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ABSTRACT. In this paper, we are concerned with the following semipositone Dirichlet boundary

value problem on a time scale T
—ulA(t) = g(t,u(?t)), t €[0,T]r,
u(0) = 0 = u(0*(T)),

where g : [0, T]r x [0,+00) — [-M,+00) is continuous and M > 0 is a constant. Some existence
criteria for at least one positive solution are established by using well-known results from fixed point

index theory.
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1. INTRODUCTION

Let T be a time scale (arbitrary nonempty closed subset of the real numbers R).
For each interval I of R, we denote by It = INT. For more details on time scales,
one can refer to [1, 4, 8, 9]. In this paper, we are interested in the nonlinear dynamic

equation on a time scale T

(1.1) —utA(t) = g(t,ult)), t € [0, T]r,

satisfying Dirichlet boundary conditions

(1.2) u(0) = 0 = u(a*(T)),

where T'> 0 is fixed, 0, T € T, g : [0, Tt x [0, 400) — [=M, +00) is continuous and

M > 0 is a constant.

Equations of form (1.1) have been discussed extensively when M = 0 (i.e., posi-
tone problems); see [2, 5, 6, 11| and the references therein. However, to the best
of our knowledge, few papers can be found in the literature for (1.1) when M > 0
(i.e., semipositone problems). The purpose of this paper is to study the existence of

at least one positive solution for the semipositone Dirichlet boundary value problem
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(BVP for short) (1.1) and (1.2). Our main idea comes from [3, 10, 13], and our main

tool is the well-known results from fixed point index theory which we state here.

Theorem 1.1 ([7]). Let X be a Banach space and K be a cone in X. Assume that
Q is a bounded open subset of X with 6 € Q and let ® : K N Q — K be a completely

continuous operator. Then,
(i) if ®z # Az, V2 € KNOQ, A > 1, then i(®, KNQ, K) =1;
(ii) if Pz £ z, Vz € K NOKY, then i(®, KNQ, K)=0.

For the continuous function g : [0, 7]t % [0,400) — [-M,+00), we list the

following conditions which we need later:

(C1) g(t, 1)+ M > 0, ¥t € [0, T)r;

(C2) There exist constants A; and Ay with A\; > Ay > 1 such that for any (%,
y) € [0,T]r x [0, +00) and any ¢ € [0, 1],

(1.3) M g(t, y)+ M) < g(t, cy)+ M <™ g(t, y) + M];

o(T) Mo?(T
(C3) [ wﬁJ%HWAT<Wﬂm%ﬂWF

We can obtain the following useful remarks easily.

Remark 1.2. Assume that (C2) is satisfied. Then for any t € [0,7]r, g(t, y) is
increasing for y € [0, +00), and for any (¢, y) € [0, 7]t x [0, 4+00) and ¢ € [1,4+00),

(1.4) M [g(t, y) + M] < g(t, cy)+ M < M g(t, y) + M].
Remark 1.3. Assume that (C1) and (C2) are satisfied. Then

t
(1.5) lim  min 90 Y
y—-+oo t€[0, T Y

2. PRELIMINARIES

Let
X = {u|u:[0,6*(T)]r — R is continuous }
be equipped with the norm

= Ima ).
Jull = e fu(t)]

Then, X is a Banach space.

Define
P={ueX: ult)>0,tel0,0*(T)r}
and
K={ueP: u(t)>qt)|u], t€0,0*T)z},
where ¢(t) = m, t € [0,0%(T)]r. Then, it is easy to see that P and K are cones

(e2(T))
of Xand K C P.
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To obtain a solution of the BVP (1.1) and (1.2), we require a mapping whose
kernel G(t, s) is the Green’s function of the BVP

{ —ut2(t) =0, t €[0,T]r,

21) u(0) = 0 = u(*(T)),

)

It is known that [4]

(2.2) G(t,s) =

t(c*(T) —o(s)), t <s,
o*(T) | a(s) (e*(T) — 1), t > a(s).
For G(t, s), we have the following two simple but important lemmas.

Lemma 2.1. For any t € [0,0*(T)]r and s € [0,0(T)]x,

HHT) — 1)

(2.3) 0<G(ts) < T

Lemma 2.2. Let
o(T)
z(t) = M/ G(t,s)As, t €[0,0%(T)]r.
0

Then, x € P and

(2.4)

For u € X, we define the function [u(t)]" by

. ) ou(t), ut) >0,
(] = { 0, ult) < 0

and for z € P, we define the operator ® : P — P by
o(T) i} )
(®2)(t) =/ G(t,s) (g (s, [2(s) —x(s)]") + M) As, t € [0,07°(T)]r,
0
where z is defined in Lemma 2.2.

Lemma 2.3. If z is a fized point of the operator ® and z(t) > z(t), t € [0,0*(T)]r,
then w = z — x is a solution of the BVP (1.1) and (1.2).

Proof. Since z is a fixed point of the operator ®, we have

{—%Nwzg@k@—x®m+ﬂﬁtemTh

(2:5) 2(0) =0 = z(a*(T)).

In view of the fact that z(t) > z(¢), t € [0,0*(T)]r, we know that

(2.6) 2(t) — 2(8)]" = 2(t) — x(t), t € [0,0%(T)]r.
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It follows from (2.5), (2.6) and Lemma 2.2 that

(2 7) _U’AA(t) =9 (t7u(t)) , te [O, T]']Tv
' u(0) =0 = u(c*(T)),
which shows that u is a solution of the BVP (1.1) and (1.2). O

Lemma 2.4. Suppose that g : [0,T]1 x [0, +00) — [-M, 4+00) is continuous. Then,

® . K — K is completely continuous.

Proof. Let z € K. By the definition of ®, we know that (®z)(0) = 0 = (®z)(c*(T)).
So, there exists a ty € (0,0%(T))y such that ||®z| = (®z2)(t). Since

( %7 t7 tO S S,
t(o?(T)— J(s))
Git.s) M)ty S5 < o,
Glto.s)
’ o(s)(o2(T)—t
M —o() 0S8 <t
o2(T
| S b to > a(s),
we obtain that
G(t,s
(2.8) (t;s) > q(t), t € [0,0%(T)]r and s € [0, o(T)]r.
G(t()v S)
So,

o(T) 5
- | G(f Gt (9 5, [+(5) = a(s)]) + 1) As

> / Glto, 5) (g (5, [2(s) — 2(s)]") + M) As

= q(t)(®2)(to)
= q)[loz]|, t € [0,0%(T)]r,

which shows that ®z € K. Furthermore, by using similar arguments to those in [12],

we can prove that ® : K — K is completely continuous. O

3. MAIN RESULTS
Our main result is the following theorem.

Theorem 3.1. Assume that g : [0,T]r x [0,+00) — [—M,+00) is continuous and
(C1)-(C3) are satisfied. Then, the BVP (1.1) and (1.2) has at least one positive

solution.
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Proof. First, let r = Mo?(T)o(T) and Q, = {2z € X : ||z]| < r}. Then, we may assert
that
(3.1) Gz # Az, V2e KNOQ,., A > 1.

Suppose on the contrary that there exist \g > 1 and zg € K N 0, such that ®zo =
Ao2o- By Lemma 2.1, we get

Mo(T)t (0*(T) — t)

(32)  a(t)= M/OJ(T G(t, s)As < , t€[0,0%(T)]r,

which together with zo(t) > q(t) ||20]] = rq(t), t € [0,0*(T)]r imply that for any
t €[0,0%(T)]r,

(3.3) z0(t) —x(t) > rq(t) —
It follows from zy = /\ioézo that

(3.4) { —252(t) = 5 (9 (t, [20(t) — 2(t)]") + M), t € [0, T]r,

In view of (3.3) and (3.4), we have

{—z&(t):%(g(m() x(t) + M), t €0, T],

(8:5) 20(0) = 0 = 2o(c*(T)),

which shows that there exists a to € (0,02(T))T such that
(3.6) 20(to) = ||z0]| = r and 25 (¢) < 0.

Let t € [0, to]r. Since 0 < zo(t) — x(t) < 20(t) < ||z0]] = 7 < r + 1, integrating the
equation in (3.5) from ¢ to ¢y, we know by Remark 1.2 that

S0 —af) = [ 25— [l () o) + M As
< [Tl e+ Mas < [l as

< (r+ 1))‘1 /to [g(s,1) + M] As, t €10, to],
and so,
(3.7) A1) < (re )Y /m (s, 1)+ M] As, £ € [0, to]r.

Integrating (3.7) from 0 to t,, we get

to
ro= / 258 (s)As < (r+1) // 1) + M] ATAs
0

< (r+1)™M (T)/O lg(7,1) + M] AT,
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Mao*(T) o(T)
(Mo?(T)o(T) + 1)™ 5/0 [g(T,1) + M] A,

which contradicts (C3). Therefore, (3.1) is true. So, it follows from (i) of Theorem
1.1 that

(3.8)

(3.9) i(®,KNQ,, K)=1.

Next, choose constants «, § and L such that [a, f]r C (0,7 ) and

2
(3.10) L> a?{f(f(T()T) [ Hi?“ffr / G(t,s) }

By (1.5), there exists a Ry > 2r such that

(3.11) g(t,y)+ M > Ly, t € [a, B]r and y € [Ry, +00).

Let R = % and Qr = {z € X : ||z|| < R} . Then, we may assert that
(3.12) Pz £ 2z, Vz € K NOQp.

Suppose on the contrary that there exists z; € K N 0Qg such that ®z; < z;. Then,
for t € o, O]r,

At) —a(t) > z(t) —rq(t) > zl(t)_r’ilz(ltﬁ 1@)_%21@)
1 1 _ Rt (o*(T) —1t)
> 3002 5000 lall = =
(3.13) Ra (a(T) _26) R > 0.
2 (0*(T))

In view of (3.11) and (3.13), for ¢ € [0, 0?(T)]r, we have
o(T)
R> (1) > (®2) (1) = / G(t, ) (g (5. [z1(5) — 2()]") + M) As
8
> / G(t.5) (g (s, [21(s) — 2(s)]) + M) As
B
= / G(t,s) (g(s,z1(s) —x(s)) + M) As

B o 02
zL/ G(t,s)(zl(s)—x(s))AszLR ; /Gts

So,

2 _ B
> LRa(o™(T) 5 %) max G(t, s)As,
2(02(T)) tef0,02(D)r J o

ie.,

(3.14) < 2@ [ ma /a “a S)As] -
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which contradicts (3.10). Therefore, (3.12) is true. So, by (ii) of Theorem 1.1, we

have
(3.15) (P, K NQg, K)=0.
It follows from (3.9), (3.15) and the property of the fixed point index that
(3.16) i(®, KN (QR\Q) ,K) =—1,
which implies that ® has a fixed point z in K with r < ||z|| < R. Since
(3.17) 2(t) —x(t) = q(t) ||2]] —rq(t) = (|lzll =) (t) 2 0, t € [0,*(T)]x,

by Lemma 2.3, we know that u = z — z is a positive solution of the BVP (1.1) and
(1.2). O

Corollary 3.2. Assume that f : [0,T]r x [0,400) — [0,+00) is continuous and

satisfies the following conditions:

(C1) f(t, 1) >0, Vt € [0,T]r;

(C2)" There exist constants \; and Ay with Ay > Xy > 1 such that for any (t,
y) € [0,T]r x [0,400) and any c € [0, 1]
(3.18) Mf(t, y) < flt cy) < f(E y);

Mo?(T)
(C3) fo f(r, HAT < NEGEGRE
Then, the BVP

(3.19)

has at least one positive solution.

Proof. If we let g(t,u) = f(t,u) — M, then all the conditions of Theorem 3.1 are
fulfilled. So, the BVP (3.19) has at least one positive solution. O

Example 3.3. Let T = [0, %] U {l} U l , 1]. We consider the following BVP on T

AV u?(t)
(t) = 8( 5 — 1, t€[0,1]n,
u(0) =0 = u(1).
It is easy to verify that if we let T'= 1, g(t,u) = % —1, (t,u) € [0,1] x [0, +00),
M =1, \y =3 and \y = 2, then all the conditions of Theorem 3.1 are satisfied. So,
the BVP (3.20) has at least one positive solution.

(3.20)
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