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ABSTRACT. Consider the delay partial difference equation

Am+1,n + Am,n+1 − Am,n +

u
∑

i=1

Pi(m, n)Am−ki,n−li = 0, m, n ∈ N0,

where lim infm,n→∞ Pi(m, n) = pi ∈ [0,∞), ki, li ∈ N1, i = 1, 2, . . . , u. Sufficient conditions for

the oscillation of all solutions of the above equation are established in the case when that the

corresponding “limiting” equation

Am+1,n + Am,n+1 − Am,n +

u
∑

i=1

piAm−ki,n−li = 0, m, n ∈ N0,

admits non-oscillatory solutions. Oscillation criteria for nonlinear partial difference equation are

also derived as applications.
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1. INTRODUCTION

Partial difference equations occur frequently in the approximation of solutions of

partial differential equations by finite difference methods and some science problems

[1–5]. We consider the partial difference equation with several delays

(1) Am+1,n + Am,n+1 − Am,n +
u

∑

i=1

Pi(m, n)Am−ki,n−li = 0, m, n ∈ N0,

where {Pi(m, n)}∞n=1 is a double real sequence with Pi(m, n) ≥ 0 for all large m, n,

ki, li ∈ N1, (i = 1, 2, . . . , u), Nt = {t, t + 1, t + 2, . . . }, and

(2) Pi(m, n) ≥ pi ∈ [0,∞), lim inf
m,n→∞

Pi(m, n) = pi, i = 1, 2, . . . , u .

Then, the corresponding limiting equation of (1) is

(3) Am+1,n + Am,n+1 − Am,n +
u

∑

i=1

piAm−ki,n−li = 0, m, n ∈ N0 ,
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with the characteristic equation

(4) λ + µ − 1 +
u

∑

i=1

piλ
−kiµ−li = 0.

It is well known (for example, see [6]) that all solutions of Eq. (3) oscillate if and only

if (4) has no positive roots. In [7], Zhang and Yu showed that all solutions of Eq. (1)

oscillate if all solutions of Eq. (3) oscillate. However, the following situation is also

possible: all solutions of Eq. (1) oscillate in spite of the fact that the corresponding

limiting equation (3) admits non-oscillatory solutions.

Oscillatory properties of equation (1) have been investigated by many authors;

see the survey paper [8].

In this paper, we introduce some new techniques to established sufficient condi-

tions for the oscillation of all solutions of Eq. (1) in the case when that the corre-

sponding limiting equation (3) admits non-oscillatory solutions. It is to be pointed

out that there is no result on this problem up to now. As applications, we also obtain

oscillation criteria for nonlinear partial difference equation with several delays.

By a solution of Eq. (1), we mean a sequence {Am,n} which is defined for m ≥

−k∗, n ≥ −l∗, where k∗ = maxi≥1{ki}, l∗ = maxi≥1{li}, and which satisfies (1) for

m, n ∈ N0. A solution {Am,n} of (1) is said to be oscillatory if the terms Am,n of

the sequence {Am,n} are neither eventually all positive nor eventually all negative.

Otherwise, the solution is called nonoscillatory.

2. MAIN RESULTS

First, we define a sequence {λl}
∞
l=1 by

(5) λ1 = 1, λl+1 = 1 −
u

∑

i=1

piλ
−ki−li
l , l = 1, 2, . . . ,

where pi ≥ 0, i = 1, 2, . . . , u.

The following lemma will be used to prove our main results.

Lemma 1. Assume that the sequence {λl} is defined by (5). Then, λ∗ ≤ λl ≤ 1 and

liml→∞ λl = λ∗, where λ∗ is the largest root of the equation

(6) λ = 1 −
u

∑

i=1

piλ
−ki−li

on (0, 1].

The proof is simple and we omit it here.

In the following, we consider linear partial difference inequalities of the form

(7) Am+1,n + Am,n+1 − Am,n +
u

∑

i=1

Pi(m, n)Am−ki,n−li ≤ 0, m, n ∈ N0,
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(8) Am+1,n + Am,n+1 − Am,n +

u
∑

i=1

Pi(m, n)Am−ki,n−li ≥ 0, m, n ∈ N0.

Assume that pi, i = 1, 2, . . . , u are sufficiently small such that the equation

(9) 2λ − 1 +

u
∑

i=1

piλ
−ki−li = 0

has positive roots on (0, 1/2). Hence (4) has positive roots, which implies that (3)

has nonoscillatory solutions. We will give sufficient conditions for the oscillation of

(1) in this case.

Theorem 1. Assume that (2) holds. Further assume that

(10) lim sup
m,n→∞

u
∑

i=1

(λ−ki−li
∗ Pi(m, n) + λ1−ki−li

∗ (Pi(m + 1, n) + Pi(m, n + 1))) > 1,

where λ∗ is the largest root of (6) on (0, 1]. Then:

(i) (7) has no eventually positive solutions;

(ii) (8) has no eventually negative solutions; and

(iii) every solution of Eq. (1) oscillates.

Proof. It is easy to prove (ii) and (iii) similarly to the proof of (i). Assume, for the

sake a contradiction, that {Am,n} is an eventually positive solution of (1). Then,

there exist m1 and n1 such that Am,n > 0 and Am−ki,n−li > 0, i = 1, 2, . . . , u, for

m ≥ m1, n ≥ n1. Therefore, from (1), we have

Am+1,n < Am,n and Am,n+1 < Am,n, for m ≥ m1, n ≥ n1,

which gives

Am−ki,n ≥ λ−ki

1 Am,n for m ≥ m1 + ki, n ≥ n1.

Hence, we have

(11) Am−ki,n−li ≥ λ−ki−li
1 Am,n, for m ≥ m1 + ki, n ≥ n1 + li.

Using now (11) and (1) we have

Am+1,n + Am,n+1 − Am,n +
u

∑

i=1

piλ
−ki−li
1 Am,n ≤ 0.

Hence, we have

Am+1,n ≤ Am,n(1 −
u

∑

i=1

piλ
−ki−li
1 ) = λ2Am,n for m ≥ m1 + ki, n ≥ n1 + li,

and

Am,n+1 ≤ Am,n(1 −
u

∑

i=1

piλ
−ki−li
1 ) = λ2Am,n for m ≥ m1 + ki, n ≥ n1 + li.
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Hence,

Am−ki,n−li ≥ λ−ki−li
2 Am,n for m ≥ m1 + 2ki, n ≥ n1 + 2li.

Repeating the above procedure, we get

(12) Am+1,n ≤ Am,n(1−

u
∑

i=1

piλ
−ki−li
l−1 ) = λlAm,n for m ≥ m1+ki, n ≥ n1+(l−1)li,

and

(13) Am,n+1 ≤ Am,n(1−

u
∑

i=1

piλ
−ki−li
l−1 ) = λlAm,n for m ≥ m1+ki, n ≥ n1+(l−1)li.

Hence,

(14) Am−ki,n−li ≥ λ−ki−li
l Am,n, for m ≥ m1 + lki, n ≥ n1 + lli,

where

λl = 1 −
u

∑

i=1

piλ
−ki−li
l−1 .

Since liml→∞ λl = λ∗, for a sequence {εl} with εl > 0 and εl → 0 as l → ∞, by

(12), (13), and (14) there exists a double sequence {ml, nl} such that ml, nl → ∞ as

l → ∞ and

(15) Am+1,n ≤ (λ∗ + εl)Am,n, for m ≥ ml, n ≥ nl,

(16) Am,n+1 ≤ (λ∗ + εl)Am,n, for m ≥ ml, n ≥ nl,

and

(17) Am−ki,n−li ≥ (λ∗ + εl)
−ki−liAm,n for m ≥ ml + ki, n ≥ n1 + li.

From (1) and (17), we have

(18) Am,n ≥

u
∑

i=1

Pi(m, n)(λ∗ + ε1)
1−ki−liAm−1,n

and

(19) Am,n ≥

u
∑

i=1

Pi(m, n)(λ∗ + ε1)
1−ki−liAm,n−1.

Dividing (1) by Am,n, we have

(20) 1 =
Am+1,n + Am,n+1

Am,n

+

u
∑

i=1

Pi(m, n)
Am−ki,n−li

Am,n

for m ≥ ml +k∗, n ≥ nl + l∗.

From (17)–(20), we have

1 ≥
u

∑

i=1

((λ∗ + εl)
−ki−liPi(m, n) + (λ∗ + εl)

1−ki−li(Pi(m + 1, n) + Pi(m, n + 1))).
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Letting l → ∞, the above inequality implies

lim sup
m,n→∞

u
∑

i=1

(λ−ki−li
∗ Pi(m, n) + λ1−ki−li

∗ (Pi(m + 1, n) + Pi(m, n + 1))) ≤ 1,

which contradicts (10) and completes the proof.

Theorem 2. Assume that (2) holds, and (10) is replaced by

lim sup
m,n→∞

(

u
∑

i=1

λ−ki−li
∗ Pi(m, n) +

u
∑

i=1

λ1−ki−li
∗ Pi(m + 1, n)

1 −
u
∑

i=1

λ1−ki−li
∗ (Pi(m + 2, n) + Pi(m + 1, n + 1))

(21) +

u
∑

i=1

λ1−ki−li
∗ Pi(m, n + 1)

1 −
u
∑

i=1

λ1−ki−li
∗ (Pi(m + 1, n + 1) + Pi(m, n + 2))

)

> 1.

Then the conclusions of Theorem 1 hold.

Proof. In fact, from (18) and (19), we have

(22) Am+1,n ≥

u
∑

i=1

Pi(m + 1, n)(λ∗ + εl)
1−ki−liAm,n for m ≥ ml, n ≥ nl.

and

(23) Am,n+1 ≥
u

∑

i=1

Pi(m, n + 1)(λ∗ + εl)
1−ki−liAm,n for m ≥ ml, n ≥ nl.

Hence,

Am,n = Am+1,n + Am,n+1 +
u

∑

i=1

Pi(m, n)Am−ki,n−li

≥

u
∑

i=1

(Pi(m+1, n)+Pi(m, n+1))(λ∗+εl)
1−ki−liAm,n+

u
∑

i=1

Pi(m, n)(λ∗+εl)
1−ki−liAm−1,n,

and

(24) Am,n ≥

u
∑

i=1

(λ∗ + εl)
1−ki−liPi(m, n)

1 −
u
∑

i=1

(λ∗ + εl)1−ki−li(Pi(m + 1, n) + Pi(m, n + 1))
Am−1,n.

Similarly,

(25) Am,n ≥

u
∑

i=1

(λ∗ + εl)
1−ki−liPi(m, n)

1 −
u
∑

i=1

(λ∗ + εl)1−ki−li(Pi(m + 1, n) + Pi(m, n + 1))
Am,n−1.

Substituting the above inequalities into (20) and letting l → ∞, we obtain a contra-

diction with (21). The proof is complete.
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Since
u

∑

i=1

λ1−ki−li
∗ Pi(m + 1, n) ≥ λ∗

u
∑

i=1

λ−ki−li
∗ pi = λ∗(1 − λ∗),

from (21), we can obtain a simpler condition.

Corollary 1. Assume that that (2) holds. Further assume that

(26) lim sup
m,n→∞

u
∑

i=1

λ−ki−li
∗ Pi(m, n) > 2 −

1

λ2
∗ + (1 − λ∗)2

.

Then the conclusions of Theorem 1 hold.

In fact, (26) implies (21).

Theorem 3. Assume that (2) holds. Further assume that

(27) lim sup
m,n→∞

( 1

(1 − λ∗)2

u
∑

i=1

Pi(m, n)λ−ki−li
∗ (1−λli+1

∗ )(1−λki+1
∗ )+Q(m, n, λ∗)

)

> 1,

where λ∗ is the largest root of (6) on (0, 1] and

Q(m, n, λ∗) =

u
∑

i=1

λ1−ki−li
∗ Pi(m + 1, n + 1)

1 −
u
∑

i=1

λ1−ki−li
∗ (Pi(m + 2, n + 1) + Pi(m + 1, n + 2))

×

u
∑

i=1

λ1−ki−li
∗ Pi(m + 1, n)

1 −
u
∑

i=1

λ1−ki−li
∗ (Pi(m + 2, n) + Pi(m + 1, n + 1))

.

Then:

(i) (7) has no eventually positive solutions;

(ii) (8) has no eventually negative solutions; and

(iii) every solution of Eq. (1) oscillates.

Proof. It is easy to prove (ii) and (iii) similarly to the proof of (i). Assume, for the

sake a contradiction, that {Am,n} is an eventually positive solution of (1). Summing

(1) in n from n (≥ n1) to ∞, we have
∞

∑

v=n

Am+1,v − Am,n +

u
∑

i=1

∞
∑

v=n

Pi(m, v)Am−ki,v−li ≤ 0.

We rewrite the above inequality in the form
∞

∑

v=n+1

Am+1,v + Am+1,n − Am,n +

u
∑

i=1

∞
∑

v=n

Pi(m, v)Am−ki,v−li ≤ 0.

Summing this inequality in m from m (≥ m1) to ∞, we obtain

(28)
∞

∑

s=m

∞
∑

v=n+1

As+1,v − Am,n +
u

∑

i=1

∞
∑

s=m

∞
∑

v=n

Pi(s, v)As−ki,v−li ≤ 0.
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From (24) and (25), we have

(29) Am+1,n+1 ≥ Q(m, n, λ∗ + εl)Am,n.

By (28), we get

Am,n ≥

∞
∑

s=m

∞
∑

v=n+1

As+1,v +

u
∑

i=1

∞
∑

s=m

∞
∑

v=n

Pi(s, v)As−ki,v−li

≥ Am+1,n+1 +

u
∑

i=1

m+ki
∑

s=m

n+li
∑

v=n

Pi(s, v)As−ki,v−li

≥ Am+1,n+1 +
u

∑

i=1

ki
∑

s=0

li
∑

v=0

Pi(s + m, v + n)Am+s−ki,n+v−li

≥ Am+1,n+1 + Am,n

u
∑

i=1

ki
∑

s=0

li
∑

v=0

Pi(s + m, v + n)(λ∗ + εl)
(s−ki)+(v−li)

= Am+1,n+1 + Am,n

u
∑

i=1

(

m+ki
∑

s=m

n+li
∑

v=n

Pi(m, n)(λ∗ + εl)
(s−m−ki)+(v−n−li)

)

.

Letting l → ∞, the above two inequalities imply

lim sup
m,n→∞

( 1

(1 − λ∗)2

u
∑

i=1

Pi(m, n)λ−ki−li
∗ (1 − λli+1

∗ )(1 − λki+1
∗ ) + Q(m, n, λ∗)

)

≤ 1,

which contradicts (27) and completes the proof.

Since

Q(m, n, λ∗) ≥ (
λ∗(1 − λ∗)

1 − 2λ∗ + 2λ2
∗

)2,

we can derive a simpler condition from (27).

Corollary 2. (27) is replaced by

(30)

lim sup
m,n→∞

1

(1 − λ∗)2

u
∑

i=1

Pi(m, n)λ−ki−li
∗ (1 − λli+1

∗ )(1 − λki+1
∗ ) > 1 −

( λ∗(1 − λ∗)

1 − 2λ∗ + 2λ2
∗

)2

,

then the conclusions of Theorem 3 hold.

In the following, we consider the nonlinear partial difference equation

(31) Am+1,n + Am,n+1 − Am,n +
u

∑

i=1

Pi(m, n)fi(Am−ki,n−li) = 0, m ≥ 0, n ≥ 0,

where

(32) f ∈ (R, R) and ufi(u) > 0 for u 6= 0.
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Theorem 4. Assume that (2) holds and

(33) lim inf
u→0

fi(u)

u
≥ 1, for i = 1, 2, . . . , u.

Further assume that (4) has positive roots and one of conditions (10), (21) or (27)

holds. Then every solution of Eq. (31) oscillates.

Proof. Assume, for the sake a contradiction, that Eq. (31) has a non-oscillatory solu-

tion {Am,n}. We assume that {Am,n} is eventually positive. The case where {Am,n}

is eventually negative is similar and is omitted. It is not difficult to see that [1]

(34) lim
m,n→∞

Am,n = 0.

By (33) and (34), we get

(35) lim inf
n→∞

fi(Am−ki,n−li)

Am−ki,n−li

≥ 1, for i = 1, 2, . . . , u.

From (31) and (33), we have

(36) Am+1,n + Am,n+1 − Am,n +

u
∑

i=1

Pi(m, n)Am−ki,n−li ≤ 0, m ≥ 0, n ≥ 0.

But by Theorems 1-3, when (2) and one of conditions (10), (21), or (27) hold, (36)

cannot have eventually positive solutions. This contradiction completes the proof.

Example 1. Consider the partial difference equation

(37) Am+1,n + Am,n+1 − Am,n + P (m, n)Am−1,n−1 = 0, m ≥ 0, n ≥ 0,

where

P (m, n) =

{

1
27

, if m = n ∈ N0,
1
5
, otherwise.

For equation (37), (9) becomes

(38) 2λ − 1 +
1

27
λ−2 = 0,

which has a positive root λ = 1
3
. The limiting equation of (37) is

(39) Am+1,n + Am,n+1 − Am,n +
1

27
Am−1,n−1 = 0, m ≥ 0, n ≥ 0,

which has a positive solution {Am,n} = { 1
3m+n } m, n ∈ N0. Equation (6) becomes the

form

λ − 1 +
1

27
λ−2 = 0,

which has a positive root λ∗ = 2
3
cos φ

3
, where cos φ = 1

2
. Thus, φ = π

3
and λ∗ ≈ 0.63.

Since lim sup
m,n→∞

P (m, n) = 1
5
, we have

lim sup
m,n→∞

P (m, n) > λ2
∗(2 −

1

λ2
∗ + (1 − λ∗)2

) ≈ 0.05.
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By Corollary 1, every solution of (37) is oscillatory, but none of the results in the

literature (see survey paper [8]) can be applied to this equation.
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