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1. INTRODUCTION

Let P be a nonempty subset of R
2, equipped with coordinatewise ordering. As

an introductory result to our study notice that a multifunction F : P → 2P \ ∅ has a

fixed point, that is, x ∈ F (x) for some x ∈ P , if the following conditions hold.

(c1) sup{c, y} ∈ P for some c ∈ P and for each y ∈ F [P ] =
⋃

{F (x) : x ∈ P}.

(c2) If x ≤ y in P , then for each z ∈ F (x) there exists a w ∈ F (y) such that z ≤ w,

and for each w ∈ F (y) there exists a z ∈ F (x) such that z ≤ w.

(c3) Strictly monotone sequences of F [P ] are finite.

For instance, a fixed point of F can be obtained by the following algorithm: Denote

x0 = c, and choose y0 from F (x0). If xn and yn ∈ F (xn) are chosen, and if xn 6= yn,

choose xn+1 = yn if xn ≤ yn or yn ≤ xn, otherwise choose xn+1 = sup{c, yn}. If

xn ≤ xn+1, apply condition (c2) to choose yn+1 from F (xn+1) such that yn ≤ yn+1. If

xn+1 ≤ xn, choose yn+1 from F (xn+1) such that yn+1 ≤ yn. Condition (c3) ensures

that after a finite number of choices we get the situation where xn = yn ∈ F (xn), so

that xn is a fixed point of F .

A necessary and sufficient condition for a point c = (c1, c2) of P to satisfy (c1)

is that whenever a point y = (y1, y2) of F [P ] and c are unordered, then (y1, c2) ∈ P

if y2 < c2 and (c1, y2) ∈ P if y1 < c1. No conditions are imposed on other points of

F [P ].
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In this paper we study first the existence of extremal fixed points of F : P → 2P \∅

when P is a nonempty subset of an ordered topological space, and when the finiteness

of the sequences in (c3) is replaced by their convergence. The obtained results are

then used to generalize existence results derived in [4, 6, 7] for inclusion problem

Lu ∈ Nu and to study the existence of extremal Nash equilibria for normal-form

games.

A generalized iteration method introduced in [5] is used in the proof of our key

result, Lemma 2.6.

2. PRELIMINARIES

Let X = (X,≤) be an ordered topological space, i.e., for each a ∈ X the order

intervals [a) = {x ∈ X : a ≤ x} and (a] = {x ∈ X : x ≤ a} are closed in

the topology of X. In what follows P denotes a nonempty subset of X having the

following property:

(C) Each chain C of P whose monotone sequences converge in P contains an in-

creasing sequence which converges to sup C and a decreasing sequence which

converges to inf C.

In ordered metric spaces, and in ordered normed spaces equipped with a norm-

topology or a weak topology each nonempty subset P has property (C) according

to [8], Proposition 1.1.5 and Lemma 1.1.2 and [2], Appendix, Lemma A.3.1 and their

duals. If X is an ordered topological space which satisfies the second countability

axiom, then each chain of X is separable, whence each nonempty subset P of X has

property (C) by [8], Lemma 1.1.7 and its dual.

Definition 2.1. We say that F : P → 2P \ ∅ is increasing upward if x, y ∈ P , x ≤ y

and z ∈ F (x) imply an existence of w ∈ F (y) such that z ≤ w. F is increasing

downward if x, y ∈ P , x ≤ y and w ∈ F (y) imply that z ≤ w for some z ∈ F (x). If

F is increasing upward and downward we say that F is increasing.

The following Lemma is a consequence of [5], Lemma 2, which in turn is an

application of a recursion method introduced in [8], Lemma 1.1.1.

Lemma 2.2. Given F : P → 2P \ ∅, let G : P → P be a selection function of F , i.e.

G(x) ∈ F (x) for all x ∈ P . Then for each c ∈ P there is a unique well-ordered chain

C = C(G) in P , called a well-ordered (w.o.) chain of cG-iterations, satisfying

(2.1) x ∈ C if and only if x = sup{c, G[{y ∈ C : y < x}]}.

The values of multifunctions are assumed to satisfy the following types of order

compactness properties.
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Definition 2.3. A nonempty subset A of a subset Y of X is called sequentially order

compact upward in Y if for each increasing sequence (yn) of Y the intersection of

all the sets [yn) ∩ A is nonempty whenever each [yn) ∩ A is nonempty. If for each

decreasing sequence (yn) of Y the intersection of all the sets (yn] ∩ A is nonempty

whenever each (yn] ∩ A is nonempty, we say that A is sequentially order compact

downward in Y . If both these properties hold, we say that A is sequentially order

compact in Y . If Y = A, we say that A is sequentially order compact.

If A has the greatest element (respectively the least element), then A is se-

quentially order compact upward (respectively downward) in any subset of X which

contains A. A sequentially order compact set is not necessarily (topologically) com-

pact, not even closed, as we see by choosing X = R
2, ordered coordinatewise, and

Y = A = {(x,−x) : x ∈ I}, where I is a nonempty open interval of R. On the other

hand, each compact or countably compact subset A of X is obviously sequentially

order compact in each subset of X which contains A. Moreover, the following results

hold.

Lemma 2.4. (a) If A is a sequentially compact subset of X, then A is sequentially

order compact in each subset of X which contains A.

(b) A subset A of X is sequentially order compact upward (in A) if and only if

each increasing sequence of A has an upper bound in A.

Proof. (a) Assume that A is a sequentially compact subset of X, and that A ⊆ Y ⊆ X.

Let (yn) be an increasing sequence in Y , and assume that [yn) ∩ A is nonempty for

each n. Choose zn from each [yn) ∩ A. Since A is sequentially compact, there exists

a subsequence (znk
) of (yn) which has a limit z in A. For each fixed n the sequence

(znk
)k≥n is contained in [yn) which is closed, whence its limit z belongs also to [yn),

and hence to [yn) ∩ A. This holds for each n, so that z belongs to the intersection

of all [yn) ∩ A. This proves that A is sequentially order compact upward in Y . The

proof that A is sequentially order compact downward in Y is similar.

(b) Assume that A is sequentially order compact upward, and let (yn) be an

increasing sequence of A. Then yn ∈ [yn) ∩ A, for each n, whence each [yn) ∩ A is

nonempty. Thus their intersection contains at least one point y. In particular, y ∈ A

and yn ≤ y for each n, so that y is an upper bound of (yn) in A.

Conversely, if y ∈ A is an upper bound of an increasing sequence (yn) of A, then

y belongs to each [yn)∩A, and hence also to their intersection. If this holds for every

increasing sequence (yn) of A, then A is sequentially order compact upward.

Definition 2.5. We say that a subset A of P has a sup-center c in P if c ∈ P and

sup{c, x} exists and belongs to P for each x ∈ A. If inf{c, x} exists and belongs to

P for each x ∈ A, we say that c is an inf-center of A in P .
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The result of Lemma 2.2 is used in the proof of the next result which plays a key

role in the proof of our main fixed point theorem.

Lemma 2.6. Assume that F : P → 2P \ ∅ is increasing upward, that its values are

sequentially order compact upward in F [P ], that increasing sequences of F [P ] have

limits in P and the set of these limits has a sup-center in P . Then (b]∩F (b) 6= ∅ for

a b ∈ P .

Proof. Let c be a sup-center of the set of limits of increasing sequences of F [P ].

Denote by

G := {G : P → P : G(x) ∈ F (x) for all x ∈ P}

the set of all selections of F . For each G ∈ G denote by CG the longest such an initial

segment of the w.o. chain C(G) of cG-iterations that the restriction G|CG of G to

CG is increasing. Let ≺ be a well-ordering of G, and define a transfinite sequence of

the elements of G as follows: Let G0 be the least element of G. If α is such an ordinal

that Gβ is chosen for each β < α, let Gα be the least element of G, if exists, such that

CGβ
is a proper initial segment of CGα

and Gα|CGβ
= Gβ|CGβ

for each β < α. Denote

λ = ∪α and C = ∪α∈λCGα
. Since each CGα

is well-ordered, then also C is well-

ordered. The above construction implies also that G = ∪α∈λGα|CGα
is an increasing

selection function of the restriction of F to C. Since C is well-ordered and G is

increasing, then G[C] is also well-ordered, and it is contained in F [P ]. This implies

by a hypothesis that increasing sequences of G[C] converge. In view of property (C)

one of these sequences converge to w = sup G[C]. Moreover, b = sup{c, w} exists in

P by a hypothesis. It is easy to see that b = sup{c, G[C]}. If x ∈ C, then x ∈ CGα

for some α < λ, and hence

(2.2)
x = sup{c, Gα[{y ∈ CGα

: y < x}]}

= sup{c, G[{y ∈ C : y < x}]} ≤ sup{c, G[C]} = b.

This proves that b is an upper bound of C.

By the above construction there exists an increasing sequence (yn) in G[C] which

converges to w = sup G[C]. Denoting xn = min{x ∈ C : G(x) = yn}, then xn ≤ b.

Since yn = G(xn) ∈ F (xn) and F is increasing upward, there exists a zn ∈ F (b)

such that yn ≤ zn. This holds for each n, whence the sets [yn) ∩ F (b) are nonempty.

Because F (b) is sequentially order compact upward in F [P ], then the intersection of

the sets [yn)∩F (b) is nonempty. Choose z from that intersection. Since z belongs to

each [yn) ∩ F (b), then yn ≤ z for each n, whence w = limn yn = supn yn ≤ z.

To show that b = max C, assume on the contrary that b is a strict upper bound

of C. Let Gλ be the least element of G whose restriction to C ∪ {b} is G ∪ {(b, z)}.

Since G is increasing and Gλ(x) = G(x) ≤ w ≤ z = Gλ(b) for each x ∈ C, then Gλ is
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increasing in C ∪ {b}. Moreover,

b = sup{c, G[C]} = sup{c, Gλ[C]} = sup{c, Gλ[{y ∈ C ∪ {b} : y < b}]},

whence C ∪ {b} is an initial segment of the w.o. chain of cGλ-iterations. Thus C is

a proper subset CGλ
. But this is impossible by the construction of C. Consequently,

b = max C, whence b = sup{c, G[C]} = sup{c, G(b)} because G is increasing in C. In

particular, G(b) ≤ b and G(b) ∈ F (b), so that G(b) belongs to the set (b] ∩ F (b).

The next result is the dual to that of Lemma 2.6.

Lemma 2.7. Assume that F : P → 2P \ ∅ increasing downward, that its values are

sequentially order compact downward in F [P ], and that decreasing sequences of F [P ]

have limits in P and the set of these limits has an inf-center in P . Then [a)∩F (a) 6= ∅

for some a ∈ P .

3. FIXED POINT RESULTS

Throughout this section we assume that X is an ordered topological space and

P is a nonempty subset of X having property (C). The following result is proved in

[3].

Lemma 3.1. Let F : P → 2P \ ∅ satisfy the following hypothesis.

(F1) If yn ∈ [xn) ∩ F (xn), n ∈ N, and if (yn) is increasing, then x = limn yn exists in

P and [x) ∩ F (x) 6= ∅.

If [a)∩F (a) 6= ∅ for some a ∈ P , then F has a maximal fixed point x+, which is also

a maximal element of those x ∈ P for which [x) ∩ F (x) 6= ∅.

As an application of Lemma 3.1 we prove the following result.

Proposition 3.2. Assume that F : P → 2P \ ∅ is increasing upward, that its values

are sequentially order compact upward in F [P ], and that increasing sequences of F [P ]

converge in P . If [a) ∩ F (a) 6= ∅ for some a ∈ P , then F has a maximal fixed point.

Proof. It suffices to show that the hypothesis (F1) of Lemma 3.1 holds. Assume that

yn ∈ [xn)∩F (xn), n ∈ N, and that (yn) is increasing. Since the increasing sequences of

F [P ] converge in P , then x = limn yn = supn yn exists in P . Because F is increasing

upward, then [yn) ∩ F (x) 6= ∅ for each n ∈ N. Because F (x) is sequentially order

compact upward in F [P ], there exists y ∈ ∩{[yn) ∩ F (x) : n ∈ N}. In particular,

yn ≤ y for each n ∈ N, whence y is an upper bound of (yn). Since x = supn yn, then

x ≤ y. Moreover, y ∈ F (x) so that y ∈ [x) ∩ F (x). Thus (F1) is valid.

The next result is dual to that of Proposition 3.2.
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Proposition 3.3. Assume that F : P → 2P \ ∅ is increasing downward, that the

values of F are sequentially order compact downward in F [P ], and that decreasing

sequences of F [P ] converge in P . If (b] ∩ F (b) 6= ∅ for some b ∈ P , then F has a

minimal fixed point.

Now we are ready to prove our main fixed point result.

Theorem 3.4. Assume that F : P → 2P \ ∅ is increasing, that its values are se-

quentially order compact in F [P ], and that monotone sequences of F [P ] converge in

P .

(a) If the set of limits of increasing sequences of F [P ] has a sup-center in P , then

F has a minimal fixed point.

(b) If the set of limits of decreasing sequences of F [P ] has an inf-center in P ,

then F has a maximal fixed point.

Proof. (a) The hypotheses of Lemma 2.6 are valid, whence there exists a b ∈ P such

that (b] ∩ F (b) 6= ∅. Thus the hypotheses of Proposition 3.3 hold, which implies the

assertion.

(b) The hypotheses of Lemma 2.7 are valid. Thus there exists an a ∈ P such

that [a) ∩ F (a) 6= ∅. The hypotheses of Proposition 3.2 are then valid, which implies

the assertion.

Remark 3.5. Classical fixed point theorems in ordered spaces (cf., e.g., [1, 10, 11,

12, 13, 14, 17, 18]) don’t provide tools to prove the results of Theorem 3.4.

Propositions 3.2 and 3.3 and Theorem 3.4 generalize the related fixed point results

derived in [4, 5, 6, 7, 10] for increasing multifunctions in ordered topological vector

spaces.

4. APPLICATIONS TO AN INCLUSION PROBLEM

In this section we apply Theorem 3.4 to prove a existence results for the inclusion

problem

(4.1) Lu ∈ Nu

in the case when L : V → P and N : V → 2P \ ∅, where V is a nonempty set and P

is a subset of an ordered topological space X having property (C).

Theorem 4.1. Assume that L : V → P is bijective, that the values of N : V → 2P \∅

are sequentially order compact in N [V ], that monotone sequences of N[V] converge in

P , and that N ◦ L−1 is increasing. If P has a sup-center or an inf-center, then the

inclusion problem 4.1 has a solution.
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Proof. We shall show that the multifunction F := N ◦ L−1 : P → 2P \ ∅ satisfies the

hypotheses of Theorem 3.4. Notice first that F is increasing by a hypothesis, and

that F [P ] = NL−1[P ] = N [V ]. Moreover, if x ∈ P , then denoting u = L−1x we

have F (x) = NL−1x = Nu, whence F (x) is sequentially order compact in F [P ] =

N [V ] because Nu is. Since the monotone sequences of N [V ] = F [P ] converge by

a hypothesis, then F satisfies the hypotheses of Theorem 3.4. Because P has a

sup-center or an inf-center, then F has by Theorem 3.4 a fixed point x. Denoting

u = L−1x, then Lu = x ∈ F (x) = NL−1x = Nu, whence u is a solution of 4.1.

In the next Theorem we assume that V is a partially ordered set (poset).

Theorem 4.2. Assume that V is a poset, and that L : V → P and N : V → 2P \ ∅

satisfy the following hypotheses

(L) The greatest solutions of Lu = y exist and are increasing in y ∈ P .

(N) N is increasing, its values are sequentially order compact in N [V ], and monotone

sequences of N[V] converge in P .

If P has an inf-center, then 4.1 has a solution u+ which is maximal in the sense that

if u ∈ V is any solution of 4.1 such that u+ ≤ u and Lu+ ≤ Lu, then u+ = u.

Proof. The hypotheses (L) and (N) imply that the relations

(4.2)
V+ = max{u ∈ V : Lu = y, y ∈ P},

L+ = L|V+, and N+ = N |V+

define mappings L+ : V+ → P and N+ : V+ → 2P \ ∅ which have the following

properties.

(i) L+ is a bijection and its inverse is increasing.

(ii) N+ is increasing, its values are sequentially order compact in N+[V+] and mono-

tone sequences of N+[V+] converge in P .

Because L−1
+ and N+ are increasing, then a mapping F = N+ ◦ L−1

+ : P → 2P \ ∅ is

increasing. If x ∈ P , then denoting u = L−1
+ x we have F (x) = N+L−1

+ x = N+u = Nu,

whence F (x) is sequentially order compact in F [P ] = N+[V ] ⊆ N [V ] because Nu is.

Since the monotone sequences of N [V ] converge in P by (N), and F [P ] ⊆ N [V ] then

monotone sequences of F [P ] converge in P . Consequently, if P has an inf-center,

then F has by Theorem 3.4 a maximal fixed point x+. Denoting u+ = L−1
+ x+, then

Lu+ = L+u+ = x ∈ F (x) = N+L−1
+ x+ = N+u+ = Nu+, whence u+ is a solution

of 4.1. Maximality of u+ can be proved as in [4], Proposition 2.1 applying the last

conclusion of Lemma 3.1.

Corollary 4.3. Let P be a bounded and closed ball in a reflexive lattice-ordered Ba-

nach space X having the following property.
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(C+) ‖x+‖ ≤ ‖x‖ for each x ∈ X, where x+ = sup{0, x}.

(a) If L : V → P is a bijection, if N : V → 2P \ ∅ has weakly sequentially closed

values, and if N ◦ L−1 is increasing, then 4.1 has a solution.

(b) If V is a poset, if L : V → P satisfies the hypothesis (L) of Theorem 4.2, and

if N : V → 2P \ ∅ is increasing and has weakly sequentially closed values, then 4.1

has a maximal solution.

Proof. The hypothesis (C+) ensures that the geometrical center of P is also its inf-

center. Since X is reflexive and P is bounded, then all monotone sequences of P

have weak limits in P , and all weakly sequentially closed subsets of P are weakly

sequentially compact, and hence sequentially order compact. Thus the hypotheses of

Theorem 4.1 hold in (a) and the hypotheses of Theorem 4.2 are valid in (b).

Remark 4.4. All reflexive Banach lattices are lattice-ordered and reflexive Banach

spaces with property (C+) required in Corollary 4.3. Each of the following spaces

have also these properties when 1 < p < ∞.

– Lp(Ω), ordered a.e. pointwise, where (Ω,A, µ) is a σ-finite measure space.

– W 1,p(Ω), and W
1,p
0 (Ω), ordered a.e. pointwise, where Ω is a domain in R

N .

– lp, ordered coordinatewise and normed by the p-norm.

– R
N , ordered coordinatewise and normed by the p-norm.

Theorems 4.1 and 4.2 and Corollary 4.3 generalize the corresponding results de-

rived in [4, 6, 7] for the inclusion problem 4.1. For instance, in Theorems 4.1 and 4.2

the space X is not necessarily a vector space, and in the hypotheses the sequential

compactness is replaced by the sequential order compactness.

Applying the result Lemma 2.6 one can also show that conditions on the con-

vergence of sequences (x+
n ) can be dropped from the hypotheses used in [4, 6, 7] to

derive existence results for

- inclusion problems x ∈ F (x) and Lu ∈ Nu in ordered topological vector spaces,

- equation u = H(u, u), where H : X × X → X, X being an ordered Banach

space,

- inclusion problem Λu ∈ F (u), where Λ is a mapping from a partially ordered

set W to an ordered Banach space X and F : X → 2X \ ∅,

- implicit inclusion problem Λu = H(u, Λu), where Λ, W and X are as above and

H : W × X → 2X \ ∅.

5. APPLICATIONS TO GAME THEORY

In this section we apply Propositions 3.2 and 3.3 and Theorem 3.4 to derive

results on the existence of extremal Nash equilibria for a normal-form game, defined

as follows.
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Definition 5.1. We say that Γ = {S1, . . . , SN , u1, . . . , uN} is a normal-form game of

players i, i = 1, . . . , N , if each Si, called a strategy set for player i, is a nonempty

subset of a poset Xi = (Xi,≤i) and the utility function ui of each player i is a mapping

from the product space S1 × · · · × SN to a poset Yi = (Yi,�i).

Unless otherwise stated we assume that all the posets Xi and Yi are ordered topo-

logical spaces and that all the sets Si and Yi have property (C).

We also use notations s−i = (s1, . . . , si−1, si+1, . . . , sN) and s = (s1, . . . , sN) =

(si, s−i), i = 1, . . . , N .

Definition 5.2. We say that strategies s∗1, . . . , s
∗
N form a Nash equilibrium for Γ if

(5.1) ui(s
∗
i , s

∗
−i) = argmax ui(·, s

∗
−i) := max{ui(si, s

∗
−i) : si ∈ Si}

for each i = 1, . . . , N .

The next Lemma gives conditions under which maximization of utilities is possi-

ble.

Lemma 5.3. Assume that

(H0) The set Ri(s−i) = {ui(si, s−i) : si ∈ Si} is sequentially order compact upward

and directed upward, and increasing sequences of Ri(s−i) converge in Yi for all

i = 1, . . . , N and s−i ∈ S−i.

Then the set Ri(s−i) has a greatest element for all i = 1, . . . , N and s−i ∈ S−i.

Proof. It suffices to show that Ri(s−i) has a maximal element because Ri(s−i) is

directed upward. If C is a chain in Ri(s−i), the hypothesis (H0) and property (C)

imply that an increasing sequence (yn) of C converges to sup C in Yi. Because Ri(s−i)

is sequentially order compact upward, then it contains by Lemma 2.4 an upper bound

y of (yn), whence sup C = limn yn = supn yn ≤ y. Thus C has an upper bound in

Ri(s−i), so that Ri(s−i) has a maximal element by Zorn’s Lemma.

Denote P = S1 × · · ·×SN and S−i = S1 · · ·×Si−1 × Si+1 × · · ·×SN , and assume

that all these sets are ordered oomponentwise, and that P is topologized with the

product topology. If (H0) holds, we can define a mapping F : P → 2P \ ∅ by

(5.2)

{

F (s) := F1(s−1) × · · · × FN (s−N), s = (s1, . . . , sN) ∈ P,

where Fi(s−i) := argmax ui(·, s−i), i = 1, . . . , N.

It is easy to see that the components of s∗ = (s∗1, . . . , s
∗
N) form a Nash equilibrium

for Γ if and only if s∗ ∈ F (s∗), i.e., s∗ is a fixed point of F .

As an application of Proposition 3.2 we obtain the following result.
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Proposition 5.4. Assume that the hypothesis (H0) holds, that for each i = 1, . . . , N

the multifunction s−i 7→ Fi(s−i) is increasing upward and the sets Fi(s−i), s−i ∈ S−i,

are sequentially order compact upward in Fi[S−i], and increasing sequences of Fi[S−i]

converge in Si. If [a) ∩ F (a) 6= ∅ for some a ∈ P = S1 × · · · × SN , then Γ has a

maximal Nash equilibrium.

Proof. We shall show that the mapping F : P → 2P \ ∅ defined by 5.2 satisfies the

hypotheses of Proposition 3.2. Assume that s = (s1, . . . , sN) ≤ s = (s1, . . . , sN)

in P , and let y = (y1, . . . , yN) be chosen from F (s). Given i = 1, . . . , N , we have

yi ∈ Fi(s−i), and s−i ≤ s−i in S−i. Since s−i 7→ Fi(s−i) is increasing upward, there

exists a yi ∈ Fi(s−i) such that yi ≤ yi in Si. This holds for each i = 1, . . . , N , whence

y = (y1, . . . , yN) ∈ F (s), and y ≤ y in P . This proves that F is increasing upward.

Because of product topologies and componentwise orderings the hypotheses im-

posed on Fi and the definition 5.2 of F imply that the values of F are sequentially

order compact upward in F [P ], and that increasing sequences of F [P ] converge in P .

Moreover, P = S1 × · · · × SN has property (C) because each Si has that property.

The above proof shows that F satisfies the hypotheses of Proposition 3.2, whence

F a maximal fixed point s∗, and its components form a maximal Nash equilibrium

for Γ.

By a similar reasoning we obtain the following consequence of Proposition 3.3.

Proposition 5.5. Assume that the hypothesis (H0) holds, that for each i = 1, . . . , N

the multifunction s−i 7→ Fi(s−i) is increasing downward and the sets Fi(s−i), s−i ∈

S−i, are sequentially order compact downward in Fi[S−i], and decreasing sequences of

Fi[S−i] converge in Si. If (b] ∩ F (b) 6= ∅ for some b ∈ P = S1 × · · · × SN , then Γ has

a minimal Nash equilibrium.

Our main result on the existence of extremal Nash equilibria for Γ is a consequence

of Theorem 3.4.

Theorem 5.6. Let the hypothesis (H0) and the following hypotheses hold.

(H1) For each i = 1, . . . , N the multifunction s−i 7→ Fi(s−i) is increasing.

(H2) For each i = 1, . . . , N the sets Fi(s−i), s−i ∈ S−i, are sequentially order compact,

in Fi[S−i] and monotone sequences of Fi[S−i] converge in Si.

(a) If the set of limits of increasing sequences of Fi[S−i] has a sup-center in Si for

each i = i, . . . , N , then Γ has a minimal Nash equilibrium.

(b) If the set of limits of decreasing sequences of Fi[S−i] has an inf-center in Si

for each i = i, . . . , N , then Γ has a maximal Nash equilibrium.
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Proof. The proof of Proposition 5.4 and its dual show that the mapping F : P →

2P \ ∅ defined by 5.2 satisfies the hypotheses of Theorem 3.4. If the set of limits of

increasing sequences of Fi[S−i] has a sup-center ci in Si for each i = i, . . . , N , then

c = (c1, . . . , cN) is a sup-center of the limits of increasing sequences of F [P ]. Thus F

has by Theorem 3.4 (a) a minimal fixed point s∗, and its components form a minimal

Nash equilibrium for Γ. Similarly, if the set of limits of decreasing sequences of Fi[S−i]

has an inf-center ci in Si for each i = i, . . . , N , then c = (c1, . . . , cN) is an inf-center

of the limits of decreasing sequences of F [P ], so that F has by Theorem 3.4 (b) a

maximal fixed point s∗, and its components form a maximal Nash equilibrium for

Γ.

To modify the hypotheses so that they refer only to the strategies and their values

we shall prove an auxiliary result for an upper semi-closed function defined as follows.

Definition 5.7. A mapping f : Si → Yi is called upper semi-closed if xn → x in Si,

f(xn) → y in Yi and (f(xn)) is increasing imply that y �i f(x).

Each continuous mapping f : Si → Yi is upper semi-closed.

Lemma 5.8. Assume that Si is sequentially compact. If a mapping f : Si → Yi is up-

per semi-closed, and if its range f [Si] is separable and directed upward and its increas-

ing sequences converge, then the set argmax f of the maximum points is nonempty

and sequentially compact.

Proof. Since f [Si] is separable, there exists a countable subset B = {zn}
m
n=1, 1 ≤ m ≤

∞, of f [Si] such that the closure B of B in Yi contains f [Si]. Denote y1 := z1, and

when yk is chosen, let znk
be the first element of the sequence (zn)m

n=1, if exists, such

that znk
6�i yk, and let yk+1 ∈ f [Si] be an upper bound of {znk

, yk}. The so obtained

sequence (yk) is increasing, whence it has either maximum or a limit y in Yi. In the

former case choose x ∈ Si such that y = f(x). In the latter case choose a sequence

(xk)
∞
k=1

from S such that yk = f(xk), k = 1, 2, . . . . The above construction shows

that (f(xk))
∞
k=1

is an increasing sequence in f [Si], whence y = limk f(xk) exists in

Yi by a hypothesis. Because Si is compact, the sequence (xk)
∞
k=1

has a convergent

subsequence (xkj
)∞j=1. Denote x = limj xkj

. Since limj f(xkj
) = y, the sequence

(f(xkj
))∞j=1 is increasing and f is upper semi-closed, then y �i f(x). The above

construction and [8], Proposition 1.1.3 imply that y is in both cases an upper bound

of B. Since (y] is closed, then f [S] ⊆ B ⊆ (y] ⊆ (f(x)], so that y = max f , and x is

a maximum point of f .

To prove that the set argmax f of the maximum points of f is sequentially

compact, let (xn) be a sequence in argmax f . Because Si is sequentially compact,

then (xn) has a subsequence (xnk
) which converges to a point x of Si. Since f(xnk

) = y
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for each k, then limk f(xnk
) = y. Since f is upper semi-closed, then y �i f(x). On

the other hand, f(x) �i max f = y, whence f(x) = y, and x ∈ argmax f .

Theorem 5.9. Let Γ = (S1, . . . , SN , u1, . . . , uN) be a normal-form game, where each

strategy set Si is sequentially compact, and the utilities ui satisfy the following hy-

potheses for all i = 1, . . . , N .

(h0) For each s−i ∈ S−i the function ui(·, s−i) is upper semi-closed, and its values

form a separable and upward directed set whose increasing sequences converge.

(h1) ui(ŝi, s−i) �i ui(si, s−i) implies ui(ŝi, ŝ−i) �i ui(si, ŝ−i) whenever si 6≤i ŝi in Si

and s−i < ŝ−i in S−i.

(h2) ui(si, ŝ−i) �i ui(ŝi, ŝ−i) implies ui(si, s−i) �i ui(ŝi, s−i) whenever si 6≤i ŝi in Si

and s−i < ŝ−i in S−i.

(a) If each Si has a sup-center, then Γ has a minimal Nash equilibrium.

(b) If each Si has an inf-center, then Γ has a maximal Nash equilibrium.

Proof. Let i ∈ {1, . . . , N} and s−i ∈ S−i be fixed. Since Si is sequentially compact, the

hypothesis (h0) implies by Lemma 5.8 that Fi(s−i) = argmax ui(·, s−i) is nonempty

and sequentially compact subset of Si. Thus Fi(s−i) is order compact in Fi[S−i] by

Lemma 2.4. Moreover, all the monotone sequences of a subset Fi[S−i] of a sequentially

compact set Si converge.

The above proof shows that the hypotheses (H0) and (H2) of Theorem 5.6 hold.

To prove that the hypothesis (H1) holds, let i ∈ {1, . . . , N} be fixed. We shall first

show that the multifunction s−i 7→ Fi(s−i) is increasing upward. Assume on the

contrary the existence of s−i, ŝ−i ∈ S−i, s−i < ŝ−i, and si ∈ Fi(s−i) such that

(5.3) si 6≤i ŝi for all ŝi ∈ Fi(ŝ−i).

Let ŝi ∈ Fi(ŝ−i) be given. It follows from 5.2 that

ui(ŝi, s−i) �i ui(si, s−i).

This inequality, the hypothesis (h1) and the inequalities si 6≤i ŝi and s−i < ŝ−i imply

that

ui(ŝi, ŝ−i) �i ui(si, ŝ−i).

But then si ∈ Fi(ŝ−i), which contradicts with 5.3. This shows that s−i 7→ Fi(s−i) is

increasing upward.

To prove that s−i 7→ Fi(s−i) is increasing downward, assume on the contrary the

existence of s−i, ŝ−i ∈ S−i, s−i < ŝ−i, and ŝi ∈ Fi(ŝ−i) such that

(5.4) si 6≤i ŝi for all si ∈ Fi(s−i).

Given an si ∈ Fi(s−i), it follows from 5.2 that

ui(si, ŝ−i) �i ui(ŝi, ŝ−i).
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This inequality and the inequalities si 6≤i ŝi and s−i < ŝ−i imply by the hypothesis

(h2) that

ui(si, s−i) �i ui(ŝi, s−i).

But then ŝi ∈ Fi(s−i), which contradicts with 5.4. Thus s−i 7→ Fi(s−i) is also increas-

ing downward.

The above proof shows that the hypotheses (H0)–(H2) of Theorem 5.6 are valid,

whence its results imply that the conclusions (a) and (b) hold.

In view of the proof of Theorem 5.9 we obtain the following consequences of

Propositions 5.4 and 5.5.

Proposition 5.10. Assume that each Si is sequentially compact.

(a) If the hypotheses (h0) and (h1) of Theorem 5.9 hold for each i = 1, . . . , N ,

and if [a) ∩ F (a) 6= ∅ for some a ∈ P , then Γ has a maximal Nash equilibrium.

(b) If the hypotheses (h0) and (h2) of Theorem 5.9 hold for each i = 1, . . . , N ,

and if (b] ∩ F (b) 6= ∅ for some b ∈ P , then Γ has a minimal Nash equilibrium.

Referring to considerations of the Introduction we can drop all the convergence

hypotheses of monotone sequences and order compactness hypotheses if all strictly

increasing sequences of the values of each ui(·, s−i) and all strictly monotone sequences

of each Si are finite. In particular, the following result holds.

Proposition 5.11. Assume that for all i = 1, . . . , N and s−i ∈ S−i the values of

ui(·, s−i) are form a directed set and their strictly increasing sequences are finite, that

strictly monotone sequence of each Si are finite, and that the hypotheses (h1) and

(h2) of Theorem 5.9 hold.

(a) If each Si has a sup-center, the game Γ has a minimal Nash equilibrium.

(b) If each Si has an inf-center, the game Γ has a maximal Nash equilibrium.

Example 5.12. Assume that for each i = 1, . . . , N the strategy spaces Si are closed

and bounded balls in lattice-ordered reflexive Banach spaces Xi equipped with weak

topologies, that the spaces Yi are ordered second countable topological vector spaces,

and that the utilities are of the form

(5.5) ui(si, s−i) = fi(si)gi(s−i) + hi(s−i), si ∈ Si, s−i ∈ S−i,

where fi : Si → R+ is bounded and upper semi-closed, gi, hi : S−i → Yi, and

0 ≺i gi(s−i) for all s−i ∈ S−i. The hypotheses imposed on Si and Yi imply that they

satisfy condition (C), and that each Si is weakly sequentially compact. Since each

fi is upper semi-closed, bounded and real-valued, and 0 ≺i gi(s−i) for all s−i ∈ S−i,

it follows from 5.5 that each ui(·, s−i) satisfies the hypothesis (h0), and that the

hypotheses (h1) and (h2) can be reduced to the tautologies: fi(ŝi) ≤ fi(si) implies
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fi(ŝi) ≤ fi(si), and fi(si) ≤ fi(ŝi) implies fi(si) ≤ fi(ŝi), if si 6≤i ŝi and s−i < ŝ−i.

Thus the hypotheses (h0), (h1) and (h2) are valid. Assume moreover that the spaces

Xi have property (C+), i.e., ‖ sup{0, xi}‖ ≤ ‖xi‖ for all xi ∈ Xi, i = 1, . . . , N

(such spaces are listed in Remark 4.4). Then the geometrical center of each Si is

both a sup-center and an inf-center of Si. It then follows from Theorem 5.6 that

Γ = {S1, . . . , SN , u1, . . . , uN} has minimal and maximal Nash equilibria.

Remark 5.13. If Yi is an ordered vector space, or even an ordered semigroup, the

utility function ui satisfies the hypotheses (h1) and (h2) of Theorem 5.9 if the following

condition holds.

(h3) ui(ŝi, s−i) − ui(ŝi, ŝ−i) �i ui(si, s−i) − ui(si, ŝ−i) if si 6≤i ŝi and s−i < ŝ−i.

Condition (h3) is however stronger than the hypotheses (h1) and (h2). For in-

stance, if the spaces Xi and Yi are as in Example 5.12 and the utilities are defined by

5.5, then (h3) is reduced to the form

0 �i (fi(ŝi) − fi(si))(gi(s−i) − gi(ŝ−i)) whenever si 6≤i ŝi and s−i < ŝ−i.

The validity of the above condition requires monotony properties for fi and gi,

whereas 0 ≺i gi(s−i) for all s−i ∈ S−i is the only condition for the utilities given by

5.5 to satisfy the hypotheses (h1) and (h2).

The only difference between condition (h3) and the property of increasing differ-

ences, defined in [15], p. 42 is that ŝi <i si is replaced by si 6≤i ŝi. These two relations

are equivalent if the strategy spaces Si are chains. The hypothesis (h1) resembles the

single crossing property defined in [15], p. 59.

No lattice properties are imposed on the strategy sets Si. However, if Si is a

lattice, as usually assumed (cf. e.g. [15] and the references therein), then each point

of Si is both a sup-center and an inf-center of Si. If each Fi(s−i) is a lattice or

directed, then maximal and minimal Nash equilibria for Γ are its least and greatest

Nash equilibria. Moreover, the values of utilities can be in ordered topological spaces

or in ordered topological vector spaces, which generalizes the usual assumption that

the utilities are real-valued.

In Example 5.12 the balls Si can be replaced by the following nonconvex sets:

Si = {(x1, . . . , xmi
) ∈ R

mi :

mi
∑

j=1

|xi − cij|
pi ≤ r

pi

i },

where pi ∈ (0, 1) and ri > 0. To show this, notice first that each R
mi , ordered

coordinatewise, and normed by any norm, is a reflexive lattice-ordered Banach space.

It is elementary to verify that ci = (ci1, . . . , cimi
) is both a sup-center and an inf-

center of Si. Moreover, each Si is a closed and bounded subset of R
m, whence it is

sequentially compact. Thus all the hypotheses imposed on Si in Theorem 5.9 are

valid.
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For the sake of simplicity the above considerations are restricted to normal-form

games with finite number of players. The results corresponding to those derived

above can be obtained also for games of more general types, for instance, for those

considered in [9, 16].
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