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ABSTRACT. We apply Lakshmikantham’s generalized quasilinearization method to an initial

value problem involving a nonlinear integro-differential equation with initial time difference and ob-

tain monotone sequences of lower and upper solutions converging uniformly and quadratically to

the unique solution of the problem.
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1. INTRODUCTION

The method of quasilinearization developed by Bellman and Kalaba [1] and gen-

eralized by Lakshmikantham [2-3] later on, has been studied and extended in several

diverse disciplines. In fact, it is generating a rich history and an extensive bibliogra-

phy can be found in [4-10].

In the study of initial value problems involving nonlinear differential equations, we

generally perturb or change the dependent (spatial) variable keeping the initial time

unchanged. However, this approach is not realistic in the sense that it is impossi-

ble not to make the errors in the starting time [11] as the solution of unperturbed

dynamical system may start at a different time in comparison with the perturbed

dynamical system. Recently, the concept of changing initial time along with the de-

pendent variable has been initiated and some results on the comparison theorems,

global existence, stability criteria, the method of upper and lower solutions, mono-

tone iterative technique, etc. can be found in the references [12-15].

In view of the extensive occurrence of the integro-differential equations in the math-

ematical modelling of physical problems, for example, see [16-19], the theory and

applications of integro-differential equations have emerged as a new area of investi-

gation [4, 20-23].

The objective of the present study is to develop the generalized quasilinearization
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method for an initial value problem involving Volterra integro-differential equations

with initial time difference. In fact, we consider the following initial value problem

u′(t) = Af(t, u(t)) +B

∫ t

t0

K(t, s, u(s))ds, t ∈ J = [t0, t0 + T ], t0 ∈ R+, T > 0,

(1) u(t0) = u0,

where A,B are nonnegative real constants and obtain sequences of upper and lower

solutions for the integro-differential equation that start at different initial times and

bound the solution of the given nonlinear problem. It has also been shown that

the lower and upper sequences of approximate solutions converge monotonically and

quadratically to the unique solution of the problem (1).

2. PRELIMINARIES

Now, we state some important theorems which lay the foundation to prove the

main result (for the proof of Theorem 1, one can apply the methodology of reference

[14] while Theorem 2 is a known result [4]).

Theorem 1. Assume that

(a) Let f ∈ C[R+ × R,R], K ∈ C[R+ × R+ × R,R], α ∈ C1[[t0, t0 + T ], R] and

β ∈ C1[[τ0, τ0 + T ], R], τ0 > 0 be such that

α′(t) ≤ Af(t, α(t)) +B

∫ t

t0

K(t, s, α(s))ds, t ∈ [t0, t0 + T ],

and

β ′(t) ≥ Af(t, β(t)) +B

∫ t

t0

K(t, s, β(s))ds, t ∈ [τ0, τ0 + T ],

with

β(τ0) ≥ α(t0).

(b) f(t, u(t)) is nondecreasing in t for each u and K(t, s, u(s)) is nondecreasing in t

for each fixed (s, u(s)) and α(t) ≤ β(t+ η) for t ∈ [t0, t0 + T ], η = τ0 − t0 with

t0 ≤ τ0.

Then there exists a solution u(t) of (1) such that α(t) ≤ u(t) ≤ β(t + η) for t ∈
[t0, t0 + T ].

Theorem 2. Suppose that the following hold

(a) Let f ∈ C[J × R,R] and K ∈ C[J × J × R,R] be such that K(t, s, u(s)) is

monotone nondecreasing in u for each fixed (t, s) ∈ J × J.
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(b) Let u, v ∈ C1[J,R] be such that

u′(t) ≤ Af(t, u(t)) +B

∫ t

t0

K(t, s, u(s))ds, t ∈ J,

v′(t) ≥ Af(t, v(t)) +B

∫ t

t0

K(t, s, v(s))ds, t ∈ J.

(c) f(t, u)−f(t, v) ≤ ε1(u−v), K(t, s, u)−K(t, s, v) ≤ ε2(u−v), where t ∈ J, (t, s) ∈
J × J, u ≥ v, ε1 ≥ 0, ε2 ≥ 0.

Then u(t) ≤ v(t) on J provided u(t0) ≤ v(t0).

3. MAIN RESULT

Theorem 3. Assume that

(A1) Let f ∈ C[R+ × R,R], K ∈ C[R+ × R+ × R,R], α ∈ C1[[t0, t0 + T ], R] and

β ∈ C1[[τ0, τ0 + T ], R], τ0 > 0 be such that

α′(t) ≤ Af(t, α(t)) +B

∫ t

t0

K(t, s, α(s))ds, t ∈ [t0, t0 + T ],

and

β ′(t) ≥ Af(t, β(t)) +B

∫ t

t0

K(t, s, β(s))ds, t ∈ [τ0, τ0 + T ],

with

β(τ0) ≥ α(t0).

(A2) f(t, u(t)) is nondecreasing in t for each u and K(t, s, u(s)) is nondecreasing in t

for each fixed (s, u(s)).

(A3) f, φ ∈ C0,2[[t0, t0 +T ], R] be such that fuu(t, u)+φuu(t, u) ≥ 0 with φuu(t, u) ≥ 0

on Ω, where Ω = [(t, u) : t0 ≤ t ≤ t0 + T, α0(t) ≤ u(t) ≤ β0(t)] and β0(t) =

β(t+ η1), η1 = τ0 − t0, α0(t) = α(t) and u(t) is the unique solution of

u′(t) = Af(t+ η2, u(t)) +B

∫ t

t0

K(t + η2, s, u(s))ds,

where η2 = ζ0 − t0, t0 < ζ0 < τ0.

(A4) K(t, s, u) is monotone nondecreasing in u and Kuu(t, s, u) ≥ 0 for each fixed

(t, s) ∈ J × J.

Then, there exist monotone sequences {αn(t)} and {βn(t + η} of solutions which

converge uniformly to the unique solution of (1) with u(ζ0) = u0 on [ζ0, ζ0 + T ] and

the convergence is quadratic.
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Proof. From assumption (A3), β0(t) = β(t+η1) so that β0(t0) = β(τ0) ≥ α(t0) =

α0(t0) and

β
′

0(t) = β ′(t+ η1)

≥ Af(t+ η1, β(t+ η1)) +B

∫ t

t0

K(t + η1, s, β(s+ η1))ds

= Af(t+ η1, β0(t)) +B

∫ t

t0

K(t + η1, s, β0(s))ds, t0 ≤ t ≤ t0 + T.

It also follows from (A3) and (A4) that f(t, u)−f(t, v) ≤ ε1(u−v), ε1 ≥ 0, K(t, s, u)−
K(t, s, v) ≤ ε2(u− v), ε2 ≥ 0 whenever α0(t) ≤ v ≤ u ≤ β0(t), for t0 ≤ t, s ≤ t0 + T.

Moreover, introducing F (t, u) = f(t, u) + φ(t, u), we find that

(2) f(t, u) ≥ F (t, v) + Fu(t, v)(u− v) − φ(t, u),

(3) K(t, s, u) ≥ K(t, s, v) +Ku(t, s, v)(u− v).

Let α1 and β1 be the solutions of the following initial value problems

α′

1(t) = A[f(t+ η2, α0) + {Fu(t+ η2, α0) − φu(t+ η2, β0)}(α1 − α0)]

+ B

∫ t

t0

[K(t+ η2, s, α0(s)) +Ku(t + η2, s, α0(s))(α1(s) − α0(s))]ds,

(4) α1(t0) = u0,

and

β
′

1(t) = A[f(t+ η2, β0) + {Fu(t+ η2, α0) − φu(t+ η2, β0)}(β1 − β0)]

+ B

∫ t

t0

[K(t+ η2, s, β0(s)) +Ku(t + η2, s, α0(s))(β1(s) − β0(s))]ds,

(5) β1(t0) = u0,

where α0(t) ≤ u0 ≤ β0(t). Now we prove that

(6) α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t),

in three steps:

(i) Set p(t) = α0(t) − α1(t). Clearly p(t0) ≤ 0. Then

p′(t) = α′

0(t) − α′

1(t)

≤ Af(t, α0) +B

∫ t

t0

K(t, s, α0(s))ds

− A[f(t+ η2, α0) − {Fu(t+ η2, α0) − φu(t+ η2, β0)}p(t)]

− B

∫ t

t0

[K(t+ η2, s, α0(s)) −Ku(t+ η2, s, α0(s))p(s)]ds,

≤ A[Fu(t+ η2, α0) − φu(t+ η2, β0)]p(t) +B

∫ t

t0

Ku(t+ η2, s, α0(s))p(s)ds,
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which, in view of Theorem 2, gives p(t) ≤ 0, that is, α0(t) ≤ α1(t) on J.

(ii) Next, we set p(t) = α1(t) − β0(t) and note that p(t0) ≤ 0. Thus

p′(t) = α′

1(t) − β ′

0(t)

≤ A[f(t+ η2, α0) + {Fu(t + η2, α0) − φu(t + η2, β0)}(α1 − α0)]

+ B

∫ t

t0

[K(t+ η2, s, α0(s)) +Ku(t+ η2, s, α0(s))(α1(s) − α0(s))]ds

− Af(t+ η1, β0) − B

∫ t

t0

K(t + η1, s, β0(s))ds

≤ A[f(t+ η2, α0) − f(t+ η2, β0(t))

+ {Fu(t + η2, α0) − φu(t+ η2, β0)}(α1 − α0)]

+ B

∫ t

t0

[K(t+ η2, s, α0(s)) −K(t+ η2, s, β0(s))

+ Ku(t+ η2, s, α0(s))(α1(s) − α0(s))]ds

Using (A3) and (2) together with the fact that β0(t) ≥ α0(t), we find that

f(t+ η2, α0) − f(t+ η2, β0(t)) ≤ {Fu(t+ η2, α0) − φu(t+ η2, β0)}(α0 − β0),

and by virtue of (3), we have

K(t+ η2, s, α0(s)) −K(t+ η2, s, β0(s)) ≤ Ku(t+ η2, s, α0(s))(α0 − β0),

which, in turn yield that

p′(t) ≤ A[Fu(t+ η2, α0) − φu(t+ η2, β0)]p(t) +B

∫ t

t0

Ku(t+ η2, s, α0(s))p(s)ds.

Hence we obtain that p(t) ≤ 0, that is, α1(t) ≤ β0(t) on J. By a similar procedure,

we can show that β1(t) ≤ β0(t).

(iii) It remains to show that α1(t) ≤ β1(t). For that, we consider

α′

1(t) = A[f(t+ η2, α0) + {Fu(t + η2, α0) − φu(t + η2, β0)}(α1 − α0)]

+ B

∫ t

t0

[K(t+ η2, s, α0(s)) +Ku(t+ η2, s, α0(s))(α1(s) − α0(s))]ds,

≤ Af(t+ η2, α1) +B

∫ t

t0

[K(t + η2, s, α1(s))ds,

where we have used (2), (3) and α0(t) ≤ α1(t) ≤ β0(t). Similarly, we can prove that

β
′

1(t) ≥ Af(t+ η2, β1) +B

∫ t

t0

[K(t+ η2, s, β1(s))ds.

Consequently, by Theorem 2, we have α1(t) ≤ β1(t) on J. Combining conclusions of

(i), (ii) and (iii) proves the validity of (6) on J .
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Now, for n > 1, we assume that

α′

n(t) ≤ Af(t+ η2, αn) +B

∫ t

t0

[K(t + η2, s, αn(s))ds,

β
′

n(t) ≥ Af(t+ η2, βn) +B

∫ t

t0

[K(t + η2, s, βn(s))ds,

and α0(t) ≤ αn(t) ≤ βn(t) ≤ β0(t) on J. We will show that

αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t), t0 ≤ t ≤ t0 + T,

where αn+1(t) and βn+1(t) respectively satisfy the following IVPs

α′

n+1(t) = A[f(t+ η2, αn) + {Fu(t+ η2, αn) − φu(t+ η2, βn)}(αn+1 − αn)]

+ B

∫ t

t0

[K(t+ η2, s, αn(s)) +Ku(t+ η2, s, αn(s))(αn+1(s) − αn(s))]ds,

(7) αn+1(t0) = u0,

and

β
′

n+1(t) = A[f(t+ η2, βn) + {Fu(t+ η2, αn) − φu(t + η2, βn)}(β1 − βn)]

+ B

∫ t

t0

[K(t+ η2, s, βn(s)) +Ku(t+ η2, s, αn(s))(βn+1(s) − βn(s))]ds,

(8) βn+1(t0) = u0,

where αn(t) = αn(t+η2), βn(t) = βn(t+η2). As before, we set pn(t) = αn(t)−αn+1(t)

so that

p′n(t) ≤ Af(t, αn(t)) +B

∫ t

t0

K(t, s, αn(s))ds

− A[f(t+ η2, αn) − {Fu(t+ η2, αn) − φu(t+ η2, βn)}pn(t)]

− B

∫ t

t0

[K(t + η2, s, αn(s)) −Ku(t+ η2, s, αn(s))pn(s)]ds,

≤ A[Fu(t+ η2, αn) − φu(t + η2, βn)]pn(t) +B

∫ t

t0

Ku(t + η2, s, αn(s))pn(s)ds.

Since pn(t0) ≤ 0, therefore, by Theorem 2, we get pn(t) ≤ 0, that is, αn(t) ≤ αn+1(t)

on J .
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Now, let pn(t) = αn+1(t) − βn(t) and using (A3), (2) and (3) together with

βn(t) ≥ αn(t), we find that

p′n(t) ≤ A[f(t+ η2, α0) + {Fu(t+ η2, α0) − φu(t+ η2, β0)}(αn+1 − αn)]

+ B

∫ t

t0

[K(t + η2, s, αn(s)) +Ku(t + η2, s, αn(s))(αn+1(s) − αn(s))]ds

− Af(t+ η1, βn(t)) − B

∫ t

t0

K(t+ η1, s, βn(s))ds

≤ A[f(t+ η2, αn) − f(t+ η2, βn(t))

+ {Fu(t+ η2, αn) − φu(t+ η2, βn)}(αn+1 − αn)]

+ B

∫ t

t0

[K(t + η2, s, αn(s)) −K(t+ η2, s, βn(s))

+ Ku(t + η2, s, α0(s))(αn+1(s) − αn(s))]ds

≤ A[Fu(t+ η2, αn) − φu(t + η2, βn)]pn(t) +B

∫ t

t0

Ku(t + η2, s, αn(s))pn(s)ds.

By the earlier arguments, it follows that pn(t) ≤ 0, as pn(t0) ≤ 0, that is, αn+1(t) ≤
βn(t) on J. In a similar way, it can be shown that αn(t) ≤ βn+1(t) ≤ βn(t) on J .

In view of the inequalities

f(t+ η2, αn) ≤ f(t+ η2, αn+1(t)) + {Fu(t+ η2, αn) − φu(t + η2, βn)}(αn − αn+1),

and

K(t+ η2, s, αn(s)) ≤ K(t + η2, s, αn+1(s)) +Ku(t + η2, s, αn(s))(αn − αn+1),

it is not hard to show that

α′

n+1(t) ≤ Af(t+ η2, αn+1) +B

∫ t

t0

[K(t + η2, s, αn+1(s))ds.

Similarly, we can prove that

β
′

n+1(t) ≥ Af(t+ η2, βn+1) +B

∫ t

t0

[K(t + η2, s, βn+1(s))ds.

Hence, by Theorem 2, we have αn+1(t) ≤ βn+1(t) on J. Thus, it has been shown that

αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t), t0 ≤ t ≤ t0 + T.

Therefore, by induction, for all n, we obtain

α0 ≤ α1 ≤ ... ≤ αn ≤ βn ≤ ... ≤ β1 ≤ β0,

on [t0, t0+T ]. Using the standard arguments [4, 23], it can be shown that the sequences

{αn(t)}, {βn(t)} converge uniformly and monotonically to the unique solution of IVP

(9) u′(t) = Af(t+ η2, u(t)) +B

∫ t

t0

K(t+ η2, s, u(s))ds, u(t0) = u0.
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Introducing the variable ζ = t+ η2, it can be shown that (9) is equivalent to the IVP

u′(ζ) = Af(ζ, u(ζ)) +B

∫ t

t0

K(ζ, s, u(s))ds, u(ζ0) = u0.

In order to prove the quadratic convergence of the sequences, we set en+1(t) = u(t)−
αn+1(t) ≥ 0, en+1(t0) = 0, and gn+1(t) = u(t) − βn+1(t) ≥ 0, gn+1(t0) = 0. First we

consider

e′n+1(t) = u′ − α′

n+1

= Af(t+ η2, u) +B

∫ t

t0

K(t + η2, s, u(s))ds

− A[f(t+ η2, αn) + {Fu(t+ η2, αn) − φu(t+ η2, βn)}(αn+1 − αn)]

− B

∫ t

t0

[K(t+ η2, s, αn(s)) +Ku(t+ η2, s, αn(s))(αn+1(s) − αn(s))]ds,

Using the mean value theorem repeatedly, we get

e′n+1(t) ≤ A[{fu(t+ η2, σ1) − fu(t+ η2, αn)}(u− αn) + fu(t+ η2, αn)en+1]

+ B

∫ t

t0

[Ku(t+ η2, s, σ2)(u− αn) −Ku(t + η2, s, αn)(αn+1(s) − αn(s))]ds

≤ A[{fuu(t + η2, ρ1)e
2

n + fu(t+ η2, αn)en+1]

+ B

∫ t

t0

[Kuu(t + η2, s, ρ2)e
2

n +Ku(t+ η2, s, αn)en+1]ds

where αn ≤ ρi ≤ σi ≤ u, i = 1, 2. In view of (A3)and (A4), it follows that |fuu(t +

η2, u)| ≤ N1, N1 ≥ 0, |fu(t + η2, u)| ≤ L1, L1 ≥ 0, |Kuu(t + η2, u)| ≤ M1, |Ku(t +

η2, u)| ≤ L2, L2 ≥ 0. Thus, the above expression takes the form

(10) e′n+1(t) ≤ AL1en+1(t) +BL2

∫ t

t0

en+1(s)ds+ χ(t),

where

(11) χ(t) = AN1e
2

n(t) +BM1

∫ t

t0

e2n(s)ds ≤ (AN1 +BM1T ) max e2

n(t), t ∈ J.

Now, by Theorem 2, we find that en+1(t) ≤ h(t), t ∈ J and h(t) is the solution of

related integro-differential equation

h′(t) = A1h(t) +B2

∫ t

t0

h(s)ds+ χ(t),

(12) en(t0) = h(t0) = 0,

where A1 = AL1 and B2 = BL2. To find an estimate for h(t), let

ψ(t) =

∫ t

t0

h(s)ds,
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(13) ψ(t0) = 0, ψ′(t0) = 0.

Then (12) becomes

ψ′′(t) − A1ψ
′(t) − B2ψ(t) = χ(t),

ψ(t0) = 0, ψ′(t0) = 0.

Solving by the method of variation of parameters and using (11) and (13), we find

that

en+1(t) ≤ h(t) ≤ 2eA1T

√

A2
1 + 4B2

χ(t).

Hence

max
t∈J

en+1(t) ≤ δ1 max
t∈J

e2n(t),

where δ1 = 2eA1T√
A2

1
+4B2

(AN1 +BM1T ). Following a similar procedure, one can arrive at

the conclusion

max
t∈J

gn+1(t) ≤ δ2 max
t∈J

g2

n(t).

This completes the proof.

4. CONCLUDING REMARKS

The integro-differential equation (1) represents a general form of the equation

representing distributed-infective (DI) model and in case of A = 0, it corresponds

to a general type of the distributed-contact (DC) model for a disease spread by the

dispersal of infectious individuals [24]. The main result established in the paper offers

an approach to study the approximate solution of a general spread disease model with

initial time difference. Moreover, the problem (1) reduces to the one dealing with

purely integral type of nonlinearity for A = 0, B = 1 and for a first order nonlinear

differential equation, we can put A = 1 and B = 0.
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