ∈ [0, T ], the function

vt(θ) = v(t+ θ), θ ∈ [−h, 0].

Now we assume that, under a given control u ∈ PU(v), the force f1(u) ∈ C∗ is

defined by the Bochner integral relation

f1(u)(t) =

∫ t

0

K(t, s)u(s)ds.

Here K(t, s) : E → V ∗ is a bounded linear operator for each (t, s) ∈ ∆ = {(t, s) ∈

[0, T ] × [0, T ] : t ≥ s}. It is supposed also that the kernel K satisfies the following

conditions:

(K1) the function K is strongly continuous in the sense that (t, s) ∈ ∆ → K(t, s)u ∈

V ∗ is a continuous function for each u ∈ E;

(K2) the function K is uniformly bounded, i.e., there exists N > 0 such that

‖K(t, s)‖ ≤ N

for all (t, s) ∈ ∆.

Since f1 : L1([0, T ];E) → C∗ is the linear continuous operator, as the direct conse-

quence of Theorem 1.5.30 of [1], we obtain the following statement.

Lemma 2.1. The multimap f1 ◦ PU is closed.

Moreover, taking into account property (U4) and Proposition 1.4 and applying

the Arzelá–Ascoli theorem we can conclude that the image f1◦PU(Ω) of each bounded

set Ω ⊂ C1 is relatively compact. Finally, using Proposition 1.1 we have the following

assertion.

Lemma 2.2. The multimap f1 ◦ PU has compact convex values and is completely

continuous.

Concerning the vector of forces f2 it will be assumed that, at each moment

t ∈ [0, T ] and at every point x ∈ Ω it depends on the velocity of the fluid v(t, x) and

its derivative ∂v
∂t

(t, x) :

(2.4) f2(t, x) = ξ(v(t, x),
∂v

∂t
(t, x)),
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where the function ξ : R
n×R

n → R
n satisfies the following Lipschitz type condition:

‖ξ(α, β)− ξ(α, β)‖ ≤ l (‖α− α‖ + ‖β − β‖)

for some l > 0.

It is easy to see that relation (2.4) generates a continuous map (which will be

denoted, for simplicity, by the same symbol) f2 : C1 → C∗ satisfying the Lipschitz

condition

(f21) ‖f2(v) − f2(ṽ)‖C∗ ≤ l ‖v − ṽ‖C1

with the same constant l.

It will be supposed also that

(f22) the function f2 is bounded, i.e., there exists L > 0 such that

‖f2(v)‖C∗ ≤ L

for all v ∈ C1.

So, the total action of external forces on the fluid is described by the multimap

F : C1 → Kv(C∗),

F(v) = f1 ◦ PU(v) + f2(v).

Remark 2.1. Let us mention that from conditions (U3), (K2), and (f22) it follows

that the multimap F is bounded, i.e., there exists a constant N > 0 such that

‖f‖C∗ ≤ N

for each f ∈ F(v) and v ∈ C1.

Remark 2.2. From Lemma 2.2 and the properties of multivalued maps (see, e.g. [1],

[4]) it follows that the multimap F is u.s.c.

Take an initial function ν ∈ C satisfying the boundary condition of adhesion

ν|[−h,0]×∂Ω = 0.

If we deal with the problem of control over the motion of the considered fluid in the

class of strong solutions, it may be formulated in the following way: to find a collection

of functions (v, σ, p, f) satisfying relations (2.2), (2.3), the feedback condition

f ∈ F(v),(2.5)

the incompressibility condition

(2.6) div v =

n∑

i=1

∂vi
∂xi

= 0,

the initial condition

(2.7) v0 = ν,
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and the boundary condition

(2.8) v|[0,T ]×∂Ω = 0.

We will consider problem (2.2), (2.3), (2.5) – (2.8) for the class of weak solutions.

Definition 2.3. A pair of functions (v, f) ∈ C1 × C∗ is called a weak solution to

problem (2.2), (2.3), (2.5) – (2.8) if it satisfies feedback condition (2.5) and the equal-

ity

(2.9) (v′(t), ϕ)L2(Ω)n + µ2(v
′(t), ϕ)V + µ1(v(t), ϕ)V−

−
n∑

i,j=1

(
vi(t)vj(t),

∂ϕj
∂xi

)

L2(Ω)

= 〈f(t), ϕ〉

for an arbitrary function ϕ ∈ V and each t ∈ [0, T ] whereas the function v obeys also

initial condition (2.7).

Let us note that the above interpretation of a weak solution is in agreement with

the corresponding notion being widely used in hydrodynamics (see, e.g. [11]). If a

pair (v, f) represents a strong solution to (2.2), (2.3), (2.5) – (2.8) we can come to

relation (2.9) by means of a scalar multiplication of equation (2.3) in L2(Ω)n by a

given element ϕ ∈ V and through the integrating in parts. It should be mentioned

that under this operation we have (grad p, ϕ)L2(Ω)n = 0.

Furthermore, our goal is to solve the following optimization problem.

Let Σ ⊂ C1 × C∗ be the set of all weak solutions to problem (2.1) — (2.8).

Suppose that j : Σ → R is a lower semicontinuous, bounded from below quality

functional.

For example, j may have the form

j(v, f) = C1

∫

Ω

|v(x, T ) − v̄(x)|2 dx + C2

∫ T

0

‖(f − f2(v))(t)‖V ∗ dt

where the first term characterizes the deviation of velocities at the final moment from

a given distribution (e.g. v̄ ≡ 0) and the second term estimates the cost of control.

The main result of this paper is the following statement.

Theorem 2.4. Under above conditions, if the Lipschitz constant l from condition(f21)

is sufficiently small then there exists a weak solution (v∗, f ∗) to problem (2.1) — (2.8)

such that

j(v∗, f ∗) = inf
(v,f)∈Σ

j(v, f).(2.10)

The proof of this assertion will be given in Section 4.2.
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3. THE OPERATOR TREATMENT OF THE PROBLEM

Let us note (see [11]) that we have the following continuous embeddings:

V ⊂ H ≡ H∗ ⊂ V ∗,(3.1)

where H ≡ H∗ is the identification of the spaces H and H∗ which follows from the

Riesz theorem on the representation of a linear functional in a Hilbert space.

Embeddings (3.1) generate the inclusion map Ĵ : V → V ∗ possessing the following

properties:

Lemma 3.1. 1. The operator Ĵ : V → V ∗ is linear and continuous.

2. The operator J defined on C by the equality

J [v](t) = Ĵ [v(t)] for v ∈ C, t ∈ [0, T ],

acts into C∗, it is linear and continuous.

The following statement is actually the corollary of the above-mentioned Riesz

theorem.

Lemma 3.2. 1. For every ψ ∈ V, the linear continuous form

ϕ ∈ V 7→ (ψ, ϕ)V ,

defines the operator Â : V → V ∗ such that

〈Âψ, ϕ〉 = (ψ, ϕ)V .

Moreover, the operator Â is linear continuous, has a continuous inverse, and

satisfies the relation

(3.2) ‖Âψ‖V ∗ = ‖ψ‖V ∀ψ ∈ V.

2. The operator A defined on C by the equality

A[v](t) = Â[v(t)] for v ∈ C, t ∈ [0, T ],

acts into C∗, it is linear continuous, has a continuous inverse, and satisfies the

relation

(3.3) ‖Av‖C∗ = ‖v‖C ∀v ∈ C.

The operators µ2Â+ Ĵ and µ2A+ J possess the following properties:

Lemma 3.3. 1. The operator µ2Â + Ĵ : V → V ∗ is linear continuous, has a

continuous inverse, and obeys the estimates

(3.4) µ2‖ψ‖V ≤ ‖(µ2Â+ Ĵ)ψ‖V ∗ ≤ c1‖ψ‖V ∀ψ ∈ V,

where the constant c1 does not depend on ψ.
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2. The operator µ2A+ J : C → C∗ is linear continuous, has a continuous inverse,

and satisfies the estimates

(3.5) µ2‖v‖C ≤ ‖(µ2A+ J)v‖C∗ ≤ c1‖v‖C ∀v ∈ C.

Proof. 1) The relations

〈(µ2Â+ Ĵ)ψ, ψ〉 = µ2(ψ, ψ)V + (ψ, ψ)H = µ2‖ψ‖
2
V + ‖ψ‖2

H ≥ µ2‖ψ‖
2
V(3.6)

imply the required lower estimate.

To obtain the upper estimate, at first let us mention that the embedding V ⊂ H

yields the inequality

‖ϕ‖H ≤ κ‖ϕ‖V(3.7)

for a certain constant κ which does not depend on ϕ. Further, applying the Cauchy–

Schwarz inequality we have:

‖(µ2Â+ Ĵ)ψ‖V ∗
def
= sup

ϕ∈V

‖ϕ‖V =1

|〈(µ2Â+ Ĵ)ψ, ϕ〉| =

= sup
ϕ∈V

‖ϕ‖V =1

|µ2(ψ, ϕ)V + (ψ, ϕ)H | ≤ sup
ϕ∈V

‖ϕ‖V =1

(µ2‖ψ‖V + κ‖ψ‖H)‖ϕ‖V = c1‖ψ‖V ,

where c1 = µ2 + κ2.

Now let us demonstrate that the operator µ2Â + Ĵ has a continuous inverse. In

fact, the above inequalities imply that we may define a new scalar product on the

space V by the equality

(ψ, ϕ) eV
= 〈[µ2Â+ Ĵ ]ψ, ϕ〉

and then the assertion follows from the same Riesz theorem.

2) The results of this item follow from the previous one and the Banach theorem

on the inverse operator.

For each fixed ψ ∈ V the form

ϕ ∈ V 7→
n∑

i,j=1

∫

Ω

ψiψj
∂ϕj
∂xi

dx

is linear and continuous on V . Therefore we may define the operator B̂ : V → V ∗,

〈B̂(ψ), ϕ〉 =
n∑

i,j=1

∫

Ω

ψiψj
∂ϕj
∂xi

dx forψ, ϕ ∈ V.

We will need the following statement.
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Lemma 3.4. 1. The operator B̂ : V → V ∗ satisfies the relation

(3.8) ‖B̂(ϕ1) − B̂(ϕ2)‖V ∗ ≤

≤ c2
(
‖ϕ1‖L4(Ω)n + ‖ϕ2‖L4(Ω)n

)
‖ϕ1 − ϕ2‖L4(Ω)n ∀ϕ1, ϕ2 ∈ V,

where the constant c2 does not depend on ϕ1 and ϕ2.

2. The operator B defined on C 1 by the equality

(3.9) B[v](t) = B̂[v(t)] for v ∈ C 1, t ∈ [0, T ],

acts into C∗ and is completely continuous.

Proof. 1) See [5].

2) Inequality (3.8) implies

(3.10) ‖B(v) − B(w)‖C∗ ≤

≤ c2
(
‖ṽ‖C([0,T ],L4(Ω)n) + ‖w̃‖C([0,T ],L4(Ω)n)

)
‖ṽ − w̃‖C([0,T ],L4(Ω)n)

for all v, w ∈ C1, where ṽ, w̃ denote the restrictions of v and w to [0, T ].

Since B(0) = 0, the above estimate verifies that the operator B actually has its

range in C∗, moreover, it obviously implies the continuity of B.

Let us demonstrate that the operator B is completely continuous. Suppose

{vm}∞m=1 is a bounded sequence in C1. Clearly B(vm) = B(ṽm), m = 1, 2, . . . ,

where ṽm = vm|[0,T ] ∈ C1([0, T ];V ) also forms a bounded sequence. Since the

inclusion V ⊂ L4(Ω)n is completely continuous, the Arzelá–Ascoli theorem yields

the relative compactness of the sequence {ṽm}∞m=1 in the space C([0, T ];L4(Ω)n).

So, we can select a subsequence {ṽmk
}∞k=1 which is convergent in C([0, T ], L4(Ω)n)

and hence fundamental. Applying estimate (3.10), we obtain that the sequence

{B(ṽmk
)}∞k=1 = {B(vmk

)}∞k=1 is also fundamental and therefore convergent in the

Banach space C∗.

Now, let us define the following continuous operators from C 1 into C∗×C setting

L(v) = ((µ2A+ J)ṽ ′ + µ1Aṽ, v0), where ṽ = v|[0,T ];

B̃(v) = (B(v), 0);

and the u.s.c. multivalued operator F̃ : C 1 → Kv(C∗ × C),

F̃(v) = (F(v), ν).

Now the problem of finding weak solutions to (2.1) — (2.8) takes the form of the

following operator inclusion

L(v) − B̃(v) ∈ F̃(v).(3.11)
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Let us mention that the boundedness of the operators (J +µ2A)−1 and A implies the

existence and the continuity of the inverse operator L−1 : C∗ × C → C 1 (see [3], Ch.

5, Theorem 1.2). Therefore problem (3.11) is equivalent to the existence of a fixed

point

(3.12) v ∈ F (v),

for the multimap F = L−1 ◦ (F̃ + B̃) : C 1 → Kv(C 1) .

Lemma 3.5. Suppose that

(3.13) l < ‖L‖,

where l is the Lipshitz constant from condition (f21). Then the multimap F is (k, χ)–

condensing on each bounded subset of C1, where k = l ‖L−1‖.

Proof. Applying Proposition 1.5 and Lemma 3.4(b) we can see that the multioperator

F̃+ B̃ is (l, χ, χ′)–bounded, where χ and χ′ are the Hausdorff MNCs in C1 and C∗×C

respectively. It remains only to use Proposition 1.3 to obtain the desired result.

In the sequel we will always suppose that condition (3.13) is fulfilled.

4. EXISTENCE OF A WEAK SOLUTION AND OPTIMIZATION OF

A FUNCTIONAL

4.1. An a priori estimate. In this section we will obtain an a priori estimate for

solutions of a parametrized version of inclusion (3.11). This estimate will be used for

the proof of existence of weak solutions to problem (2.1) — (2.8).

Theorem 4.1. If v ∈ C1 is a solution of the operator inclusion

L(v) − λB̃(v) ∈ λF̃(v).(4.1)

for some λ ∈ [0, 1] then

(4.2) ‖v‖C1 ≤ K(ν, µ1, µ2, T,N ),

where K is a nonnegative number depending only on above arguments.

Proof. Identifying for simplicity the function v with its restriction to [0, T ] we have

(4.3) (µ2A + J)v′ + µ1Av − λB(v) = λf for some f ∈ F(v),

whereas on [−h, 0] the following relation holds

(4.4) v0 = λν.
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For each s ∈ [0, T ], take the functional defined by the left-hand side of (4.3) and

apply it to v(s). Then we have

(4.5) < (µ2Â+ Ĵ)v′(s), v(s) > + < µ1Âv(s), v(s) > −

− λ < B̂v(s), v(s) >= λ < f(s), v(s) > .

Integrating (4.5) from 0 to t and taking into account the equality

< B̂v(s), v(s) >= 0 for all s ∈ [0, T ]

we obtain

(4.6)

∫ t

0

< (µ2Â+ Ĵ)v′(s), v(s) > ds+

∫ t

0

< µ1Âv(s), v(s) > ds =

= λ

∫ t

0

< f(s), v(s) > ds.

Using the definitions of the operators Â and Ĵ and the integrating by parts formula,

we have ∫ t

0

< µ2Âv
′(s), v(s) > ds = µ2

∫ t

0

(
v′(s), v(s)

)
V
ds

=
µ2

2

∫ t

0

d

ds

(
v(s), v(s)

)
V
ds =

µ2

2

∫ t

0

d

ds
(‖v(s)‖2

V ) ds

=
µ2

2
‖v(t)‖2

V −
µ2λ

2
‖ν(0)‖2

V

and ∫ t

0

< Ĵv′(s), v(s) > ds =

∫ t

0

∫

Ω

< v′(s), v(s) > dx ds

=
1

2

∫ t

0

d

ds

(∫

Ω

(v(s), v(s))H dx

)
ds =

1

2

∫ t

0

d

ds

(
‖v(s)‖2

H

)
ds

=
1

2
‖v(t)‖2

H −
λ

2
‖ν(0)‖2

H .

Now equation (4.6) may be rewritten in the following form

µ2

2
‖v(t)‖2

V +
1

2
‖v(t)‖2

H =
λµ2

2
‖ν(0)‖2

V +
λ

2
‖ν(0)‖2

H −

−

∫ t

0

< µ1Âv(s), v(s) > ds+ λ

∫ t

0

< f(s), v(s) > ds

≤
µ2

2
‖ν(0)‖2

V +
1

2
‖ν(0)‖2

H+

+

∣∣∣∣
∫ t

0

< µ1Âv(s), v(s) > ds

∣∣∣∣+
∣∣∣∣
∫ t

0

< f(s), v(s) > ds

∣∣∣∣ .

Let us estimate the last two terms in the above relation. We have
∣∣∣∣
∫ t

0

< µ1Âv(s), v(s) > ds

∣∣∣∣ =
∣∣∣∣
∫ t

0

µ1

(
v(s), v(s)

)
V
ds

∣∣∣∣
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=

∣∣∣∣
∫ t

0

µ1‖v(s)‖
2
V ds

∣∣∣∣ ≤ |µ1|

∫ t

0

‖v(s)‖2
V ds

and ∣∣∣∣
∫ t

0

< f(s), v(s) > ds

∣∣∣∣ ≤
∫ t

0

‖f(s)‖V ∗‖v(s)‖V ds ≤

≤
1

2

∫ t

0

‖f(s)‖2
V ∗ds+

1

2

∫ t

0

‖v(s)‖2
V ds ≤

≤
T

2
‖f‖2

C∗
+

1

2

∫ t

0

‖v(s)‖2
V ds ≤

TN 2

2
+

1

2

∫ t

0

‖v(s)‖2
V ds

(see Remark 2.1).

So we obtain the following estimate

µ2

2
‖v(t)‖2

V ≤
TN 2

2
+
µ2

2
‖ν(0)‖2

V +
1

2
‖ν(0)‖2

H +
1

2

∫ t

0

‖v(s)‖2
V ds

from which we conclude that

(4.7) ‖v(t)‖2
V ≤

1

µ2

(
TN 2 + ‖ν(0)‖2

V + µ2‖ν(0)‖2
H

)
+

1

µ2

∫ t

0

‖v(s)‖2
V ds.

Applying to (4.7) the Gronwall inequality we have

‖v(t)‖2
V ≤

1

µ2

(
TN 2 + ‖ν(0)‖2

V + µ2‖ν(0)‖2
H

)
e

T
µ2

and therefore

(4.8) ‖v‖C ≤

√
1

µ2

(
TN 2 + ‖ν(0)‖2

V + µ2‖ν(0)‖2
H

)
e

T
µ2 .

To obtain the estimate for ‖v′‖C let us apply the operator (µ2A+ J)−1 to both sides

of equation (4.3). We have

v′ = (µ2A + J)−1(λB(v) − µ1Av + λf)

and hence

(4.9) ‖v′‖C ≤ ‖(µ2A+ J)−1‖
(
‖B(v)‖C∗ + |µ1| ‖Av‖C∗ + N

)
.

Now let us mention that the continuous inclusion V ⊂ L4(Ω)n implies the relation

‖ϕ‖L4(Ω)n ≤ α‖ϕ‖V for all ϕ ∈ V

for some constant α > 0. Then inequality (3.10) obviously implies the estimate

(4.10) ‖B(v)‖C∗ ≤ αc2‖v‖
2
C .

Applying also relation (3.3), we obtain from (4.9) and (4.10):

(4.11) ‖v′‖C ≤ ‖(µ2A + J)−1‖
(
αc2‖v‖

2
C + |µ1| ‖v‖C + N

)
.

Now we deduce the desired result from (4.8) and (4.11).
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4.2. PROOF OF THE MAIN RESULT. The above a priori estimate allows to

apply the topological degree method to obtain our main result, Theorem 2.4.

As we know, the existence of a weak solution to (2.1) — (2.8) can be reduced to

fixed point problem (3.12). From Theorem 4.1 it follows that there exists a closed

ball BR ⊂ C1 centered at the origin of the radius R > 0 such that

v /∈ λF (v) for all (v, λ) ∈ ∂BR × [0, 1].

Applying Lemma 3.5 and the properties of the topological degree (see Section 1) we

have

deg(i− F,BR) = deg(i, BR) = 1

yielding the existence of a fixed point of F in BR.

So we see that the set Σ of all weak solutions to problem (2.1) — (2.8) is nonempty.

Moreover, since the multimap F is u.s.c. and condensing, the set of all v ∈ C1 such

that (v, f) ∈ Σ is compact (see [4], Proposition 3.5.1). The feedback relation

f ∈ F(v)

for each (v, f) ∈ Σ implies that the corresponding set of f ∈ C∗ is also compact (see

Remark 2.2 and Proposition 1.2). And now we conclude that the quality functional

j admits a minimizer on the compact set Σ.
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