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ABSTRACT. In this article we obtain the ratio of risk investment and the optimal accumulated

level of single premium endowment insurance in the case of dynamic investment strategies of life

insurance company by BSDEs. It gives an illustration of traditional reserve valuation, and prudential

rules.
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1. INTRODUCTION

One of the main tasks of an actuary in the life insurance company is to decide

the discounting rate for income and outgo in pricing and valuation. In practice,

usually the discounting rate assumption for the evaluation of liability reserve is more

conservative, which always based on the interest rate of the riskless asset. The aim of

this article is to find a theoretical support for this rule in practice.

The traditional actuarial model is a simplified version of discounted cash flow,

and it doesn’t consider the dynamic adjustment to the investment portfolio. Until

1980, the stochastic control model has been applied in the fundamental research

of insurance systems and pension funds (Haberman and Sung 2002). At the same

time, the researchers also realized that the usual insurance system and the pension

fund can all be understood as pre-funded system (Taylor 2002), and have some

of the same aspects in model description and the application of the results. The

theory of backwards stochastic differential equation, abbreviated BSDE, is a technique

developed in the last two decades and quite applicable to the financial market research.

The study of its application in insurance system and pension fund is, however, at the

very early stage of development. Under such a background, it is very important to

find new ideas or deal with more complicated model via BSDE in its study. In
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the evaluation of liability reserve, the goal of the insurance fund is to pay the death

benefit at the end of each policy year (the insurance fund accrue the death benefit

and expiration benefit at the end of the n-th policy year), and the insurance fund is

invested in the riskless asset and the risk asset. Our aim is to find the value of the

insurance fund at the beginning of the plan. This problem is a backward problem and is

suitable dealt with BSDE In this article we obtain the ratio of risk investment and the

optimal accumulated level of endowment life insurance fund with a single premium

in the case of dynamic investment strategies. It gives an illustration of traditional

liability reserve valuation, and prudential rules.

2. MODELS AND ASSUMPTIONS

Let (Ω,F , P ) be a complete probability space supporting all our random/stochastic

quantities and {Bt}t≥0 is a Brownian motion defined on a probability space(Ω,F , P ).

Indeed {Bt}t≥0 is a Ft-martingale, where Ft = σ(Bs, s ≤ t).

We use the organizational stochastic model to consider the n-year endowment

life insurance: All the participants enter the plan at age x. lx is the number of

homogenous policies, the initial fund is zero at time zero, we do not consider expenses

and surrender. Benefit occurs at the end of the death year. h is the year of policies,

h = 1, 2, · · · , n. Dx+h−1 means the number of deaths and Lx+h means the number of

survival in each policy year h. The number of deaths Dx+h−1 and the number L of

last survival stochastic vector is D = (Dx, Dx+1, · · · , Dx+n−1, Lx+n−1); D obeys the

multi-normal distribution. We also assume that single premium policies group is self-

financing. ut is the insurance fund at time t. The fund is a right-continuous stochastic

process and is subject to jump at the end of each death year due to payments on

deaths. The goal of the insurance fund at the end of n-th year is expiration benefit

of Lx+n and death benefit of Dx+n−1, it is suitable to be dealt with by BSDE.

Next we give some assumptions that will be in force below:

(I) Life insurance company can choose investment proportion in two assets: risk-free

asset and risky asset. Let vt denote the amount of money invested in risky asset.

It represents the dynamic investment strategy and can change continuously.

(II) The interest rate of riskless asset is r(t); here, we consider only the deterministic

r(t).

(III) The instantaneous yield of risky asset is governed by

dS(t)

S(t)
= µ(t)dt + σ(t)dB(t),

where µ(·) and σ(·) are continuous functions.

(IV) Assume that the survival random vector D is independent of {Bt}t≥0.
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(V)
µ(t) − r(t)

σ(t)
∈ L2 on the interval [0, n).

These assumptions are in common use.

Let

Ri = σ{Dx, Dx+1, · · · , Dx+i−1}, i = 1, 2, · · · , n − 1,

Rn = σ{Dx, Dx+1, · · · , Dx+n−1, Lx+n},

and

Mt =































Ft, 0 ≤ t < 1,

σ(Ft ∪ R1), 1 ≤ t < 2,
...

σ(Ft ∪Rn−1), n − 1 ≤ t < n,

σ(Ft ∪ Rn), t = n.

We now present our first result which deals with preservation of the martingale prop-

erty while enlarging the filtration. While this is a delicate mathematical technicality,

we nevertheless relegate the proof to the appendix so as not to break the continuity

of the underlying theme of insurance.

Lemma 2.1. {Bt}t≥0 is a martingale with respect to Mt.

3. INSURANCE FUND

Since the goal of the insurance fund is to pay the death benefit at the end of each

policy year (the insurance fund accrue the death benefit and expiration benefit at the

end of the n-th policy year), and the insurance fund is invested in the riskless asset

and the risk asset, see the assumptions in previous section, then the insurance fund

in the n-th year satisfies the following SDE:

(3.1)

{

dut = [r(t)ut + (µ(t) − r(t))νt]dt + σ(t)νtdBt

un = Lx+n + Dx+n−1 n − 1 ≤ t ≤ n

Remark 3.1. Here the equation is on the interval n− 1 ≤ t ≤ n. For the calculation

of the insurance is a backward process, we should calculate it from the last policy

year.

In the following we investigate the expression of ut.

Let −σ(t)νt = zt in equation (3.1), then

(3.2)







dut = [r(t)ut −
µ(t) − r(t)

σ(t)
zt]dt − ztdBt

un = Lx+n + Dx+n−1

From [7] we know that there exits a unique pair of solution of (3.2).
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For any t ∈ [n − 1, n], suppose ys
t
, t ≤ s, is the solution of the following SDE

(3.3)







dys
t

= ys
t
[−r(s)ds − µ(s) − r(s)

σ(s)
dBs],

yt
t
= 1.

First of all, we give the expression of the solution of (3.3). By Ito’s formula

d ln ys

t =
1

ys
t

dys

t −
1

2

1

(ys
t )

2
(dys

t )
2

= −r(s)ds − µ(s) − r(s)

σ(s)
dBs −

1

2

µ(s) − r(s)

σ(s)

2

ds.

Hence

ys

t
= exp

{

∫

s

t

[−r(τ) − 1

2

µ(τ) − r(τ)

σ(τ)

2

]dτ −
∫

s

t

[
µ(τ) − r(τ)

σ(τ)
]dBτ

}

.

Obviously, for any t1 ≤ t2 ≤ t3, we have yt2
t1

yt3
t2

= yt3
t1

. Moreover, by assumption (V),
∫

s

t

µ(τ) − r(τ)

σ(τ)
dBτ

is a martingale with respect to Ft and satisfies the Novikov condition, (8) see [4].

Then we have

E
[

exp

{
∫

s

t

1

2
[
µ(τ) − r(τ)

σ(τ)
]2dτ +

∫

s

t

µ(τ) − r(τ)

σ(τ)
dBτ

}

]

= 1.

So

Eys

t
= exp{

∫

s

t

[−r(τ)]dτ}.

Next we will solve the BSDE (3.2). Once again, by Ito’s formula

d(usy
s

t ) = usdys

t + ys

t dus + dusdys

t

= usy
s

t
[−r(s)ds − µ(s) − r(s)

σ(s)
dBs] − ys

t
zsdBs

+ys

t
[r(s)us −

µ(s) − r(s)

σ(s)
zs]ds + ys

t
zs

µ(s) − r(s)

σ(s)
ds

= (−us − zs)y
s

t

µ(s) − r(s)

σ(s)
dBs,

and hence

ut = uny
n

t +

∫

n

t

(us + zs)y
s

t

µ(s) − r(s)

σ(s)
dBs.

By assumptions (IV) and Lemma 2.1, we know that
∫

t

0

(us + zs)y
s

t

µ(s) − r(s)

σ(s)
dBs

is a martingale w.r.t Mt, and (us, zs) is Mt-adapted. We now get

ut = E[unyn

t
|Mt] = E[(Lx+n + Dx+n−1)y

n

t
|Mt].
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Then

un−1 = E[(Lx+n + Dx+n−1)y
n

n−1|Mn−1],

The insurance fund at the end of n − 1-th policy year should pay the death benefit

of Dx+n−2, so we set

u−
n−1 = E[(Lx+n + Dx+n−1)y

n

n−1|Mn−1] + Dx+n−2.

In the (n − 1)-th period, the insurance fund should satisfy the SDE

(3.4)







dut = [r(t)ut −
µ(t) − r(t)

σ(t)
zt]dt − ztdBt

u−
n−1 = E[(Lx+n + Dx+n−1)y

n
n−1|Mn−1] + Dx+n−2, n − 2 ≤ t < n − 1

We can see that

u−
n−1 = lim

t→(n−1)−
ut

Remark 3.2. In the rest of the paper, u−
t = lims→t− us, v−

t = lims→t− vs.

We can similarly obtain that

un−2 = E[(un−1 + Dx+n−2)y
n−1
n−2|Mn−2]

= E[
(

E[(Lx+n + Dx+n−1)y
n

n−1|Mn−1] + Dx+n−2

)

yn−1
n−2|Mn−2]

= E[E[(Lx+n + Dx+n−1)y
n

n−2|Mn−1]|Mn−2] + E[Dx+n−2y
n−1
n−2|Mn−2]

= E[(Lx+n + Dx+n−1)y
n

n−2|Mn−2] + E[Dx+n−2y
n−1
n−2|Mn−2]

= E[(Lx+n + Dx+n−1)y
n

n−2 + Dx+n−2y
n−1
n−2|Mn−2].

More generally we can get

un−k = E[(Lx+n + Dx+n−1)y
n

n−k + Dx+n−2y
n−1
n−k

+ · · ·+ Dx+n−ky
n−(k−1)
n−k

|Mn−k].

un−k+1 = E[(un−k + Dx+n−(k+1))y
n−k

n−(k+1)|Mn−k+1]

= E[
(

E[(Lx+n + Dx+n−1)y
n

n−k + Dx+n−2y
n−1
n−k

+ · · ·+ Dx+n−ky
n−(k−1)
n−k

|Mn−k]

+Dx+n−(k+1) )y
n−k

n−(k+1)|Mn−k+1]

= E[(Lx+n + Dx+n−1)y
n

n−(k+1) + Dx+n−2y
n−1
n−(k+1) + · · ·+ Dx+n−ky

n−(k−1)
n−(k+1)

+Dx+n−(k+1)y
n−k

n−(k+1)|Mn−k+1].

Then, by assumption (IV)

Eun−k = exp{
∫

n

n−k

−r(τ)dτ}E(Lx+n + Dx+n−1) + exp{
∫

n−1

n−k

−r(τ)dτ}E(Dx+n−1)

+ · · ·+ exp{
∫

n−(k−1)

n−k

−r(τ)dτ}E(Dx+n−k).
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In the case of r(t) =

n
∑

i=1

riI[i−1≤t≤i], we have

Eun−k = exp{−
n

∑

i=n−k

ri}E(Lx+n + Dx+n−1) + exp{−
n−1
∑

i=n−k

ri}E(Dx+n−1)

+ · · ·+ exp{−rn−k}E(Dx+n−k).

In particular, if r1 = r2 = · · · = rn = r then

(3.5) Eun−k = e−rkE(Lx+n + Dx+n−1) + e−r(k−1)E(Dx+n−1) + · · ·+ e−rE(Dx+n−k).

This is in accordance with the traditional formula in single premium.

Finally, we establish a more precise expression for the insurance fund.

Theorem 3.3.

un−k = exp{
∫

n

n−k

−r(τ)dτ}E[Lx+n + Dx+n−1|Rn−k]

+ exp{
∫

n−1

n−k

−r(τ)dτ}E[Dx+n−1|Rn−k] + · · ·

+ exp{
∫

n−(k−1)

n−k

−r(τ)dτ}E[Dx+n−k|Rn−k].

Proof. We shall only establish

(3.6) E[(Lx+n +Dx+n−1)y
n

n−k
|Mn−k] = exp{

∫

n

n−k

−r(τ)dτ}E[Lx+n +Dx+n−1|Rn−k].

To prove it, we need to show that for any C ∈ Mn−k,

E[(Lx+n + Dx+n−1)y
n

n−kIC ] = exp{
∫

n

n−k

[−r(τ)]dτ}E[ICE[Lx+n + Dx+n−1|Rn−k]].

Let

Ln−k = {A ∩ B : A ∈ Fn−k, B ∈ Rn−k}
Hn−k = {C ∈ Mn−k : E[(Lx+n + Dx+n−1)y

n

n−k
IC ] =

exp{
∫

n

n−k

[−r(τ)]dτ}E[ICE[Lx+n + Dx+n−1|Rn−k]]}.

For any A ∩ B ∈ Ln−k, we have

E[(Lx+n + Dx+n−1)y
n

n−k
IA∩B ]

= E[(Lx+n + Dx+n−1)y
n

n−kIAIB]

= E(IA)E[(Lx+n + Dx+n−1)IB]E(yn

n−k
)

= E(IA)E[IBE[Lx+n + Dx+n−1|Rn−k]]E(yn

n−k)

= exp{
∫

n

n−k

[−r(τ)]dτ}E[IA∩BE[Lx+n + Dx+n−1|Rn−k]].
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As in the proof of lemma 2.1, we note that Hn−k is a λ-system. Then by the monotone

class theorem we get (3.6).

From Theorem 3.3, we can see that in the assumption (IV), the insurance fund

in every period is not related to the risky asset and is determined by the risk-free

market, D, and Lx+n.

4. RATIO OF RISKY INVESTMENT

Let vt = αtut, where αt is the ratio of risk investment 0 ≤ αt ≤ 1 a.s. In the

(n− k)-th period, use Ito’s formula to
ut

vt

, n− k − 1 ≤ t < n− k, α−
n−k

=
v−

n−k

u−
n−k

. Then

d
1

αt

= d
ut

vt

=
1

vt

dut + utd
1

vt

+ d
1

vt

dut,

and

d
1

vt

= − 1

vt
2
dvt +

1

vt
3
dvt

2

=
1

vt

(σ2(t) − µ(t))dt − 1

vt

σ(t)dBt.

Hence

d
1

αt

=
1

αt

[σ2(t) − µ(t)]dt − 1

αt

σ(t)dBt

+
1

αt

{[r(t) − αt(µ(t) − r(t)) − σ2(t)]dt + σ(t)dBt}

= (
1

αt

− 1)(σ2(t) − µ(t) + r(t))dt − (
1

αt

− 1)σ(t)dBt.

Let kt =
1

αt

− 1. Now,

d ln kt = (
1

2
σ2(t) − µ(t) + r(t))dt − σ(t)dBt,

and

kt = k−
n−k

exp{
∫

n−k

t

(µ(s) − 1

2
σ2(s) − r(s))ds +

∫

n−k

t

σ(s)dBs}.

Therefore

αt =
1

1 + (
1

α−
n−k

− 1) exp{
∫

n−k

t
(µ(s) − r(s) − 1

2
σ2(s))ds +

∫

n−k

t
σ(s)dBs}

.

Obviously

d lnutαt = d ln vt = (µ(t) − 1

2
σ2(t))dt + σ(t)dBt.

Then

α−
n−k

αn−k−1
=

E[u−
n−k

|Mn−k−1]

u−
n−k

exp

{
∫

n−k

n−k−1

(µ(t) − 1

2
σ2(t) − r(t))dt +

∫

n−k

n−k−1

σ(t)dBt

}

.
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On the other hand

α−
n−k

αn−k−1

= α−
n−k

+(1−α−
n−k

) exp

{
∫

n−k

n−k−1

(µ(t) − 1

2
σ2(t) − r(t))dt +

∫

n−k

n−k−1

σ(t)dBt

}

.

So

α−
n−k

=

(

E[u−

n−k
|Mn−k−1]

u
−

n−k

− 1
)

exp
{

∫

n−k

n−k−1
(µ(t) − 1

2
σ2(t) − r(t))dt +

∫

n−k

n−k−1
σ(t)dBt

}

1 − exp
{

∫

n−k

n−k−1
(µ(t) − 1

2
σ2(t) − r(t))dt +

∫

n−k

n−k−1
σ(t)dBt

} .

By Theorem 3.3, we get

α−
n−k

=

E[un−k|Rn−k−1]−un−k

un−k+Dx+n−k−1
exp

{

∫

n−k

n−k−1
(µ(t) − 1

2
σ2(t) − r(t))dt +

∫

n−k

n−k−1
σ(t)dBt

}

1 − exp
{

∫

n−k

n−k−1
(µ(t) − 1

2
σ2(t) − r(t))dt +

∫

n−k

n−k−1
σ(t)dBt

} .

Thus we get the proportion of the fund applied to risky investments.

5. DISCUSSION

The Relation (3.5) is consistent with the traditional liability reserve valuation

formula, but it only assumes that the number of deaths in each of the past years

is a random variable in the deduction in traditional formula, and the discounting

interest rate is any fixed effective annual interest rate. Making use of BSDE and

more practical assumption, we illuminate that the liability evaluation formula that is

derived from the predigested assumption is optimal.

In the case of life insurance companies adopting dynamic investment strategies,

we can see that the riskless investment yield rate as assessment interest rate is identical

with the usual rules. And we also illustrate that, in self-financing, the insurance fund

is not related to the risky investment rate, it is only related to the riskless investment

rate, the number of death and the valid policies at the end of policy year.

6. APPENDIX

Proof of Lemma 2.1:

For any fixed t and s ≤ t, we assume, without loss of generality, that k ≤ s ≤ k+1

and k = 0, 1, · · · , n. Let

Ls = {A ∩ B : A ∈ Fs, B ∈ Rk}, Hs = {A ∈ Ms : E[IABt] = E[IABs]},

as we know that Fs and Rk are all σ-algebras, it is easy to see that Ls is a π-system;

Fs ⊂ Ls and Rk ⊂ Ls. So σ(Ls) = Ms.

Next we prove that Hs is a λ−system. In fact,

1) Ω ∈ Hs,
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2) for any A1, A2 · · · ∈ Hs with Ai ↑ A, as i → ∞, we have

|E[IABt − IABs]| = |E[IABt − IAi
Bt + IAi

Bt − IABs]|
= |E[IABt − IAi

Bt + IAi
Bs − IABs]|

≤ E|IA\Ai
Bt| + E|IA\Ai

Bs|
≤ P (A \ Ai)E

1

2 [B2
t
] + P (A \ Ai)E

1

2 [B2
s
]

= (
√

t +
√

s)P (A \ Ai) → 0 (i → ∞),

then E[IABt] = E[IABs], that is A ∈ Hs.

3) ∀A, B ∈ Hs with A ⊂ B, and B \ A 6= φ

E[IB\ABt] = E[IBBt] − E[IABs] = E[IB\ABs]

that is B \ A ∈ Hs, so Hs is a λ-system. ∀A ∩ B ∈ Ls, we have

E[IA∩BBt] = E[IAIBBt] = E[IB]E[IABt] = E[IB]E[IABs] = E[IA∩BBs]

therefore Ls ⊂ Hs.

By the monotone class argument, we know that σ(Ls) ⊂ Hs, and Hs ⊂ Ms,

σ(Ls) = Ms so Ms = Hs, that is {Bt}t≥0 is a martingale w.r.t Mt.
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