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ABSTRACT. We consider the application of the topological degree theory for noncompact mul-
tivalued vector fields to the problem of existence of an optimal feedback control in the presence of
delay for the model of the motion of a visco-elastic fluid satisfying the Voight rheological relation.
The notion of a weak solution to the problem is introduced and the operator treatment of the prob-
lem allows to reduce it to the existence of a fixed point for a certain condensing multivalued map.
We give an a priori estimate for solutions of the problem and the use of the degree method allows to
prove the non-voidness and compactness of the solution set. As the result we obtain the existence
of a solution minimizing the given quality functional.
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INTRODUCTION

Problems of optimal control in hydrodynamics have attracted the attention of
many researchers (see, for example, monographs [2], [6], [7] and the bibliography
therein). In the most of these works the authors considered the fluids described by
Navier—Stokes type equations. In some recent papers methods of multivalued analysis
were used to obtain certain optimization results in problems of control of the motion

for non-Newtonean visco-elastic fluids (see [8], [13]).

In the present paper we apply the topological degree theory for condensing mul-
tivalued vector fields to prove the existence of an optimal feedback control in the
Voight model of a visco-elastic fluid. This model describes media which need some
time to start the motion under the action of an applied external force (see, e.g., [12]).
It should be mentioned that the solvability of the initial — boundary value problem
in the Voight model (and generalized Voight-Kelvin model) was initially studied in
the works of A. P. Oskolkov [9], [10]. In our paper we consider the situation when

the external force is the result of the joint action of the force which is the subject to
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a delay feedback control depending on the velocity of the fluid and the other force
which is determined by the velocity of the fluid and its derivative with respect to

time.

The paper is organized in the following way. In the first section we present
necessary notions and definitions from the theory of multivalued maps, measures of
noncompactness, and condensing maps. In the second section we are describing the
model, introduce the notion of a weak solution to the problem, and give the formula-
tion of our main result. The next section is devoted to the operator treatment of the
problem, where finally the problem under consideration is reduced to the existence
of a fixed point for a condensing multivalued map. In the last section we give an a
priori estimate for solutions of the problem, allowing to apply the multivalued topo-
logical degree methods to verify the non-voidness and compactness of the solution
set. As the result we obtain the existence of a solution minimizing the given quality

functional, proving the main result of the paper.

1. PRELIMINARIES

We will suppose that the considered fluid fills a container with rigid walls modelled
by a bounded domain Q in R™, n € {2,3}, the boundary 99 is supposed to be
Lipschitz. The density of the fluid is supposed to be constant and equal to one.

By X* we will denote the space dual to a real Banach space X and by (g,y) we
denote the action of the functional g € X* on the element y € X, the scalar product
in an arbitrary Hilbert space H is denoted by (-, ).

We will use L, ()", W3(2)" as the standard notation of Lebesgue and Sobolev
spaces of functions defined on © with the values in R”. Let ©(2)" be the space of of

functions of the class C'*° with the values in R" and a compact support in 2 and
D, ={veDd(Q)": dive = 0}.

We will consider also the following spaces (see, for example, [11]):

The closures of D,(Q)" in the norms of the spaces Ly(Q)" and Wi(Q)" will be
denoted respectively by H and V. The space V is Hilbert with the scalar product

defined by (¢,0)y = Xy (22, 22)
i i LQ(Q)n
We use the notation C([a,b]; X) and C!([a, b]; X) for the spaces of continuous

and continuously differentiable functions, respectively, defined on the interval [a, b]

with the values in X. We consider the usual norm in the space C([a, b]; X):

11 - ) x,
(1.1) vl c(ab),x) tem[gg]!lv()\lx

For T' > 0, let us introduce the following notation:

C=C(0,7],V), C.,=C(0,T],V").
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For a given h > 0, by the symbol C! we will denote a Banach space of functions
v e C([—h,T}; V) such that v = v € C*([0,T]; V) with the norm
[vller = l[ollo-nryiv) + 110 lloqoryv):
As one of the main tools in our studies we will use some aspects of the theory of
multivalued maps.
Let us briefly describe necessary preliminaries (see, e.g. [1], [4] for details).

Let X and Y be metric spaces and K(Y') denote the collection of all nonempty

compact subsets of Y.

A multivalued map (multimap) F': X — K(Y) is said to be:

(i) upper semicontinuous (u.s.c.) if the small pre-image F;'(W) = {z € X
F(x) C W} of each open subset W C Y is open in X;
(ii) closed if its graph is a closed subset of the space X x Y;
(iii) compact if its range F'(X) is relatively compact in Y
(iv) completely continuous if it is u.s.c. and the image F(D) of each bounded set

D C X is relatively compact in Y.

We recall that an u.s.c. multimap F : X — K(Y) is closed.
Proposition 1.1. A closed and locally compact multimap F': X — K(Y) is u.s.c.

Proposition 1.2. If a multimap F' : X — K(Y) is u.s.c. then the image F(M) of
each compact set M C X is compact.
A function y : 2% — [0, o0,
X(Q) =inf{e > 0:Q has a finite & — net}

is said to be the Hausdorff measure of noncompactness (MNC) in X.
It is clear that the Hausdorff MNC is regular, i.e., the equality x(2) = 0 is

equivalent to the relative compactness of 2.

Let us mention also the following properties (see [4]).

Proposition 1.3. If X and Y are normed spaces with the Hausdorff MNCs y, and

X1 respectively and L : X — Y is a bounded linear operator then
X1(L8) < [| L]l xo($2)
for each bounded set 2 C X.

Proposition 1.4. Let E be a separable Banach space; a multifunction G : [a,b] — 2%

be integrably bounded and admit an integrable selection. If

X(G(t) < q(t)
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for a.e. t € [a, b], where ¢(-) € L]a,b] then

o/ t clojis) < | g(s)ds,

where f; G(s)ds := {f,;g(s)ds g € L41]0,t];9(7) € G(7) for a.e. 7 € [0,¢]}

Let xo and x; be the Hausdorff MNCs in metric spaces X and Y respectively.
For some k > 0, a multimap F': X — K(Y') is said to be (k, xo, x1)—bounded provided

X1(F(£2)) < kxo(©2)

for each bounded 2 C X.

In case X =Y and 0 < k < 1 we will say that F'is (k, x)—condensing or simply

condensing (with respect to y).

As a particular case of Proposition 2.2.2 of [4] we have the following statement.

Proposition 1.5. Let Ey, E; be Banach spaces; xo, x1 the Hausdorff MNCs in Ej
and F; respectively; X C Ej a bounded closed subset. If a multimap F': X — K(F)
is compact and a map f : X — E is k-Lipschitz, £ > 0 then their sum F + f: X —
K(Ey) is (k, X0, x1)-bounded.

Now, let E be a Banach space, Kv(E) denote the collection of all nonempty

compact convex subsets of F and U C E be an open bounded set.

Suppose that an u.s.c. multimap F : U — Kuv(E) is condensing and the fixed
points set Fixr F = {x € U : z € F(z)} does not intersect the boundary OU. In
this situation the integer characteristic, the topological degree deg(i — F,U) of the
corresponding multifield ® = i — F, ®(z) = x — F(z), is well defined and possesses

the standard properties among which we will select the following.

a) The homotopy invariance. Let G : U x [0,1] — Kv(FE) be an us.c. (k,x)-

condensing family in the sense that
X(G(Q) x [0,1]) <k x(©)
for each Q C U. Suppose that = ¢ G(z, ) for all (x,\) € U x [0,1]. Then

deg(i — G(-,0),T) = deg(i — G(-,1),T) .

b) The fized point property. If deg(i — F,U) # 0 then () # Fix F C U.
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2. THE STATEMENT OF THE PROBLEM AND THE
FORMULATION OF THE MAIN RESULT

It is well known that the motion of a fluid is described by the following system

of differential equations in the Cauchy form

Jv = Jv ,
(2.1) E(t’ x) + ;vi(t, x)a—xi(t, x)+gradp(t,x) — Dive(t,x) =

:f(t,l’>, (t,l’) EQT-

In this relation we use the following notation: t is the time parameter varying on
the interval [0,7],7 > 0; Q7 = [0,T] x Q; . = (v1,...,2,) € Qv = (vq,...,0y,) 1S
the field of velocities of fluid particles; p is the function of the pressure of the fluid,
gradp = (a_p e a_p> ; f is the vector of the density of external forces exerted on the

oz’ ) Oxp

n n n
. . . . . 9o, 802; 80n;
fluid; o is the deviator of the tensions tensor, Divo = ( o T N PR ) .
=1 % i3

8xj ) aij rre 4 a{Ej
J=1

It will be supposed that the fluid under consideration is subjected to the Voight

rheological relation

o€
(2.2) o=2u€+ 2@5, where fiq, pio = const, with uy > 0,

and £ = £(v) = (&;(v)) is the tensor of velocities of deformations:

. 1 8’02' 8’0]'
£ilv) =3 (axj * 8@-) ‘

After the substitution of relation (2.2) into equation (2.1) it takes the form

v - 0NAv

ov
(2.3) Ejt;via—xijtgradp—mﬁv—ug T = f.

We will assume that the action of external forces f on the fluid can be represented

as the sum of two vectors,
f=rf+f;

where f; is the controlled function which is chosen at each moment ¢t € [0,7] in
accordance with a multivalued feedback relation with the time delay and f, describes a
certain natural force depending on the distribution of velocities v and their derivatives

with respect to time.
To be more exact, denote C = C([—h,0]; V) and let E be a Banach space of
control parameters. We will assume that a feedback multimap U : [0, 7] xC — Kv(E)

satisfies the following conditions:

(U1) the multifunction U(-,¢) : [0,7] — Kv(F) has a strongly measurable selection
for each ¢ € C;
(U2) the multimap U(t,-) : C — Kv(FE) is us.c. for a.e. t € [0,T];
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(U3) the multimap U is globally bounded, i.e., there exists a constant M > 0 such
that

|U(, o)l == sup{[u] : weUt,c)} <M
for a.e. t € [0,7] and all ¢ € C;
(U4) for each bounded D C C, the set U(t, D) is relatively compact for a.e. ¢t € [0, T].

Let us note that conditions (U1)—(U3) imply that for every v € C! the set
Pu(w) ={uec Li([0,T]; E) : u(t) € U(t,v;) for a.e. t € [0,T]}
is non-empty (see, e.g. [1], [4]). Here v; € C denotes, for ¢t € [0,7], the function
v () =v(t+0), 0 € [—h,0].

Now we assume that, under a given control u € Py (v), the force fi(u) € C., is

defined by the Bochner integral relation

fl(u)(t):/o K(t, s)u(s)ds.

Here K(t,s) : E — V* is a bounded linear operator for each (t,s) € A = {(t,s) €
[0,7] x [0,T] : t > s}. It is supposed also that the kernel K satisfies the following
conditions:

(K1) the function K is strongly continuous in the sense that (f,s) € A — K(t,s)u €
V* is a continuous function for each u € E;
(K2) the function K is uniformly bounded, i.e., there exists N > 0 such that

K@ 8)|| < N
for all (t,s) € A.

Since f1 : L1([0,T]; E) — C, is the linear continuous operator, as the direct conse-

quence of Theorem 1.5.30 of [1], we obtain the following statement.

Lemma 2.1. The multimap f, o Py is closed.

Moreover, taking into account property (U4) and Proposition 1.4 and applying
the Arzela—Ascoli theorem we can conclude that the image f10Py(€2) of each bounded
set Q C C* is relatively compact. Finally, using Proposition 1.1 we have the following

assertion.

Lemma 2.2. The multimap f; o Py has compact convex values and is completely

continuous.

Concerning the vector of forces f, it will be assumed that, at each moment
t € [0,7] and at every point = € §2 it depends on the velocity of the fluid v(¢, z) and
its derivative 22(¢, ) :

2.9 falty2) = €(0(t,2), 501, 2)),
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where the function £ : R" x R™ — R" satisfies the following Lipschitz type condition:
g, 8) = &@ B < L(lle =@l + 118 = BII)

for some [ > 0.

It is easy to see that relation (2.4) generates a continuous map (which will be
denoted, for simplicity, by the same symbol) f, : C' — C, satisfying the Lipschitz
condition

(f21) | fo(v) = f2(0)|le. <1 {[v— 0l
with the same constant [.
It will be supposed also that
(f22) the function f5 is bounded, i.e., there exists L > 0 such that

[f2(0)lle. < L

for all v € C.

So, the total action of external forces on the fluid is described by the multimap
5:C— Kv(C,),
§(v) = froPu(v) + fa(v).

Remark 2.1. Let us mention that from conditions (U3), (K2), and (f22) it follows
that the multimap § is bounded, i.e., there exists a constant N > 0 such that

Iflle. <N
for each f € F(v) and v € C*.

Remark 2.2. From Lemma 2.2 and the properties of multivalued maps (see, e.g. [1],
[4]) it follows that the multimap § is u.s.c.
Take an initial function v € C satisfying the boundary condition of adhesion
V|(=h0x00 = 0.

If we deal with the problem of control over the motion of the considered fluid in the
class of strong solutions, it may be formulated in the following way: to find a collection
of functions (v, o, p, f) satisfying relations (2.2), (2.3), the feedback condition

(2.5) fes),

the incompressibility condition

(2.6) dive = Z gf: =0,

the initial condition

(27) Vg =V,
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and the boundary condition
(28) /U|[0yT]><8Q = O
We will consider problem (2.2), (2.3), (2.5) — (2.8) for the class of weak solutions.

Definition 2.3. A pair of functions (v, f) € C! x C, is called a weak solution to
problem (2.2), (2.3), (2.5) — (2.8) if it satisfies feedback condition (2.5) and the equal-

1ty

(29) (U/(t)a SO)Lz(Q)” + qu(’U/(t), @)V + ,ul(v(t): QO)V_

n

0p;
-3 (won0.32)  =w.0
i,j=1 v/ L2(Q)

for an arbitrary function ¢ € V and each ¢ € [0, 7] whereas the function v obeys also

initial condition (2.7).

Let us note that the above interpretation of a weak solution is in agreement with
the corresponding notion being widely used in hydrodynamics (see, e.g. [11]). If a
pair (v, f) represents a strong solution to (2.2), (2.3), (2.5) — (2.8) we can come to
relation (2.9) by means of a scalar multiplication of equation (2.3) in Lo(2)" by a
given element ¢ € V and through the integrating in parts. It should be mentioned
that under this operation we have (gradp, ) ,@» = 0.

Furthermore, our goal is to solve the following optimization problem.

Let X C C' x C, be the set of all weak solutions to problem (2.1) — (2.8).
Suppose that 7 : ¥ — R is a lower semicontinuous, bounded from below quality

functional.

For example, j may have the form

v dt

jw.f)=C, / oz, T) — o(2)| di + C / I(f = fal0))(®)

where the first term characterizes the deviation of velocities at the final moment from

a given distribution (e.g. © = 0) and the second term estimates the cost of control.

The main result of this paper is the following statement.

Theorem 2.4. Under above conditions, if the Lipschitz constantl from condition( fo1)
is sufficiently small then there ezists a weak solution (v*, f*) to problem (2.1) — (2.8)
such that

(210) J £ = it o, f)

The proof of this assertion will be given in Section 4.2.
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3. THE OPERATOR TREATMENT OF THE PROBLEM

Let us note (see [11]) that we have the following continuous embeddings:
(3.1) VcH=H" CV",

where H = H* is the identification of the spaces H and H* which follows from the

Riesz theorem on the representation of a linear functional in a Hilbert space.

Embeddings (3.1) generate the inclusion map J:V > V* possessing the following
properties:

Lemma 3.1. 1. The operator J:V — V* is linear and continuous.
2. The operator J defined on C by the equality

J(t) = J[u(t)] forveC,tel0,T],

acts into C,, it is linear and continuous.

The following statement is actually the corollary of the above-mentioned Riesz
theorem.

Lemma 3.2. 1. For every ¢ € V, the linear continuous form
pe Vi (4,0,
defines the operator AV = V* such that
(A, ) = (1, 9)v.

Moreover, the operator A is linear continuous, has a continuous inverse, and

satisfies the relation

(3:2) 1Al = I9llv Vo e V.
2. The operator A defined on C' by the equality

A[v](t) = A[v(t)] forve C,tel0,T),

acts into C., it is linear continuous, has a continuous inverse, and satisfies the

relation
(3.3) |Av||c, = |lvlle Vv e C.
The operators [LQA\ + J and oA + J possess the following properties:

Lemma 3.3. 1. The operator ,u22+ J V. — V* is linear continuous, has a

continuous inverse, and obeys the estimates

(3.4) ol dlly < oA+ Dl < erllllv Ve eV,

where the constant c¢; does not depend on 1.
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2. The operator pus A+ J : C'— Cy is linear continuous, has a continuous inverse,

and satisfies the estimates

(3.5) pollvlle < [(p2Ad + Jvlle, < allvlle Vv el

Proof. 1) The relations

(3.6)  {((p2A + D), ¥) = pa(eh, )y + (0, 0) i = pal|01% + 01I% > pal|0]|%

imply the required lower estimate.

To obtain the upper estimate, at first let us mention that the embedding V' C H
yields the inequality

(3.7) el < &llellv

for a certain constant x which does not depend on ¢. Further, applying the Cauchy—

Schwarz inequality we have:

(2 A + Tyl € sup (oA + ), )| =
||<P||v 1
= sup | (s v + ()| < sup (p2llvllv + sllvllm)llellv = ell¥llv,
H<PHV 1 |IA0I|V 1

where ¢; = g + K2

Now let us demonstrate that the operator ,LLQA\ + J has a continuous inverse. In
fact, the above inequalities imply that we may define a new scalar product on the

space V' by the equality
(@, 0)g = (A + T10, o)

and then the assertion follows from the same Riesz theorem.

2) The results of this item follow from the previous one and the Banach theorem

on the inverse operator. O

For each fixed ¥ € V' the form

<pevHZ/¢Z¢Ja%d

4L,j=1¢

is linear and continuous on V. Therefore we may define the operator B:V — |
~ 0
(B(y) /Wp] D5 dx fore, p € V.
i,j=1

We will need the following statement.
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Lemma 3.4. 1. The operator B:V >V satisfies the relation

(3.8) [[B(e1) — Blypa)|lv <
< ¢ (leall @ + le2llLa@n) ler — e2llLa@yr V1,2 €V,

where the constant co does not depend on @, and ps.
2. The operator B defined on C'' by the equality

~

(3.9) B[v](t) = Blv(t)] forve Ot telo,T),
acts into C, and is completely continuous.

Proof. 1) See [5].
2) Inequality (3.8) implies

(3.10) [[B(v) = B(w)l|c, <
< &2 ([0lleqoay.a@ + 1@llewm.cawm ) IV = @lleqor.La@m
for all v,w € C*, where v, w denote the restrictions of v and w to [0, 7.

Since B(0) = 0, the above estimate verifies that the operator B actually has its
range in C, moreover, it obviously implies the continuity of B.

Let us demonstrate that the operator B is completely continuous. Suppose
{vm}S_; is a bounded sequence in C'. Clearly B(v,) = B(vy), m = 1,2,...,
where Uy, = Ul € CH([0,T];V) also forms a bounded sequence. Since the
inclusion V' C L4(Q)" is completely continuous, the Arzeld—Ascoli theorem yields
the relative compactness of the sequence {v,,}7°_; in the space C([0,T7]; La(2)").
So, we can select a subsequence {vy,, }32, which is convergent in C([0, 7], L4(2)")
and hence fundamental. Applying estimate (3.10), we obtain that the sequence
{B(Um,)}327 = {B(vm,)}32, is also fundamental and therefore convergent in the

Banach space C,. O

Now, let us define the following continuous operators from C' ! into C, x C setting
L(v) = ((eA+ J)v" + 1 AV, vg), where U = v|jo1;
B(v) = (B(v),0);
and the w.s.c. multivalued operator § : C'' — Kv(C, x C),
3(v) = (F(v),v).

Now the problem of finding weak solutions to (2.1) — (2.8) takes the form of the

following operator inclusion

(3.11) L(v) — B(v) € 3(v).
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Let us mention that the boundedness of the operators (J + s A)~! and A implies the
existence and the continuity of the inverse operator L1 : C,, x C — C (see [3], Ch.
5, Theorem 1.2). Therefore problem (3.11) is equivalent to the existence of a fixed

point

(3.12) v € F(v),

for the multimap F = £ 1o (§+ B): C!' — Kv(C1) .
Lemma 3.5. Suppose that

(3.13) L< L],

where | is the Lipshitz constant from condition (fo1). Then the multimap F is (k, x)—

condensing on each bounded subset of C', where k = 1] L.

Proof. Applying Proposition 1.5 and Lemma 3.4(b) we can see that the multioperator
3+ DB is (1, x, X")-bounded, where x and x’ are the Hausdorff MNCs in C* and C, x C

respectively. It remains only to use Proposition 1.3 to obtain the desired result. [

In the sequel we will always suppose that condition (3.13) is fulfilled.

4. EXISTENCE OF A WEAK SOLUTION AND OPTIMIZATION OF
A FUNCTIONAL

4.1. An a priori estimate. In this section we will obtain an a priori estimate for
solutions of a parametrized version of inclusion (3.11). This estimate will be used for

the proof of existence of weak solutions to problem (2.1) — (2.8).

Theorem 4.1. Ifv € C' is a solution of the operator inclusion

(4.1) L(v) — AB(v) € A3 (v).

for some X\ € [0, 1] then

(4.2) [vller < K (v, pa, p2, T, N),

where K is a nonnegative number depending only on above arquments.

Proof. Identifying for simplicity the function v with its restriction to [0, 7] we have
(4.3) (A + )W + pAv — AB(v) = \f for some f € F(v),

whereas on [—h, 0] the following relation holds

(4.4) Vo = AV
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For each s € [0,7T], take the functional defined by the left-hand side of (4.3) and
apply it to v(s). Then we have

(45) < (oA + J)'(s),v(s) > + < piAv(s),v(s) > —
— X< Bo(s),v(s) >= A < f(s),v(s) > .

Integrating (4.5) from 0 to ¢ and taking into account the equality

~

< Bu(s),v(s) >=0 for all s € [0,7]

we obtain

(4.6) /0 < (A + J)v'(s),v(s) > ds +/0 < Av(s),v(s) > ds =

= )\/Ot < f(s),v(s) > ds.

Using the definitions of the operators A and J and the integrating by parts formula,

we have . t

/ < uAv'(s),v(s) > ds = uQ/ (v'(s),v(s)), ds

0 0
t t
_te [T d _ e [fd 2
- 2 0 dS (U(S>7U(S))Vds - 2 0 dS(HU(S)HV) dS
p 2
= 2 ofay 2 ooy

and

/Ot < jv/(s),v(s) >ds = /Ot/Q < v'(s),0(s) > dzds
5 [ ([t as=3 [ L)

1 A
= Sl = SO

Now equation (4.6) may be rewritten in the following form

L 1 AL A
P2 o)l + 5l = 52O + SO0} -

—/0 < Av(s), v(s) > ds—i—)\/ < f(s),v(s) > ds

0

0 1
< 21Ol + IO+

+ -

[ <6006 > as

0

t
/ < prAv(s),v(s) > ds

0
Let us estimate the last two terms in the above relation. We have

/ot < mAv(s), v(s) > ds /ot paloloh i)y &
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t

t
i pallv(s)[IVds| < |M1|/0 lv(s)[17ds

and

| < £6)05) > ds| < [ 1Ol lots)Ivds <
0 0
<5 [ WOlReds+ 5 [l <

T 1 [ TN? 1 [t
< Sl + 5 [ Me)lpds < 5=+ 5 [ le)lRds
0 0
(see Remark 2.1).

So we obtain the following estimate

“20olf < 224 2 (o)t + SO + /Hv )lids

from which we conclude that

2 i 2 v 2 v 2 i t v(s)||?ds
47 fe@®Iy < o (TN + [ (0I5, + pal (0)||H)+u2/0 [o(s)lyds.

Applying to (4.7) the Gronwall inequality we have

1 T
lo(@)l7 < E(TN2 + IO + p2llv(0)]%) e

and therefore

1 T
(4.8) lolle < ﬁ— (TN + O + ol O)|IZ) 5.

To obtain the estimate for ||v’||¢ let us apply the operator (uzA + J)~! to both sides
of equation (4.3). We have

= (A + J) " (AB(v) — puAv + Af)
and hence

(4.9) Ille < ll(u2A + ) (1 B(v)]

c. + lml |Avlle, + N).

Now let us mention that the continuous inclusion V' C L4(2)"™ implies the relation
el i@ < ellelly forall p eV

for some constant a > 0. Then inequality (3.10) obviously implies the estimate

(4.10) 1B)llc. < aclv]|2.

Applying also relation (3.3), we obtain from (4.9) and (4.10):
(4.11) IWlle < (A + ) (aczllvlle + [l vl +N).

Now we deduce the desired result from (4.8) and (4.11). O
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4.2. PROOF OF THE MAIN RESULT. The above a priori estimate allows to

apply the topological degree method to obtain our main result, Theorem 2.4.

As we know, the existence of a weak solution to (2.1) — (2.8) can be reduced to
fixed point problem (3.12). From Theorem 4.1 it follows that there exists a closed
ball B C C! centered at the origin of the radius R > 0 such that

v & AF(v) for all (v,\) € 0Bg x [0,1].

Applying Lemma 3.5 and the properties of the topological degree (see Section 1) we

have
deg(i — F, Bg) = deg(i, Bg) = 1
yielding the existence of a fixed point of F' in Bp.
So we see that the set ¥ of all weak solutions to problem (2.1) — (2.8) is nonempty.

Moreover, since the multimap F is u.s.c. and condensing, the set of all v € C! such
that (v, f) € ¥ is compact (see [4], Proposition 3.5.1). The feedback relation

fedw)

for each (v, f) € 3 implies that the corresponding set of f € C, is also compact (see
Remark 2.2 and Proposition 1.2). And now we conclude that the quality functional

7 admits a minimizer on the compact set X.
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grant ICS (CLG-981757).
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