
Dynamic Systems and Applications 16 (2007) 299-310

SETVALUED PERTURBED HYBRID INTEGRO-DIFFERENTIAL
EQUATIONS AND STABILITY IN TERMS OF TWO MEASURES

BASHIR AHMAD AND S. SIVASUNDARAM

Department of Mathematics, Faculty of science, King Abdulaziz University,

P.O.Box 80203, Jeddah 21589, Saudi Arabia

Department of Mathematics, Embry- Riddle Aeronautical University, Daytona

Beach, FL 32114, USA

ABSTRACT. We study some stability criteria in terms of two measures for setvalued perturbed

hybrid integro-differential equations with fixed moments of impulse. Stability properties of perturbed

system are obtained via a comparison result which connects the solutions of perturbed system and

the unperturbed one through the solutions of a comparison system.

Keywords and Phrases. Perturbed hybrid setvalued integro-differential equations, Stability in

terms of two measures, Variation of Lyapunov second method.

AMS (MOS) Subject Classifications. 34K20, 34K25, 45J05.

1. INTRODUCTION

The subject of setvalued differential equations initiated as an independent sub-

ject, has been addressed by many authors, for instance, see [1-5] and the references

therein. The interesting feature of the setvalued differential equations is that the

results obtained in this new framework become the corresponding results of ordinary

differential equations as the Hukuhara derivative and the integral used in formulating

the set differential equations reduce to the ordinary vector derivative and integral

when the set under consideration is a single valued mapping. Moreover, setvalued

differential equations, that are generated by multivalued differential inclusions, when

the multivalued functions involved do not possess convex values, can be used as a

tool for studying multivalued differential inclusions [6]. Set differential equations can

also be utilized to investigate fuzzy differential equations [2].

In the perturbation theory of nonlinear differential systems, a flexible mechanism

known as variation of Lyapunov second method, was introduced in [7]. This technique,

which essentially connects the solutions of perturbed system and the unperturbed one

through the solutions of a comparison system using a comparison principle, was ex-

tended to integral equations in [8-9]. The concept of stability in terms of two measures

[10] which unifies a number of stability concepts such as Lyapunov stability, partial
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stability, conditional stability, etc. has become an important area of investigation in

the qualitative analysis [11-15].

Impulsive hybrid dynamical systems form a class of hybrid systems in which con-

tinuous time states are reset discontinuously when the discrete event states change.

Recently, a number of research papers has dealt with dynamical systems with im-

pulsive effect as a class of general hybrid systems [16-20]. In this paper, we develop

the stability criteria in terms of two measures for setvalued perturbed hybrid integro-

differential equations with fixed moments of impulsive effect through the variation of

Lyapunov second method.

2. PRELIMINARIES AND COMPARISON RESULT

Let K(Rn) denote the collection of nonempty, compact and convex subsets of Rn.

We define the Hausdorff metric as

(1) D[X, Y ] = max[sup
y∈Y

d(y,X), sup
x∈X

d(x, Y )],

where d(y,X) = inf[d(y, x) : x ∈ X] and X, Y are bounded subsets of Rn. Notice that

K(Rn) with the metric is a complete metric space. Moreover, K(Rn) equipped with

the natural algebraic operations of addition and nonnegative scalar multiplication

becomes a semilinear metric space which can be embedded as a complete cone into a

corresponding Banach space [6,21]. The Hausdorff metric (1) satisfies the following

properties:

(2) D[X + Z, Y + Z] = D[X, Y ] and D[X, Y ] = D[Y,X],

(3) D[µX, µY ] = µD[X, Y ],

(4) D[X, Y ] ≤ D[X,Z] +D[Z, Y ],

∀ X, Y, Z ∈ K(Rn) and µ ∈ R+.

Definition 2.1. The set Z ∈ K(Rn) satisfying X = Y +Z is known as the Hukuhara

difference of the sets X and Y in K(Rn) and is denoted as X − Y .

Definition 2.2. For any interval I ∈ R, the mapping F : I → K(Rn) has a Hukuhara

derivative DHF (t0) at a point t0 ∈ I, if there exists an element DHF (t0) ∈ K(Rn)

such that the limits

(5) lim
h→0+

F (t0 + h) − F (t0)

h
and lim

h→0+

F (t0) − F (t0 − h)

h
,

exist in the topology of K(Rn) and each one is equal to DHF (t0).
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By embedding K(Rn) as a complete cone in a corresponding Banach space and

taking into account the result on differentiation of Bochner integral, it is found that

if

(6) F (t) = X0 +

∫ t

0

Φ(η)dη, X0 ∈ K(Rn),

where Φ : I → K(Rn) is integrable in the sense of Bochner, then DHF (t) exists and

(7) DHF (t) = Φ(t) a.e. on I.

Consider the following perturbed set integro-differential equations with fixed moments

of impulse

(8)











DHU(t) = F (t, U(t), L1U(t)), t 6= tk,

U(t+k ) = U(tk) + Ik(U(tk)), k = 1, 2, 3, . . . ,

U(t+0 ) = U0, t0 ≥ 0,

together with the unperturbed ones

(9)











DHV (t) = G(t, V (t), L2V (t)), t 6= tk,

V (t+k ) = V (tk) + Jk(V (tk)), k = 1, 2, 3, . . . ,

V (t+0 ) = U0, t0 ≥ 0,

where F,G : R+ × Kc(R
n) × Kc(R

n) → Kc(R
n) are continuous on (tk−1, tk] ×

Kc(R
n) × Kc(R

n), with G smooth enough or containing the linear terms of sys-

tem (8), Li denote the integral in sense of Hukuhara [22-23] and is defined by

LiU(t) =
∫ t

t0
Ki(t, η, U(η))dη, Ki : R+ × R+ × Kc(R

n) → Kc(R
n) is continuous

on (tk−1, tk] × (tk−1, tk] × Kc(R
n), i = 1, 2, Ik, Jk : Kc(R

n) → Kc(R
n) and {tk} is a

sequence of points such that t0 < t1 < · · · tk < · · · with limk→∞ tk = ∞.

Letting ρ to be a positive real number, we define the following classes of functions:

K = {ν : [0, ρ) → R+ is continuous, strictly increasing and ν(0) = 0};

PC = {µ : R+ → R+ is continuous on (tk−1, tk] and µ→ µ(t+k ) exists as t→ t+k };

PCK = {φ : R+ × [0, ρ) → R+, φ(., m) ∈ PC

for each m ∈ [0, ρ), φ(t, .) ∈ K for each t ∈ R+};

Γ = {h : R+ ×Kc(R
n) → R+, inf

U∈Kc(Rn)
h(t, U) = 0, h(., U) ∈ PC,

for each U ∈ Kc(R
n), and h(t, .) ∈ C(Kc(R

n), R+) for each t ∈ R+};

S(h, ρ) = {(t, U) ∈ R+ ×Kc(R
n) : h(t, U) < ρ, h ∈ Γ};

S(ρ) = {U ∈ Kc(R
n) : (t, U) ∈ S(h, ρ) for each t ∈ R+}.

Definition 2.3. Let W : R+ ×Kc(R
n) → R+. Then W is said to belong to class W0

if W (t, U) ∈ PC for each U ∈ S(ρ) and W (t, U) is locally Lipschitzian in U .
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Definition 2.4. Let W ∈ W0 and V (t, η, U) be any solution of (9). Then for any

fixed t > t0, (η, U) ∈ (tk−1, tk) × S(ρ), t0 ≤ η < t, we define

D+W (η, V (t, η, U))

= lim sup
h→0+

1

h
[W (η + h, V (t, η + h, U + hF (η, U, L1U))) −W (η, V (t, η, U))],

where V (t, η, U) is any solution of (9) such that V (η, η, U) = U .

Remark. In order to show how the perturbation terms affect the stability properties

of the perturbed system, we suppose that

F (t, U(t), L1U(t)) = G(t, U(t), L2U(t)) +R(t, U(t), LU(t)),

and the solution of (9) is differentiable with respect to initial value. Then we have
{

∂V
∂U0

(t, t0, U0) = Ψ(t, t0, U0),
∂V
∂t0

(t, t0, U0) = −Ψ(t, t0, U0).G(t, t0, L2U0), t ≥ t0,

where Ψ(t, t0, U0) is the fundamental matrix solution of the corresponding variational

equation. Setting W (η, V ) = ‖V ‖2 (for instance, ‖V ‖ = supv∈V ‖v‖), we get

D+W (η, V (t, η, U(t))) = 2V T (t, η, U(t)).Ψ(t, t0, U(t)).R(η, U(t), LU(t)),

which shows the desired effect.

Definition 2.5. Let h, h0 ∈ Γ. We say that

(i) h0 is finer than h if there exists a λ > 0 and a function φ ∈ PCK such that

h0(t, U) < λ implies h(t, U) ≤ φ(t, h0(t, U));

(ii) h0 is uniformly finer than h if (i) holds for φ ∈ K.

Definition 2.6. Let h, h0 ∈ Γ and W ∈ W0. Then W (t, U) is said to be

(i) h-positive definite if there exists a λ > 0 and a function b ∈ K such that

h(t, U) < λ implies b(h(t, U)) ≤ W (t, U);

(ii) weakly h0-decrescent if there exists a λ1 > 0 and a function a ∈ PCK such that

h0(t, U) < λ1 implies W (t, U) ≤ a(t, h0(t, U));

(iii) h0-decrescent if (ii) holds with a ∈ K.

Definition 2.7. Let h, h0 ∈ Γ and U((t) = U(t, t0, U0) be any solution of (1), then

the system (1) is said to be

(I) (h0, h)-stable if for each ε > 0, there exists a δ = δ(t0, ε) > 0 such that

h0(t0, U0) < δ implies h(t, U(t))) < ε, t ≥ t0;

(II) (h0, h)-uniformly stable if (I) holds with δ independent of t0;
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(III) (h0, h)-attractive if there exists a δ = δ(t0) > 0 and for each ε > 0, there exists

T = T (t0, ε) > 0 such that

h0(t0, U0) < δ0 implies h(t, U(t)) < ε, t ≥ t0 + T ;

(IV) (h0, h)-uniformly attractive if (III) holds with δ and T independent of t0;

(V) (h0, h)-asymptotically stable if it is (h0, h)-stable and (h0, h)-attractive;

(VI) (h0, h)-uniformly asymptotically stable if it is (h0, h)-uniformly stable and (h0, h)-

uniformly attractive.

Now, we prove a comparison result which is needed for the sequel.

Lemma 2.1. Assume that

(A1) The solution V (t) = V (t, t0, U0) of (9) exists for all t ≥ t0, unique, continuous

with respect to the initial values, locally Lipschitzian in U0 and V (t0) = U0;

(A2) W ∈ C[R+ ×K(Rn), K(Rn)] satisfies |W (t, X) −W (t, Y )| ≤ ND[X, Y ], where

N is the local Lipschitz constant, X, Y ∈ K(Rn), t ∈ R+;

(A3) For (η, U) ∈ S(h, ρ), t0 ≤ η < t, W ∈ W0 satisfies the inequality










D+W (η, V (t, η, U)) ≤ g1(η,W (η, V (t, η, U))), t 6= tk,

W (t+k , V (t, t+k , U(t+k ))) ≤ ψk(W (tk, V (t, tk, U(tk))), k = 1, 2, . . . ,

W (t+0 , V (t, t+0 , U0)) ≤ x0,

where g1(t, x) ∈ PC for each x ∈ R+ and ψk : R+ → R+ are nondecreasing

functions for all = 1, 2, . . . ;

(A4) The maximal solution r(t) = r(t, t0, x0) of the following scalar impulsive differ-

ential equation exists on [t0,∞)

(10)











x′ = g1(t, x), t 6= tk,

x(t+k ) = ψk(x(tk)), k = 1, 2, . . . ,

x(t+0 ) = x0 ≥ 0.

Then W (t, U(t, t0, U0)) ≤ r(t, t0, x0).

Proof. Let U(t) = U(t, t0, U0) be any solutions of (8) with (t0, U0) ∈ S(h, ρ). We set

m(η) = W (η, V (t, η, U(η)), η ∈ [t0, t] and limη→t−0 m(η) = m(t). For small h > 0, we

consider

m(η + h) −m(η) = W (η + h, V (t, η + h, U(η + h))) −W (η, V (t, η, U(η))

= W (η+h, V (t, η+h, U(η+h)))−W (η+h, V (t, η+h, U(η)+hF (η, U(η), L1U(η))))

+W (η + h, V (t, η + h, U(η) + hF (η, U(η), L1U(η)))) −W (η, V (t, η, U(η)))

≤ ND[V (t, η + h, U(η + h)), V (t, η + h, U(η) + hF (η, U(η), L1U(η)))]

+W (η + h, V (t, η + h, U(η) + hF (η, U(η), L1U(η)))) −W (η, V (t, η, U(η)))
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where we have used the condition (A2). Thus,

D+m(t) = lim sup
h→0+

1

h
[m(t + h) −m(t)]

≤ D+W (η, V (t, η, U(η)) +N 2 lim sup
h→0+

1

h
D[U(η + h), U(η) + hF (η, U(η), L1U(η))].

Letting U(η + h) = U(η) + Z(η), where Z(η) is the Hukuhara difference of U(η + h)

and U(η) for small h > 0 and is assumed to exist. Hence, employing the properties

of D[·, ·], it follows that

D[U(η + h), U(η) + hF (η, U(η), L1U(η))]

= D[U(η) + Z(η), U(η) + hF (η, U(η), L1U(η))] = D[Z(η), hF (η, U(η), L1U(η))]

= D[U(η + h) − U(η), hF (η, U(η), L1U(η))].

Consequently, we find that

1

h
D[U(η + h), U(η) + hF (η, U(η), L1U(η))]

= D[
U(η + h) − U(η)

h
, F (η, U(η), L1U(η))],

which, in view of the fact that U(t) is a solution of (8), yields

lim sup
h→0+

1

h
D[U(η + h), U(η) + hF (η, U(η), L1U(η))]

= lim sup
h→0+

D[
U(η + h) − U(η)

h
, F (η, U(η), L1U(η))]

= D[U ′

H(η), F (η, U(η), L1U(η))] = 0.

Hence, we have

D+m(η) ≤ g(η,m(η)), t 6= tk.

Also

m(t+k ) = ψk(m(tk)), k = 1, 2, . . . ,

m(t0) ≤ x0.

Now, from reference [11], it follows that m(η) ≤ r(η, t0, x0), η ∈ [t0, t], that is,

W (η, V (t, η, U(η)) ≤ r(η, t0, x0), η ∈ [t0, t]. Since V (t, t, U(t)) = U(t), therefore we

have

W (t, U(t, t0, U0)) = W (t, V (t, t, U(t))) ≤ r(t, t0, x0).

This proves the assertion of the theorem.
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3. STABILITY CRITERIA FOR SETVALUED HYBRID

INTEGRO-DIFFERENTIAL EQUATIONS

Theorem 3.1. Assume that

(B1) The solution V (t) = V (t, t0, U0) of (2) exists for all t ≥ t0, unique, continuous

with respect to the initial values, locally Lipschitzian in U0 and V (t0) = U0.

(B2) Ki(t, s, 0) = 0 so that G(t, 0, 0) = G(t, 0) = 0, g1(t, 0) = 0 and Jk(0) = 0,

ψk(0) = 0, k = 1, 2, . . . ;

(B3) h0, h ∈ Γ such that h0(t, 0) = 0 for t ∈ R+ and h0 is finer than h;

(B4) W ∈ W0 be such that W (t, U) is h-positive definite and weakly h0-decrescent for

(t, U) ∈ S(h, ρ), and satisfies the inequality










D+W (η, V (t, η, U)) ≤ g1(η,W (η, V (t, η, U))), η 6= tk,

(η, U) ∈ S(h, ρ), η ∈ [t0, t),

W (t+k , V (t, t+k , U(t+k ))) ≤ ψk(W (tk, V (t, tk, U(tk))), k = 1, 2, . . . ;

(B5) There exists a ρ0 ∈ (0, ρ] such that

h(tk, U(tk)) < ρ0 implies that h(t+k , U(t+k )) < ρ, k = 1, 2, . . .

Then the stability of the null solution of (9) and the asymptotical stability of the null

solution of (10) imply the (h0, h)-asymptotical stability of (8).

Proof. Let U(t) = U(t, t0, U0), V (t) = V (t, t0, U0) and x(t) = x(t, t0, x0) be any

solutions of (8), (9) and (10) respectively. Since W (t, U) is h-positive definite on

S(h, ρ), there exists b ∈ K such that

(11) h(t, U) < ρ implies b(h(t, U)) ≤ W (t, U).

Also W (t, U) is weakly h0-decrescent and h0 is finer than h, so there exists a λ0 > 0

and a ∈ PCK, φ ∈ PCK such that

(12) h(t, U) ≤ φ(t, h0(t, U)) implies W (t, U) ≤ a(t, h0(t, U)),

when h0(t, U) < λ0 and φ(t+0 , λ0) < ρ. Since the null solution of (10) is stable,

therefore, for given b(ε) > 0, we can find a δ1 = δ1(t0, ε) > 0 such that

(13) 0 ≤ x0 < δ1 implies that x(t, t0, x0) < b(ε), t ≥ t0,

where 0 < ε < ρ0 and t0 ∈ R+. Also, the trivial solution of (9) is stable, so there

exists a δ2 = δ2(t0, ε) > 0 corresponding to δ1 such that

‖U0‖ < δ2 implies that ‖V (t)‖ < a−1(t0, δ1),

while, from (B3), we have

(14) h0(t
+
0 , U0) < δ2 implies that h0(t

+
0 , V (t)) < a−1(t0, δ1).
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Select δ = δ(t0, ε) > 0 satisfying δ < min{λ0, δ2}. Now if h0(t
+
0 , U0) < δ, then it

follows from (11)–(14) that

b(h(t+0 , U0)) ≤ W (t+0 , U0) ≤ a(t+0 , h0(t
+
0 , U0)) < a(t+0 , δ2) ≤ δ1 ≤ b(ε),

which implies that h(t+0 , U0)) < ε when h0(t
+
0 , U0)) < δ.

We assert that

(15) h(t, U(t)) < ε whenever h0(t
+
0 , U0)) < δ.

For the sake of contradiction, let us assume that (15) is false and there exists t∗ > t0

such that h(t∗, U(t∗)) ≥ ε. For h ∈ Γ, there are two cases: (i) t0 < t∗ ≤ t1 (ii) tk <

t∗ ≤ tk+1 for some k = 1, 2, . . . .

(i) Without loss of generality, let t∗ = inf{t : h(t, U(t)) ≥ ε} and h(t∗, U(t∗)) = ε.

Using Lemma 2.1 and (11)–(12) together with the fact that r(t, t0, x1) ≤ r(t, t0, x2) if

x1 ≤ x2 (which follows from Lemma 2.1), we obtain

(16) W (t∗, U(t∗)) ≤ r(t∗, t0,W (t+0 , V (t∗, t0, U0))) ≤ r(t∗, t0, a(t0, h(t
+
0 , V (t∗, t0, U0)))

≤ r(t∗, t0, δ1) < b(ε).

On the other hand, it follows from (11) that

W (t∗, U(t∗)) ≥ b(h(t∗, U(t∗))) = b(ε),

which contradicts (15).

(ii) In view of the impulse effect, we have

h(t∗, U(t∗)) ≥ ε and h(t, U(t)) < ε, t ∈ [t0, tk].

Since 0 < ε < ρ0, it follows from assumption (B5) that

h(t+k , U(t+k )) = h(t+k , U(tk) + Ik(U(tk))) < ρ.

Consequently, there exists a t∗∗ ∈ (tk, t
∗] such that

(17) ε ≤ h(t∗∗, U(t∗∗)) < ρ and h(t, U(t)) < ρ, t ∈ [t0, t1)

Now, by virtue of Lemma 2.1 and (11)-(12), we obtain

W (t∗∗, U(t∗∗)) ≤ r(t∗∗, t0,W (t+0 , V (t∗∗, t0, U0))) ≤ r(t∗∗, t0, a(t0, h(t
+
0 , V (t∗∗, t0, U0)))

≤ r(t∗∗, t0, δ1) < b(ε),

whereas (11) and (17) yields

W (t∗∗, U(t∗∗)) ≥ b(h(t∗∗, U(t∗∗))) ≥ b(ε),

which is again a contradiction. Thus our assertion is true and the (h0, h)-stability of

the system (8) is proved.
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Next it is assumed that the null solution of (10) is asymptotically stable. In view

of (h0, h)-stability of the system (8), we set ε = ρ0 and δ = δ3 = δ3(t0, ρ0) > 0 in (15)

and obtain

h(t, U(t)) < ρ0 < ρ whenever h0(t
+
0 , U0)) < δ3, t ≥ t0.

In order to prove the (h0, h)-attractive of system (8), let the null solution of (10) be

attractive, that is, for t0 ∈ R+, there exists a δ∗0 = δ∗0(t0) > 0 such that

x0 < δ∗0 implies that lim
t→∞

x(t, t0, x0) = 0.

Now, for this δ∗0, there is a δ∗1 = δ∗1(t0, δ
∗

0) > 0 such that

h0(t
+
0 , U0) < δ∗1 implies that h0(t

+
0 , V (t)) < a−1(t0, δ

∗

0).

Taking δ0 = δ0(t0) (independent of ε) such that 0 < δ0 < min{δ∗, δ∗0, δ
∗

1} and applying

the earlier arguments, we find that

b(h(t, U(t))) ≤ W (t, U(t)) ≤ r(t, t0,W (t+0 , V (t, t0, U0))) ≤ r(t, t0, δ
∗

0) → 0,

as t → ∞ when h0(t
+
0 , U0)) < δ0. This implies that limt→∞ h(t, U(t)) = 0 when

h0(t
+
0 , U0)) < δ0, that is, system (8) is (h0, h)-attractive. Hence system (8) is (h0, h)-

asymptotically stable.

Theorem 3.2. Assume that all the assumptions of Theorem 3.1 hold except (B3) and

(B4) which are modified as

(B∗

3
) h0 is uniformly finer than h instead of finer in (B3);

(B∗

4
) W is h0-decrescent instead of weakly h0-decrescent in (B4).

Then the uniform stability of the null solution of (9) and the uniformly asymptotically

stability of the null solution of (10) imply the (h0, h)-uniformly asymptotically stability

of (8).

Proof. From (B∗

3) and (B∗

4), it follows that there exists a λ0 > 0 and a, φ ∈ K such

that

(18) h(t, U) ≤ φ(h0(t, U)) implies that W (t, U) ≤ a(h0(t, U)),

when h0(t, U) < λ0 with φ(λ0) < ρ. The null solution of (10) is uniformly stable,

therefore, for given b(ε) > 0, we can find a δ1 = δ1(ε) > 0 independent of t0 such that

(19) 0 ≤ x0 < δ1 implies that x(t, t0, x0) < b(ε), t ≥ t0,

where 0 < ε < ρ0 and t0 ∈ R+. From the hypothesis that the trivial solution of (9)

is uniformly stable, for the above δ1, there exists a δ2 = δ2(ε) > 0 independent of t0

such that

‖U0‖ < δ2 implies that ‖V (t)‖ < a−1(δ1),
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while from (B∗

3), we have

(20) h0(t
+
0 , U0) < δ2 implies that h0(t

+
0 , V (t)) < a−1(δ1).

Now, applying the arguments similar to the ones used in the proof of Theorem 3.1,

we conclude that

h0(t
+
0 , U0) < δ implies that h(t+0 , U(t)) < ε, t ≥ t0,

where δ is independent of t0 and satisfies 0 < δ = δ(ε) < min{λ0, δ2}. Thus, the

system (8) is (h0, h)-uniformly stable.

Next, from the hypothesis that the null solution of (10) is uniformly asymptoti-

cally stable, we can find a δ∗0 > 0 independent of t0 and any ε satisfying 0 < ε < ρ0

such that there exists a τ = τ(ε) so that

(21) 0 < x0 < δ∗0 implies that x(t, t0, x0) < b(ε), t ≥ t0 + τ(ε), t0 ∈ R+.

In view of that fact that (9) is uniformly stable, there is a δ∗1 independent of t0

corresponding to δ∗0 such that

h0(t
+
0 , U0) < δ∗1 implies that h0(t

+
0 , V (t)) < a−1(δ∗0).

Since uniformly asymptotically stability of (10) implies its asymptotically stability,

so system (8) is (h0, h)-uniformly stable. For ε = ρ0, there exists a δ∗ = δ∗(ρ0) such

that

h0(t
+
0 , U0) < δ∗ implies that h(t, U(t)) < ρ0 < ρ, t ≥ t0.

Choosing δ0 such that 0 < δ0 < min{δ∗, δ∗0, δ
∗

1} and using the arguments employed in

Theorem 3.1, we find that h(t, U(t))) ≤ ε, t ≥ t0 + τ , when h0(t
+
0 , U0)) < δ0, where

δ0 and τ are independent of t0. This implies that system (8) is (h0, h)-uniformly

attractive. Hence system (8) is (h0, h)-uniformly asymptotically stable.

4. CONCLUSIONS

(A) The stability criteria in term of two measures (h0, h) enable us to unify a variety

of stability notions found in the literature if we endow h0, h with explicit form.

In fact, our Definition 2.7, for instance, takes the form of

(a) the well known stability of the trivial solution U(t) = θ of (8) if h(t, U) =

h0(t, U) = D[U, θ], U ∈ Kc(R
n);

(b) the stability of the prescribed motion U0(t) of (8) if h(t, U) = h0(t, U) =

D[U, U0(t)];

(c) the stability of the invariant set Ω ⊂ Kc(R
n) if h(t, U) = h0(t, U) = D0[U,Ω],

where D0[U,Ω] is the distance function of U from the set Ω;

(d) the stability of an asymptotically invariant set Ω if h(t, U) = h0(t, U) =

D[U,Ω] + ψ(t), where ψ(t) > 0 is a decreasing function such that ψ(t) → 0

as t→ ∞:
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(e) the stability of a conditionally invariant set Ω1 with respect to Ω2 (Ω2 ⊂

Ω1 ⊂ Kc(R
n)) if h(t, U) = D0[U,Ω1], h0(t, U) = D0[U,Ω2];

(f) the orbital stability if h(t, U) = h0(t, U) = D[U,B(t0,W0)], where B(t0,W0) =

U0([t0,∞), t0,W0) is a closed set in Kc(R
n) and U0(t, t0,W0) is a prescribed

solution of (8);

(g) partial stability if h(t, U1) = D[U1, θ], h0(t, U) = D[U, θ], where U1 is com-

pact convex subset of U ∈ Kc(R
n).

For several other definitions and stability results in terms of two measures for

ordinary differential systems, we refer the reader to [12].

(B) The (h0, h)-equatability of (8) can be established on the same pattern if we

require δ = δ(t0, ε) in Definition 2.7 to be a continuous function in t0 for each ε.

(C) Setting L1U ≡ 0 ≡ L2U , our results reduce to ones corresponding to setvalued

perturbed hybrid differential equations with fixed moments of impulse. More-

over, if the solution U(t) of (8) is a single valued mapping, and Hukuhara deriva-

tive and integral used here reduce to the ordinary vector derivative and integral,

then we get the results obtained in [15].
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