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MULTIPLICITY RESULTS OF POSITIVE SOLUTIONS FOR

SINGULAR BOUNDARY VALUE PROBLEMS WITH TIME

DEPENDENT NONLINEARITY
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Department of Mathematics, Pusan National University, Busan 609-735, Korea

ABSTRACT.We investigate bifurcation phenomena of positive solutions for problems of the form;

u′′(t) + λf(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),

when f satisfies that there exists r ∈ C((0, 1), (0,∞)) with
∫ 1

0
s(1 − s)r(s)ds < ∞ such that 0 <

limu→0+
f(t,u)
r(t)u < ∞ uniformly in t ∈ (0, 1). Here λ is a positive real parameter and f ∈ C((0, 1) ×

[0,∞), [0,∞)) may be singular at t = 0 and/or t = 1.

AMS (MOS) Subject Classification. 34A37, 34B15

1. INTRODUCTION

In this paper, we study the existence of multiple positive solutions for singular

boundary value problems of the form

u′′(t) + λf(t, u(t)) = 0, t ∈ (0, 1),(Pλ)

u(0) = 0 = u(1),

where λ is a positive real parameter, f ∈ C((0, 1)×R+,R+) may be singular at t = 0

and/or t = 1 and R+ = [0,∞). Existence, nonexistence and multiplicity of positive

solutions for (Pλ) have been widely studied by several authors. For the separable case

i.e. f is of the form f(t, u) = q(t)f̃(u), one may refer to Choi ([6]), Dalmasso ([7]),

Ha and Lee ([9]), Lee ([12], [13]), Liu and Li ([14]), Wong ([18]), Xu and Ma ([19]),

Zhang ([21]) and Zhao ([22]). Studies for general cases were initiated by Agarwal,

Wang and Lian ([2]) and have been discussed recently in Cheng and Zhang ([5]), Erbe

and Mathsen ([8]), Orpel ([15]), Stanczy ([17]) and Yang ([20]).

In particular, among other results, Cheng and Zhang proved under assumptions

(Z1) There exist q ∈ A and Φ ∈ C(R+,R+) such that

f(t, u) ≤ q(t)Φ(u), for all (t, u) ∈ (0, 1) × R+

Received May 1, 2006 1056-2176 $15.00 c©Dynamic Publishers, Inc.

This work was supported by grant R01-2003-000-11731-0 from the Basic Research Program of the

Korea Science and Engineering Foundation.



234 E. K. LEE AND Y-H. LEE

(Z2) There exist a < b in (0, 1) such that one of the following conditions is satisfies;

lim
u→+∞

Φ(u)

u
= 0 and lim

u→0+
min
t∈[a,b]

f(t, u)

u
= ∞ (sublinear),

lim
u→0+

Φ(u)

u
= 0 and lim

u→+∞
min
t∈[a,b]

f(t, u)

u
= ∞ (superlinear)

that problem (Pλ) has at least one positive solution for all λ > 0, here we denote

A = {q ∈ C((0, 1), (0,∞))|
∫ 1

0
s(1 − s)q(s)ds < ∞}.

Stanczy generalized the superlinear case as follows; assume

(C0) There exists r ∈ A such that

lim
u→0+

f(t, u)

r(t)u
= 0 uniformly in t ∈ (0, 1).

(C1) For any M > 0, there exists hM ∈ A such that

f(t, u) ≤ hM(t) for all (t, u) ∈ (0, 1) × [0, M ].

(S ) There exists a set A ⊂ (0, 1) of positive measure such that

lim
u→∞

f(t, u)

u
= ∞ uniformly in t ∈ A.

Then (Pλ) has at least one positive solution for all λ > 0.

It is interesting to consider that the limit in (C0) is neither 0 nor ∞. For sim-

plicity, we assume that the limit equals 1 and we consider the following hypothesis;

(C2) There exists r ∈ A such that

lim
u→0+

f(t, u)

u
= r(t) uniformly in t ∈ (0, 1).

In this case, we may expect certain bifurcation phenomena for solutions with respect

to parameter λ and investigating this phenomena is our main goal for this paper.

Recently Agarwal, Lü and O’Regan ([1]) considered this case for a p-Laplacian prob-

lem with superlinear and sublinear growth at ∞, respectively. As an example for

superlinear case, they proved under the following main assumption,

(F ) There exist f̃ ∈ C(R+,R+) and α, β ∈ C((0, 1),R+) with β ∈ A such that

α(t)f̃(u) ≤ f(t, u) ≤ β(t)f̃(u), for all (t, u) ∈ (0, 1) × R+

that if 0 < limu→0+
f̃(u)

u
= l < ∞ and limu→∞

f̃(u)
u

= ∞, then problem (Pλ) has at least

one positive solution for λ ∈ (0, 1
lA1

) where A1 = min{
∫ 1

2

0
sβ(s)ds,

∫ 1
1

2

(1 − s)β(s)ds}.
Our main theorem for superlinear case comes out as follows;

Theorem Assume (C1), (C2) and (S). Also assume

(C3) f(t, u) > 0, for all (t, u) ∈ (0, 1) × (0,∞).
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Then there exist 0 ≤ λ∗ ≤ λ∗ such that problem (Pλ) has at least one positive solution

for 0 < λ < λ∗ and no positive solution for λ > λ∗.

We notice that combination of conditions (C1) and (C2) generalizes condition (F ) in

Agarwal, Lü and O’Regan. For example, let

f(t, u) =
[

(t(1 − t))−2+ 1

u+1

]

u + u2.

Then f satisfies conditions (C1) and (C2). But if we suppose that f satisfies condition

(F ), then β /∈ A.

Most results mentioned above are based on topological methods which are asso-

ciated with several fixed point theorems in cones, upper and lower solutions method

and Leray-Schauder degree theory. Because, on the other hand, we are interested in

the bifurcation phenomena, we employ the global bifurcation theorem of Rabinowitz

([16]). A version of this theorem for singular boundary value problems was recently

proved in Im et al. (Theorem 3.1 in [10]) and applied in Im and Lee ([11]). But Theo-

rem 3.1 in [10] is not directly applicable in our situation mainly due to condition (C2).

Therefore we modify the global bifurcation theorem for condition (C2) and use it to

obtain several existence, nonexistence and multiplicity results of positive solutions for

problem (Pλ) including Theorem mentioned above.

This paper is organized as follows. In Section 2, we induce the existence of

bifurcation branches of solutions for problem (Pλ). In Section 3, we prove the existence

of unbounded continuum of positive solutions using the global bifurcation theorem

of Rabinowitz. In Section 4, figuring the shape of the unbounded continuum in

Section 3 we get several results about existence, nonexistence and multiplicity of

positive solutions and then apply them to a problem with generalized linear operator

of the form Lu = (pu′)′. In Section 5, we apply our results to show the existence

and multiplicity of positive radial solutions for semilinear elliptic problems defined on

exterior domains.

2. PRELIMINARY

We first introduce the global bifurcation theorem due to Rabinowitz ([16]). Con-

sider

u = λLu + H(λ, u),(2.1)

where L : E → E is a bounded linear operator, H : R × E → E continuous and E

a real Banach space with norm ‖ · ‖. Let r(L) denote the set of real characteristic

values of L and S the closure of set of nontrivial solutions of (2.1). Assume L and H

are compact on E and R × E respectively. Furthermore, assume H(λ, 0) = 0 for all

λ ∈ R and H(λ, u) = o(‖u‖) as ‖u‖ → 0. Then we have a global bifurcation theorem

from the trivial branch as follows.
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Theorem 2.1. ([16]) If µ ∈ r(L) is of odd multiplicity, then there exists a subcontin-

uum C in S bifurcating from {(λ, 0) | λ ∈ R} at (µ, 0)and either

(i) C is unbounded in R× E or

(ii) C contains (µ̂, 0), where µ 6= µ̂ ∈ r(L).

Now let us consider the following problem

u′′(t) + λh(t, u(t)) = 0, t ∈ (0, 1),(Hλ)

u(0) = 0 = u(1),

where h ∈ C((0, 1) × R,R). Denote A = {q ∈ C((0, 1), (0,∞))|
∫ 1

0
s(1 − s)q(s)ds <

∞} and consider the following assumptions.

(H1) For any M > 0, there exists pM ∈ A such that

|h(t, u)| ≤ pM(t) for all |u| ≤ M and t ∈ (0, 1).

(H2) There exists γ(t) ∈ A such that limu→0
h(t,u)

u
= γ(t) uniformly in t ∈ (0, 1).

Problem (Hλ) can be equivalently written as the following integral equation

u(t) = λ

∫ 1

0

G(t, s)h(s, u(s))ds,(2.2)

where G(t, s) is Green’s function explicitly written as

G(t, s) =

{

s(1 − t), 0 ≤ s ≤ t,

t(1 − s), t ≤ s ≤ 1.

Define L : C0[0, 1] → C0[0, 1] and H : R × C0[0, 1] → C0[0, 1] by taking

Lu(t) =

∫ 1

0

G(t, s)γ(s)u(s)ds,

H(λ, u)(t) = λ

∫ 1

0

G(t, s)[h(s, u(s)) − γ(s)u(s)]ds

respectively. Then (2.2) can be equivalently written as u = λLu+H(λ, u) and by (H1)

and (H2), it is not hard to check that L is a bounded linear operator and H continuous

satisfying H(λ, u) = o(‖u‖∞) as ‖u‖∞ → 0. It is also known that L and H are

completely continuous in C0[0, 1] and R×C0[0, 1] respectively. Recently, the existence

of characteristic values of L and its properties are studied by Asakawa ([3]) that there

exists a sequence of simple characteristic values 0 < µ1 < · · · < µn < µn+1 < · · · → ∞
and corresponding characteristic function un to µn has n−1 interior zeros. We notice

that the characteristic value of L is identical with the eigenvalue of

u′′(t) + λγ(t)u(t) = 0, t ∈ (0, 1),

u(0) = 0 = u(1).
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Let us assume (H1) and (H2), then by Theorem 2.1, we conclude that there

exists a subcontinuum Ck of solutions of (Hλ) bifurcating from (µk, 0) and either it

is unbounded in R × C0[0, 1] or it meets (µj, 0), for some j 6= k. In the following

section, we will prove that the first alternative is the only possibility. We end up with

this section giving some notations and useful lemmas for later use. Let N+
k denote

the set of u ∈ C0[0, 1] such that u has exactly k − 1 simple interior zeros, u > 0 near

0 and all zeros of u in [0,1] are simple. Let Nk
− = −Nk and Nk = Nk

+ ∪ Nk
−. We

notice that Nk ∩ Nj = ∅ if k 6= j. Also notice that Nk
± and Nk are neither open nor

closed in C0[0, 1].

We give well-known Gronwall-Bellman inequality.

Lemma 2.2. ([4]) Let ε > 0 and let m ∈ L1(0, T ) be such that m ≥ 0 a.e. in (0, T ).

Suppose u ∈ C[0, T ] and

u(t) ≤ ε +

∫ t

0

m(s)u(s)ds,

for all t ∈ [0, T ]. Then u(t) ≤ εe
R

t

0
m(s)ds for all t ∈ [0, T ].

We also give a modification of Gronwall-Bellman inequality for readers conve-

nience. Proof can be done by obvious modification of Lemma 2.2.

Lemma 2.3. Let ε > 0 and let m ∈ L1(0, T ) be such that m ≥ 0 a.e. in (0, T ).

Suppose u ∈ C[0, T ] and

u(t) ≤ ε +

∫ T

t

m(s)u(s)ds,

for all t ∈ [0, T ]. Then u(t) ≤ εe
R

T

t
m(s)ds for all t ∈ [0, T ].

3. UNBOUNDED BRANCHES

In this section, we prove that subcontinuum Ck of solutions of (Hλ) known to

exist in Section 2 is unbounded. Throughout this section, we assume the hypotheses

(H1), (H2) and

(H3) uh(t, u) > 0 for all u ∈ R \ {0} and all t ∈ (0, 1)¿

Lemma 3.1. For given M > 0, there exists qM ∈ A such that

|h(t, u)| ≤ qM(t)|u| for all |u| ≤ M and t ∈ (0, 1).

Proof. Let ε > 0 be given, then by (H2), we may take δ > 0 such that
∣

∣

∣

∣

h(t, u)

u

∣

∣

∣

∣

− γ(t) ≤
∣

∣

∣

∣

h(t, u)

u
− γ(t)

∣

∣

∣

∣

≤ ε,
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for all |u| ≤ δ and t ∈ (0, 1). Thus |h(t, u)| ≤ (γ(t) + ε)|u|, for all |u| ≤ δ and

t ∈ (0, 1). By (H1), there exists pM ∈ A such that if δ ≤ |u| ≤ M , then |h(t, u)| ≤
pM(t) ≤ pM (t)

δ
|u|. Thus

|h(t, u)| ≤ max{γ(t) + ε,
pM(t)

δ
}|u|,

for all |u| ≤ M and t ∈ (0, 1). If we take qM (t) = max{γ(t) + ε, pM (t)
δ

}, then qM ∈ A
and the proof is done.

Lemma 3.2. If u is a solution of (Hλ) and u has a double zero, then u ≡ 0.

Proof. Let u be a solution of (Hλ) and t∗ ∈ [0, 1] be a double zero of u. i.e. u(t∗) =

u′(t∗) = 0. Let us consider the case t∗ ∈ (0, 1). Then from (Hλ), u satisfies

u(t) = −λ

∫ t

t∗

∫ s

t∗
h(τ, u(τ))dτds = −λ

∫ t

t∗
(t − s)h(s, u(s))ds.(3.1)

By Lemma 3.1, there exists qM ∈ A such that

|h(t, v)| ≤ qM(t)|v|,(3.2)

for all |v| ≤ M = ‖u‖∞ + 1 and t ∈ (0, 1). First, we consider t ∈ (t∗, 1). From (3.1)

and (3.2), we get

|u(t)| ≤ |λ|
∫ t

t∗
(t − s)|h(s, u(s))|ds ≤

∫ t

t∗
|λ|(1 − s)qM(s)|u(s)|ds.

Applying Lemma 2.2 on the interval (t∗, 1) with m(s) = |λ|(1 − s)qM(s) and ε = 0,

we get u ≡ 0 on [t∗, 1]. Next, consider t ∈ (0, t∗). By similar computation, we get

|u(t)| ≤
∫ t∗

t

|λ|sqM(s)|u(s)|ds.

Applying Lemma 2.3 on (0, t∗) with m(s) = |λ|sqM(s) and ε = 0, we also get u ≡ 0

on [0, t∗]. Now, let us consider the case t∗ = 0, i.e. u(0) = u′(0) = 0. The proof for

t∗ = 1 is similar. By similar computation, we get

|u(t)| ≤
∫ t

0

|λ|(t − s)qM(s)|u(s)|ds.

Let z(t) = u(t)
t

. Then

|z(t)| ≤ |λ|
t

∫ t

0
(t − s)qM (s)|sz(s)|ds.

≤ |λ|
∫ t

0
s(1 − s

t
)qM(s)|z(s)|ds.

≤ |λ|
∫ t

0
s(1 − s)qM(s)|z(s)|ds.

Applying Lemma 2.1 on (0, 1) with m(s) = |λ|s(1 − s)qM(s) and ε = 0, we also get

z ≡ 0 on [0, 1]. Thus u ≡ 0 on [0, 1] and the proof is complete.

Let µk denote the k-th characteristic value of linear operator L given in Section 2.

The proof of the following lemma is similar to the proof of Lemma 3.2 in [10].
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Lemma 3.3. Let Ck be a subcontinuum of solutions of (Hλ) bifurcating from (µk, 0).

Then Ck ∩ R × {0} ⊂ ∪∞
j=1{(µj, 0)}.

Lemma 3.4. Let un and u be nontrivial solutions of (Hλn
) and (Hλ) respectively. If

un → u and λn → λ 6= 0, then there exist δ1, δ2 > 0 such that

∪∞
n=1{t ∈ (0, 1) | un(t) = 0} ⊂ [δ1, δ2] ⊂ (0, 1).

Proof. Let un and u be nontrivial solutions of (Hλn
) and (Hλ) respectively. Let tn be

the first interior zero of un. Then we show that there exists δ1 > 0 such that tn > δ1

for all n. We can prove the result for the sequence of last interior zeros of un by

similar fashion. Suppose on the contrary, tn → 0. We know that un is a solution of

the problem

u′′(t) + λnh(t, u(t)) = 0, t ∈ (0, tn),

u(0) = 0 = u(tn).

un satisfies

un(t) =
λ

tn
(tn − t)

∫ t

0

sh(s, un(s))ds +
λ

tn
t

∫ tn

t

(tn − s)h(s, un(s))ds,

and

u′
n(t) =

−λ

tn

∫ t

0

sh(s, un(s))ds +
λ

tn

∫ tn

t

(tn − s)h(s, un(s))ds.(3.3)

Let |un(t̃n)| = maxt∈[0,tn] |un(t)|. Then u′
n(t̃n) = 0 and from (3.3), we get

∫ t̃n

0

sh(s, un(s))ds =

∫ tn

t̃n

(tn − s)h(s, un(s))ds.

Since un → u, we may assume |un(t)| < ‖u‖∞ + 1 for all t ∈ [0, 1] and large n. Then

by Lemma 3.1, there exists qM ∈ A such that |h(s, un(s))| ≤ qM(s)|un(s)|, where

M = ‖u‖∞ + 1 and thus

|un(t̃n)| = λn

∫ t̃n

0

s|h(s, un(s))|ds ≤ |λn||un(t̃n)|
∫ t̃n

0

sqM(s)ds.

This implies

1 ≤ |λn|
∫ t̃n

0

sqM(s)ds.

Since |λn| → |λ| 6= 0, tqM(t) ∈ L1(0, δ] and t̃n → 0, the above inequality is not

possible and this completes the proof.

Lemma 3.5. Every nontrivial solution of (Hλ) has at most finite interior zeros.
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Proof. Let u be a nontrivial solution of (Hλ). Suppose that u has a sequence of

distinct interior zeros (tn). Considering a subsequence if necessary, let tn → t∗. By

Lemma 3.4, we know that t∗ 6= 0 and t∗ 6= 1, i.e. t∗ ∈ (0, 1). Since u is a solution of

u′′(t) + λh(t, u(t)) = 0, t ∈ (tn, tn+1),

u(tn) = 0 = u(tn+1),

Following the same computation as in the proof of Lemma 3.4, we get,

|u(t̃n)| ≤ λ|u(t̃n)|
∫ t̃n

tn

(s − tn)qM(s)ds.

This implies

1 ≤ λ

∫ t̃n

tn

(s − tn)qM (s)ds.

Since tn → t∗ and qM ∈ C[t∗ − δ, t∗ + δ] for some δ > 0, the integral should converge

to 0 as n → ∞ and this contradicts to the inequality.

By using Lemma 3.5, we may obtain the following lemmas, the proofs are the same

as those of Lemmas 3.5 and 3.6 in [10].

Lemma 3.6. Let un and u be nontrivial solutions of (Hλn
) and (Hλ) respectively.

Assume that there exists k > 0 such that un ∈ Nk for all n, un → u and λn → λ 6= 0.

Then u ∈ Nk.

Lemma 3.7. For each j > 0, there exists a neighborhood Oj of (µj, 0) such that

(λ, u) ∈ Oj ∩ S and u 6≡ 0 implies u ∈ Nj.

Now we give the main theorem in this section. The proof is also the same as that of

Theorem 3.1 in [10], but we give the proof for readers convenience.

Theorem 3.8. The subcontinuum Ck known to exist in Section 2 is unbounded.

Proof. If we show Ck ⊂ (R × Nk) ∪ {(µk, 0)}, then Ck is unbounded by Lemma 3.7,

Theorem 2.1 and by the fact Nj ∩ Nk = ∅ for j 6= k. Suppose Ck 6⊂ (R × Nk) ∪
{(µk, 0)}. Then there exists (λ, u) ∈ Ck ∩ (R× ∂Nk) such that (λ, u) 6= (µk, 0), u /∈
Nk and (λn, un) → (λ, u) with (λn, un) ∈ Ck ∩ (R × Nk). By Lemma 3.3 and

Lemma 3,7, u 6≡ 0. Since ∂Nk ⊂ ∪k
i=1Ni ∪{u ∈ C0[0, 1]| u has a double zero}, u /∈ Nk

and u does not have a double zero by Lemma 3.2, there exists j with 0 < j < k such

that u ∈ Nj. Consequently un ∈ Nk and u ∈ Nj (j 6= k) are nontrivial solutions of

(Gλn
) and (Gλ) respectively and un → u, λn → λ 6= 0. Thus by Lemma 3.6, we get

a contradiction.
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4. MAIN RESULTS

In this section, we prove various existence results of positive solutions for the

following problem

u′′(t) + λf(t, u(t)) = 0, t ∈ (0, 1),(Pλ)

u(0) = 0 = u(1),

where λ is a positive real parameter and f ∈ C((0, 1) × R+,R+). The assumptions

we are interested in this section are as follows.

(C1) For any M > 0, there exists hM ∈ A such that

f(t, u) ≤ hM(t) for all (t, u) ∈ (0, 1) × [0, M ].

(C2) There exists r ∈ A such that

lim
u→0+

f(t, u)

u
= r(t) uniformly in t ∈ (0, 1).

(C3) f(t, u) > 0, for all (t, u) ∈ (0, 1) × (0,∞).

Define h : (0, 1) × R → R by

h(t, u) =

{

f(t, u), u ≥ 0,

−f(t,−u), u < 0,

and consider the following problem

u′′(t) + λh(t, u(t)) = 0, t ∈ (0, 1),(Hλ)

u(0) = 0 = u(1).

We know that a positive solution of problem (Hλ) is a positive solution of problem

(Pλ). Assume (C1), (C2) and (C3), then we can easily check that problem (Hλ) satisfies

conditions (H1), (H2) and (H3). Thus by theorem 3.8, (Hλ) has an unbounded

subcontinuum Ck bifurcating from (µk, 0), where µk is the k-th eigenvalue of problem

u′′(t) + λr(t)u(t) = 0, t ∈ (0, 1),(4.1)

u(0) = 0 = u(1).

Since we are interested in positive solutions of (Hλ), we focus on the shape of branch

C1. First, we consider the superlinear case so that f satisfies the following condition.

(S ) There is a set A ⊂ (0, 1) of positive measure such that

lim
u→∞

f(t, u)

u
= ∞ uniformly in t ∈ A.

Lemma 4.1. Assume (C2), (C3) and (S). There exists λ̃ such that if u is a positive

solution of (Pλ), then λ ≤ λ̃.
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Proof. Take any set of positive measure B ⊂ A ∩ (δ, 1 − δ) for some positive number

δ and put δ1 = inf B and δ2 = sup B. Then we can easily check for t ∈ B,

u(t) ≥ min{δ1, 1 − δ2}‖u‖∞.

By (C2), (C3) and (S), there exists k > 0 such that f(t, u) ≥ ku for all t ∈ B and

u ≥ 0. Thus

‖u‖∞ ≥ u( δ1+δ2
2

) = λ
∫ 1

0
G( δ1+δ2

2
, s)f(s, u(s))ds

≥ λ
∫

B
G( δ1+δ2

2
, s)f(s, u(s))ds

≥ λk
∫

B
G( δ1+δ2

2
, s)u(s)ds

≥ λk min{δ1, 1 − δ2}
∫

B
G( δ1+δ2

2
, s)ds‖u‖∞.

Therefore we get

λ ≤
(

k min{δ1, 1 − δ2}
∫

B

G(
δ1 + δ2

2
, s)ds

)−1

.

Taking λ̃ = (k min{δ1, 1 − δ2}
∫

B
G( δ1+δ2

2
, s)ds)−1, we completes the proof.

Lemma 4.2. Assume (S). Let J be a given compact interval in (0,∞). Then there

exists MJ > 0 such that all possible positive solutions u of (Pλ) with λ ∈ J satisfy

‖u‖∞ ≤ MJ .

Proof. Suppose on the contrary that there exists a sequence (un) of positive solutions

for (Pλn
) with (λn) ⊂ J = [a, b] and ‖un‖∞ → ∞ as n → ∞. We know that for

t ∈ B, un(t) ≥ min{δ1, 1 − δ2}‖un‖∞, where B, δ1 and δ2 are given in the proof of

Lemma 4.1. Take

R = 2

(

a min{δ1, 1 − δ2}
∫

B

G(
δ1 + δ2

2
, s)ds

)−1

.

Then by (S), there exists l > 0 such that f(t, u) > Ru for all t ∈ B and for all u > l.

Since ‖un‖∞ → ∞, there exists N such that ‖un‖∞ > l
min{δ1,1−δ2}

for n > N . By the

same computation as in the proof of Lemma 4.1, we get

‖un‖∞ ≥ un(
δ1 + δ2

2
) ≥ aR min{δ1, 1 − δ2}

∫

B

G(
δ1 + δ2

2
, s)ds‖un‖∞.

This implies
(

a min{δ1, 1 − δ2}
∫

B

G(
δ1 + δ2

2
, s)ds

)−1 ≥ R

and the contradiction completes the proof.

Now we have the first existence result of problem (Pλ).

Theorem 4.3. Assume (C1), (C2), (C3) and (S). Then there exist λ∗ and λ∗ with

µ1 ≤ λ∗ ≤ λ∗ such that problem (Pλ) has at least one positive solution for 0 < λ < λ∗

and no positive solution for λ > λ∗.
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We do not know whether λ∗ = λ∗ or not which means the existence in Theorem 4.3

is local with respect to parameter λ. With additional conditions on f , we can figure

out the shape of branch more detail. For this purpose, we consider the following two

cases.

(S1) f(t, u) > r(t)u for all (t, u) ∈ (0, 1) × (0,∞).

(S2) There exists ũ > 0 such that f(t, u) < r(t)u for all (t, u) ∈ (0, 1) × (0, ũ).

Corollary 4.4. Assume (C1), (C2), (C3), (S) and (S1). Then (Pλ) has at least one

positive solution for 0 < λ < µ1 and no positive solution for λ ≥ µ1.

Proof. It suffices to show λ < µ1 if u is a positive solution of (Pλ). From (S1), we get

0 = u′′(t) + λf(t, u(t)) > u′′(t) + λr(t)u(t).(4.2)

Let φ(t) be a positive eigenfunction of (4.1) for the first eigenvalue µ1. Multiplying

(4.2) by φ(t) and integrating from 0 to 1, we get

0 >
∫ 1

0
u′′(s)φ(s)ds + λ

∫ 1

0
r(s)u(s)φ(s)ds

= −µ1

∫ 1

0
r(s)u(s)φ(s)ds + λ

∫ 1

0
r(s)u(s)φ(s)ds.

This implies λ < µ1 and the proof is done.

Corollary 4.5. Assume (C1), (C2), (C3), (S) and (S2). Then there exist λ∗ and λ∗

with µ1 < λ∗ ≤ λ∗ such that (Pλ) has at least two positive solutions for λ ∈ (µ1, λ∗),

one positive solution for λ ∈ (0, µ1] ∪ {λ∗} or no positive solution for λ ∈ (λ∗,∞).

Proof. It suffices to show that if u is a positive solution of (Pλ) with ‖u‖ < ũ, then

λ > µ1. If u is a positive solution of (Pλ) with ‖u‖ < ũ, then

0 = u′′(t) + λf(t, u(t)) < u′′(t) + λr(t)u(t).

By the same computation in Corollary 4.4, we can get λ > µ1.

Example 4.6. Let

f(t, u) = [(t(1 − t))−2+ 1

u+1 ]u + u2.

For any M > 0, define hM(t) = [(t(1 − t))−2+ 1

M+1 ]M + M2. Then hM ∈ A and

f(t, u) ≤ hM(t) for all (t, u) ∈ (0, 1) × [0, M ]. And let r(t) = (t(1 − t))−1. Then

hM ∈ A and

lim
u→0+

f(t, u)

u
= r(t) uniformly in t ∈ (0, 1)

and r ∈ A. Thus f satisfies (C1) and (C2) and we can easily show that f satisfies

(C3), (S) and (S1). Thus by Corollary 4.4, (Pλ) has at least one positive solution for

0 < λ < µ1 and no positive solution for λ ≥ µ1.
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Example 4.7. Let

f(t, u) = (t(1 − t))−1Φ(u),

where

Φ(u) =

{

sin u, 0 ≤ u ≤ π
2
,

(u − π
2
)2 + 1, π

2
< u,

For hM(t) = (t(1 − t))−1(2 + M2) and r(t) = (t(1 − t))−1, we can easily check that

f satisfies the all hypotheses of Corollary 4.5. Thus there exist λ∗ and λ∗ with

µ1 < λ∗ ≤ λ∗ such that (Pλ) has at least two positive solutions for λ ∈ (µ1, λ∗), one

positive solution for λ ∈ (0, µ1] ∪ {λ∗} or no positive solution for λ ∈ (λ∗,∞). One

may guess λ∗ = λ∗ in this example, but Corollary 4.5 cannot provide this delicacy

which means some rooms of improvement left.

Now, we consider the sublinear case that f satisfies the following condition.

(B) There exist q ∈ A and Φ ∈ C(R+,R+) such that

f(t, u) ≤ q(t)Φ(u) for all (t, u) ∈ (0, 1) × [0,∞),

0 < lim
u→0+

Φ(u)

u
= Φ0 < ∞ and Φ∞ = lim

u→∞

Φ(u)

u
= 0.

We notice that condition (B) implies condition (C1) and get the following lemmas.

Lemma 4.8. Assume (C2) and (B). Then there exists λ̄ < µ1 such that if (Pλ) has

a positive solution, then λ ≥ λ̄.

Proof. By (B), we may choose a constant MΦ > Φ0 such that Φ(u) ≤ MΦu for all

u ≥ 0. Thus we get

0 = u′′(t) + λf(t, u(t)) ≤ u′′(t) + λq(t)Φ(u(t))

≤ u′′(t) + λMΦq(t)u(t).(4.3)

Let µΦ be the first eigenvalue of the problem

u′′(t) + λΦ0q(t)u(t) = 0, t ∈ (0, 1),

u(0) = 0 = u(1)

and let v be the corresponding positive eigenfunction to µΦ. Multiplying (4.3) by v

and integrating, we get

0 ≤
∫ 1

0
u′′(s)v(s)ds + λ

∫ 1

0
MΦq(s)u(s)v(s)ds

= −µΦΦ0

∫ 1

0
q(s)u(s)v(s)ds + λMΦ

∫ 1

0
q(s)u(s)v(s)ds.

This implies λ ≥ Φ0

MΦ
µΦ. From (C2) and (B), r(t) ≤ Φ0q(t). Thus by the comparison,

we know µ1 ≥ µΦ and the proof is done with λ̄ = Φ0

MΦ
µΦ.
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Lemma 4.9. Assume (B). Let J be a given compact interval in (0,∞). Then there

exists MJ > 0 such that for all λ ∈ J and all possible positive solutions u of (Pλ),

one has

‖u‖∞ ≤ MJ .

Proof. Suppose on the contrary that there exists a sequence (un) of positive solutions

for (Pλn
) with (λn) ⊂ J = [a, b] and ‖un‖∞ → ∞ as n → ∞. Let α ∈ (0, 1

bQ
)

where Q =
∫ 1

0
s(1 − s)q(s)ds. Then by (B), there exists uα >0 such that u >uα

implies Φ(u) <αu. Let mα = maxu∈[0,uα] Φ(u), An = {t ∈ [0, 1] | un(t) ≤ uα} and

Bn = {t ∈ [0, 1] | un(t) > uα}. Then we have

un(t) = λn

∫ 1

0
G(t, s)f(s, un(s))ds ≤ λn

∫ 1

0
s(1 − s)q(s)Φ(un(s))ds

= λn

∫

An
s(1 − s)q(s)Φ(un(s))ds + λn

∫

Bn
s(1 − s)q(s)Φ(un(s))ds

≤ λnmαQ + λn

∫

Bn
s(1 − s)q(s)Φ(un(s))ds,

for t ∈ [0, 1]. Thus

1

λn

≤ mαQ

‖un‖∞
+

∫

Bn

s(1 − s)q(s)
Φ(un(s))

‖un‖∞
ds.

On Bn, un(s) > uα implies Φ(un(s))
‖un‖∞

< Φ(un(s))
un(s)

< α. Thus

1

b
≤ 1

λn

≤ mαQ

‖un‖∞
+ α

∫

Bn

s(1 − s)q(s)ds ≤ mαQ

‖un‖∞
+ αQ.

By the fact ‖un‖∞ → ∞ as n → ∞, we get

1

b
≤ αQ <

1

bQ
Q =

1

b
.

This contradiction completes the proof.

Now we have another existence result of problem (Pλ).

Theorem 4.10. Assume (C2), (C3) and (B). Then there exist λ∗ and λ∗ with λ∗ ≤
λ∗ ≤ µ1 such that problem (Pλ) has at least one positive solution for all λ > λ∗ and

no positive solution for 0 < λ < λ∗.

Like superlinear case, let us consider the following two cases for more detail analysis.

(B1) f(t, u) < r(t)u for all (t, u) ∈ (0, 1) × (0,∞).

(B2) There exists ũ > 0 such that f(t, u) > r(t)u for all (t, u) ∈ (0, 1) × (0, ũ).

Corollary 4.11. Assume (C2), (C3), (B) and (B1). Then (Pλ) has at least one posi-

tive solution for λ > µ1 and no positive solution for λ ≤ µ1.

Proof. It suffices to show λ > µ1 if u is a positive solution of (Pλ). From (B1), we get

0 = u′′(t) + λf(t, u(t)) < u′′(t) + λr(t)u(t).

By the same computation as in the proof of Corollary 4.4, we can get λ > µ1 and the

proof is done.
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Corollary 4.12. Assume (C2), (C3), (B) and (B2). Then there exist λ∗ and λ∗ with

λ∗ ≤ λ∗ < µ1 such that (Pλ) has at least two positive solutions for λ ∈ (λ∗, µ1), one

positive solution for λ ∈ [µ1,∞] ∪ {λ∗} or no positive solution for λ ∈ (0, λ∗).

Proof. If u is a positive solution of (Pλ) with ‖u‖∞ < ũ, then

0 = u′′(t) + λf(t, u(t)) > u′′(t) + λr(t)u(t).

By the same computation in Corollary 4.4, we can easily get λ < µ1 and this derives

the conclusion.

Example 4.13. Let

f(t, u) = arctan(q(t)Φ(u)),

where q(t) = (t(1 − t))−1 and

Φ(u) =

{

u, 0 ≤ u ≤ 1,√
u, 1 < u,

Then q ∈ A, f(t, u) < q(t)Φ(u) for all (t, u) ∈ (0, 1) × (0,∞), Φ0 = 1 and Φ∞ = 0.

Let r(t) = q(t), then we can see that f satisfies the all hypotheses of Corollary 4.11.

Thus (Pλ) has at least one positive solution for λ > µ1 and no positive solution for

λ ≤ µ1.

Example 4.14. Let

f(t, u) =
1

t(1 − t)
Φ(u),

where

Φ(u) =

{

tan u, 0 ≤ u ≤ π
4
,

√

4
π
u, π

4
< u,

Then Φ0 = 1 and Φ∞ = 0. If r(t) = q(t) = (t(1−t))−1, then we can see that f satisfies

the all hypotheses of Corollary 4.12. Thus there exist λ∗ and λ∗ with λ∗ ≤ λ∗ < µ1

such that (Pλ) has at least two positive solutions for λ ∈ (λ∗, µ1), one positive solution

for λ ∈ [µ1,∞] ∪ {λ∗} or no positive solution for λ ∈ (0, λ∗).

We end up with this section to extend our results to the following problem,

(p(t)v′(t))′ + λg(t, v(t)) = 0, t ∈ (0, 1),(Sλ)

v(0) = 0 = v(1),

where p ∈ C1 ((0, 1), (0,∞)) and g ∈ C((0, 1) × R+,R+). We denote c =
∫ 1

0
1

p(s)
ds <

∞ and for ρ(t) = 1
c

∫ t

0
1

p(y)
dy, we also denote B = {h ∈ C((0, 1), (0,∞)) |

∫ 1

0
ρ(t)(1 −

ρ(t))h(t)dt < ∞}. A solution of problem (Sλ) means a function v ∈ C[0, 1] such that

v(0) = 0 = v(1), pv′ ∈ C1(0, 1) and v satisfies the equation (Sλ). Let us assume the

following hypotheses.
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(D1) For any M > 0, there exists bM ∈ B such that

g(t, v) ≤ bM (t) for all (t, v) ∈ (0, 1) × [0, M ].

(D2) There exists b ∈ B such that limv→0+
g(t,v)

v
= b(t) uniformly in t ∈ (0, 1).

(D3) g(t, v) > 0 for all v > 0 and all t ∈ (0, 1).

By changing variable, so called Liouville transformation, s = ρ(t) and u(s) = v(t),

problem (Sλ) can be equivalently written as

u′′(s) + λf(s, u(s)) = 0, s ∈ (0, 1),(Pλ)

u(0) = 0 = u(1),

with f(s, u) = c2p(η(s))g(η(s), u), t = η(s) is the inverse function of s = ρ(t). Let

r(s) = c2p(η(s))b(η(s)) and hM(s) = c2p(η(s))bM(η(s)). Then we can easily check

that f satisfies conditions (Ci) if g satisfies (Di) for i = 1, 2, 3. And also it is known

that H : R × C[0, 1] → R × C[0, 1] defined by H(λ, v) = (λ, u) is homeomorphism

and ‖H(λ, v)‖ = ‖(λ, u)‖. Therefore there exists a subcontinuum C̃k of solutions of

(Sλ) bifurcating form (µk, 0) with H(C̃k) = Ck, where Ck is known to exist in Section

2. We notice that C̃k has the same shape with Ck. Applying previous results for

problem (Pλ), we obtain the following corollaries.

First, for the superlinear case, let us consider the following hypotheses,

(DS) There is a set B ⊂ (0, 1) of positive measure such that

lim
v→∞

g(t, v)

v
= ∞ uniformly in t ∈ B.

(DS1) g(t, v) > b(t)v for all (t, v) ∈ (0, 1) × (0,∞).

(DS2) There exists ṽ > 0 such that

g(t, v) < b(t)v for all (t, v) ∈ (0, 1) × (0, ṽ).

Corollary 4.15. Assume (D1), (D2), (D3), (DS) and (DS1). Then the conclusion of

Corollary 4.4 is valid for the problem (Sλ).

Corollary 4.16. Assume (D1), (D2), (D3), (DS) and (DS2). Then the conclusion of

Corollary 4.5 is valid for the problem (Sλ).

Finally, for the sublinear case, let us consider the following hypotheses,

(DB) There exist β ∈ B and Φ ∈ C(R+,R+) such that

g(t, v) ≤ β(t)Φ(v) for all (t, v) ∈ (0, 1) × [0,∞),

0 < lim
v→0+

Φ(v)

v
= Φ0 < ∞ and lim

v→∞

Φ(v)

v
= 0.

(DB1) g(t, v) < b(t)v for all (t, v) ∈ (0, 1) × (0,∞).
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(DB2) There exists ṽ > 0 such that

g(t, v) > b(t)v for all (t, v) ∈ (0, 1) × (0, ṽ).

Corollary 4.17. Assume (D2), (D3), (DB) and (DB1). Then the conclusion of

Corollary 4.11 is valid for the problem (Sλ).

Corollary 4.18. Assume (D2), (D3), (DB) and (DB2). Then the conclusion of

Corollary 4.12 is valid for the problem (Sλ).

Remark 4.19. The theorems and corollaries in this section are still valid if we replace

condition (C2) (or (D2)) by the following type; There exists r ∈ A such that

0 < lim
u→0+

f(t, u)

r(t)u
< ∞, uniformly in t ∈ (0, 1).

5. APPLICATION TO SEMILINEAR ELLIPTIC RADIAL PROBLEMS

ON AN EXTERIOR DOMAIN

In this section we apply the results in the previous section to study the exis-

tence and multiplicity of positive radial solutions of semilinear elliptic problems on

an exterior domain. Let us consider

∆u + λK(|x|, u) = 0 in Ω,(PE)

u|∂Ω = 0 and u → 0 as |x| → ∞,

where Ω = {x ∈ R
n : |x| > r0}, r0 > 0, n > 2, λ a positive real parameter and

K ∈ C([r0,∞) × R+,R+). Let AE = {k ∈ C([r0,∞), (0,∞)) |
∫ ∞

r0
rk(r)dr < ∞}.

We assume the followings,

(E1) For any M > 0, there exists kM ∈ AE such that

K(r, u) ≤ kM(r) for all 0 ≤ u ≤ M and r ∈ [r0,∞).

(E2) There exists k ∈ AE such that limu→0+
K(r,u)

u
= k(r) uniformly in r ∈ [r0,∞).

(E3) K(r, u) > 0 for all u > 0 and all r ≥ r0.

Applying r = |x| and v(r) = u(|x|), we can transform problem (PE) into the following

the problem:

v′′(r) +
n − 1

r
v′(r) + λK(r, v) = 0, t > r0,(5.1)

v(r0) = 0 and v(r) → 0 if r → ∞.

Next, applying t = 1 − ( r
r0

)2−n and z(t) = v(r), we can transform problem (5.1) into

the following the problem;

z′′(t) + λf(t, z(t)) = 0, t ∈ (0, 1)(Pλ)

z(0) = 0, z(1) = 0,
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where f can be explicitly written as

f(t, z) = (
r0

n − 2
)2(1 − t)

2n−2

2−n K(r0(1 − t)
1

2−n , z).

We know that f is singular at t = 1. Taking r(t) = ( r0

n−2
)2(1 − t)

2n−2

2−n k(r0(1 − t)
1

2−n )

and hM = ( r0

n−2
)2(1 − t)

2n−2

2−n kM(r0(1 − t)
1

2−n ), we can easily check that f satisfies

conditions (Ci) if K satisfies (Ei) for i = 1, 2, 3. Therefore, using results in Section 4,

we obtain the following corollaries.

First, for the superlinear case, let us consider the following hypotheses;

(ES) There is a set B ⊂ (r0,∞) of positive measure such that

lim
u→∞

K(r, u)

u
= ∞ uniformly in r ∈ B.

(ES1) K(r, u) > k(r)u for all (r, u) ∈ [r0,∞) × (0,∞).

(ES2) There exists ũ > 0 such that

K(r, u) < k(r)u, for all (r, u) ∈ [r0,∞) × (0, ũ).

Corollary 5.1. Assume (E1), (E2), (E3), (ES) and (ES1). Then the conclusion of

Corollary 4.4 is valid for the problem (PE).

Corollary 5.2. Assume (E1), (E2), (E3), (ES) and (ES2). Then the conclusion of

Corollary 4.5 is valid for the problem (PE).

Finally, for the sublinear case, let us consider the following hypotheses;

(EB) There exists p ∈ AE and Φ ∈ C(R+,R+) such that

K(r, u) ≤ p(r)Φ(u), for all (r, u) ∈ [r0,∞) × [0,∞),

0 < lim
u→0+

Φ(u)

u
= Φ0 < ∞ and lim

u→∞

Φ(u)

u
= 0.

(EB1) K(r, u) < k(r)u for all (r, u) ∈ [r0,∞) × (0,∞).

(EB2) There exists ũ > 0 such that

K(r, u) > k(r)u, for all (r, u) ∈ [r0,∞) × (0, ũ).

Corollary 5.3. Assume (E2), (E3), (EB) and (EB1). Then the conclusion of Corol-

lary 4.11 is valid for the problem (PE).

Corollary 5.4. Assume (E2), (E3), (EB) and (EB2). Then the conclusion of Corol-

lary 4.12 is valid for the problem (PE).
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