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1. INTRODUCTION

It is well–known that nonlinear equations, by their very nature, can admit more

than one solution. Many physical problems have motivated research regarding the

existence of multiple solutions to differential equations. For example, many significant

results on multiple solutions to boundary value problems arising in chemical reactor

theory appear in [5,6,9,19,22,25,27]. A more theoretical approach to non–uniqueness

is seen in [11,17,38] with interesting existence results presented for multiple fixed

points of operators and multiple solutions to differential and integral equations.

Motivated by the theory and applications in the above works we investigate the

existence of multiple solutions to the boundary value problem

(1) y′′ = f(x, y, y′), 0 ≤ x ≤ 1,

(2) G(y(0), y(1), y′(0), y′(1)) = (0, 0),

where f is continuous, real–valued, nonlinear, and G is continuous and possibly non-

linear.
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By a solution to problem (1), (2) we mean a twice continuously differentiable

function y(x) satisfying (1), (2) for all x ∈ [0, 1]. We present some existence theorems

for solutions to problem

This work was completed while the second author was a Visiting Professor at the

School of Mathematics of the University of Minnesota.

(1) and (2). Moreover, we formulate conditions under which there exist at least three

distinct solutions. A particular motivation for this work was the research concerning

the existence of multiple solutions to (1), (2) conducted in [13] for the special case

G = (y(0), y(1)) = (0, 0). Our results are new when G 6= (y(0), y(1)). They apply to

many different types of boundary conditions including those of Dirichlet, Neumann,

periodic and Sturm–Liouville, and complement the results in [13].

As an application of our results we show that for a range of parameter values there

exist three distinct solutions to a boundary value problem arising in chemical reactor

theory which was studied by Cohen [9]. For this range of parameter values Cohen

constructed singular perturbation expansions for three distinct solutions although he

stopped short of showing that three distinct solutions exist.

The methods used in our work follow along similar lines to those in [13] and [33].

We assume that there exist two pairs of upper and lower solutions for problem (1) and

(2) and that the right hand side of (1) satisfies the Nagumo growth condition with

respect to y′. We use the upper and lower solutions to modify f and establish a priori

bounds on solutions of the modified problem. Then, motivated by the remarkable

applications in [5] and in [14], we employ degree theory. Using an existence theorem

from [33] we see that (1), (2) has at least two distinct solutions. Here we assume

that G satisfies a degree–based relationship with the lower and upper solutions and,

to compute degree, we construct additional pairs of upper and lower solutions which

also have a degree–based alliance with the boundary conditions.

By formulating a condition which incorporates the additivity property of the

above degree–based connection between the boundary conditions and the two pairs

of lower and upper solutions chosen, we show that a third distinct solution to problem

(1), (2) exists.

For the application to chemical reactor theory, under the range of parameters

mentioned above, we construct the pairs of lower and upper solutions which are

compatible with the boundary conditions and apply our results to conclude that

there are at least three solutions.

For further works on multiple solutions to differential equations we refer the

reader to [1–3,7,11,13,18,21,23,26,29,31,37,39].
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2. PRELIMINARY RESULTS

We denote the boundary of a set U by ∂U and the closure of U by Ū . If U ,

V ⊆ IRn, then we denote the space of m times continuously differentiable functions

mapping from U to V by Cm(U ;V ). If V = IR then we simply write Cm(U). Define

y(x) 6≤ z(x) on an interval I if there is at least one x ∈ I such that y(x) > z(x). If

U is a bounded, open subset of IRn, p ∈ IRn, f ∈ C(Ū ; IRn) and p /∈ f(∂U) then we

denote the Brouwer degree of f on U at p by d(f, U, p).

The following lower and upper solutions are used to obtain a priori bounds on

solutions to (1).

DEFINITION 1. We call α (β) a lower (upper) solution for (1) if α (β) ∈ C2([0, 1])

α′′(x) ≥ f(x, α(x), α′(x)), (β ′′(x) ≤ f(x, β(x), β(x))),

for all x ∈ [0, 1]. We say α (β) is a strict lower (strict upper) solution for (1) if the

above inequalities are strict. If α ≤ β we shall refer to the pair as non–degenerate

when ∆β
α = (α(0), β(0)) × (α(1), β(1)) 6= ∅, i.e., α(0) < β(0) and α(1) < β(1), and

set αm = min{α(x) : x ∈ [0, 1]}, and βM = max{β(x) : x ∈ [0, 1]}.

We now give the Bernstein–Nagumo growth condition on f with respect to y ′ and

state the associated Nagumo lemma which ensures a priori bounds on first derivatives

of C2 solutions to (1).

DEFINITION 2. Let α ≤ β ∈ C2([0, 1]). We say that f ∈ C([0, 1] × IR2) satisfies

a Bernstein–Nagumo condition with respect to α and β with Nagumo function h if

there exists h ∈ C([0,∞); (0,∞)), such that

(3) |f(x, y, p)| ≤ h(|p|), for (x, y, p) ∈ [0, 1] × [α(x), β(x)] × IR

and

(4)

∫ L

µ

sds

h(s)
> βM − αm,

where αm = min{α(x) : x ∈ [0, 1]}, βM = max{β(x) : x ∈ [0, 1]}, and µ =

max{|α(0) − β(1)|, |β(0) − α(1)|}.

LEMMA [Nagumo, 24]. Let α ≤ β ∈ C2([0, 1]) and let y ∈ C2([0, 1]) satisfy

(5) αm − ε ≤ y ≤ βM + ε

and

(6) |y′′| ≤ h(|y′|) + ε on [0, 1].

where h ∈ C([0,∞); (0,∞)), satisfies (4) and ε > 0. Then, for ε > 0 sufficiently small,

there exists L(α, β, h) > 0 such that

(7)

∫ L

µ

sd s

h(s) + ε
> βM − αm + 2ε,
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and |y′| < L on [0, 1]. Moreover we may choose L such that L > max{|α′(x)|, |β ′(x)| :

x ∈ [0, 1]}.

PROOF. See [12], [15] or [24].

Modification of f is common practice for existence proofs of boundary value prob-

lems and we will make the necessary modifications by using the following functions.

DEFINITION 3. If α ≤ β are given, let π : IR → [α, β] be (the retraction) defined

by π(y, α, β) = max{min{β, y}, α}. For each ε > 0, let K ∈ C(IR × (0,∞); [−1, 1])

satisfy

(i). K(·, ε) is an odd function, (ii). K(t, ε) = 0, if and only if t = 0, (iii). K(t, ε) =

1, for all t ≥ ε.

Let T ∈ C(IR × (0,∞)) be given by T (y, α, β, ε) = K(y − π(y, α, β), ε). Let

kε(x, y, y
′) = (1 − |T (y(x), α(x), β(x), ε)|)f(x, π(y, α, β), π(y′,−L, L))

+T (y(x), α(x), β(x), ε) (|f(x, π(y, α, β), π(y′,−L, L))| + ε) .

Let X = C1([0, 1]) × IR2 with the usual product norm.

REMARK 1. Let α, β ∈ C2([0, 1]) and α ≤ β on [0, 1]. If kε satisfies the Bernstien–

Nagumo condition with respect to α and β with Nagumo function h then

(8) |kε(x, y, p)| ≤ h(|p|) + ε, for (x, y, p) ∈ [0, 1] × IR2.

Thus if y satisfies (5) and

(9) y′′ = kε(x, y, y
′)

and if ε > 0 is sufficiently small that (7) holds then |y′| ≤ L, by Lemma 1, where L

is given by (4).

3. NONLINEAR BOUNDARY CONDITIONS

AND DEGREE THEORY

We now introduce the concept of compatible boundary conditions originally due

to Thompson [33]. Compatibility can be thought of as a degree–based relationship

between the boundary conditions and the lower and upper solutions. The main

advantage of using this method is its unification of the theory regarding a diverse

range of boundary conditions.

DEFINITION 4. We call the vector field Ψ = (ψ0, ψ1) ∈ C(∆̄β
α; IR2) strongly inwardly

pointing on ∆β
α = (α(0), β(0)) × (α(1), β(1)) if for all (C,D) ∈ ∂∆β

α

ψ0(α(0), D) > α′(0), ψ0(β(0), D) < β ′(0),

ψ1(C, α(1)) < α′(1), ψ1(C, β(1)) > β ′(1).
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DEFINITION 5. Let G ∈ C(∆̄β
α × IR2; IR2). We say G is strongly compatible with

the pair α, β if for all strongly inwardly pointing vector fields Ψ on ∆β
α

(10) G(C,D) 6= (0, 0) for all (C,D) ∈ ∂∆β
α, d(G,∆

β
α, (0, 0)) 6= 0,

where G(C,D) = G(C,D,Ψ(C,D)) for all (C,D) ∈ ∆̄β
α.

DEFINITION 6. We say G is strongly semi–compatible with the pair α, β if G

satisfies Definition 5 with (10) omitted.

We shall require the following simple property from degree theory for the proof

of our main theorem.

LEMMA 2 [Additivity of Degree]. If Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ωi are open, bounded

sets and pairwise disjoint, then

(11) d(f,Ω, 0) = d(f,Ω1, 0) + d(f,Ω2, 0) + d(f,Ω3, 0),

provided the degree in (11) is defined.

PROOF. See [20].

4. EXISTENCE OF TWO SOLUTIONS

The results in this section will guarantee the existence of two solutions to (1), (2)

and will simplify the proof of our main result. The existence of two solutions to (1),

(2) follows routinely and is nothing new, the existence of a third solution is the real

challenge.

The following lemma mirrors standard results in the literature concerning solu-

tions to the modified differential equation.

LEMMA 3. Let α ≤ β be non–degenerate lower and upper solutions for (1) and let f

satisfy a Bernstein–Nagumo condition with respect to α and β with Nagumo function

h. Let y be a solution of (9) with (y(0), y(1)) ∈ ∆̄β
α. Then for ε > 0 sufficiently small

α(x) ≤ y ≤ β(x) and |y′(x)| < L on [0, 1], where L is given in (4).

PROOF. For completeness we provide a proof. Choose ε > 0 sufficiently small that

(7) holds. We argue by contradiction. Assume that y(t) < α(t) for some t ∈ [0, 1].

From continuity we may assume that α − y attains its positive maximum at some

t ∈ [0, 1]. Thus α′(t) = y′(t) and α′′(t) ≤ y′′(t). From our assumptions we see

t ∈ (0, 1). Now since α(t) − y(t) > 0 we have

T (y(t), α(t), β(t), ε) = K(y(t) − α(t), ε) < 0.
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Moreover, since L ≥ maxx∈[0,1]{|α
′(x)|, |β ′(x)|}, we have

y′′(t) = k(t, y(t), y′(t)) = k(t, y(t), α′(t)),

= (1 − |T (y(t), α(t), β(t), ε)|)f(t, π(y, α, β), π(α′,−L, L))

+ T (y(t), α(t), β(t), ε)(|f(t, π(y, α, β), π(α′,−L, L))| + ε),

= (1 − |K(y(t) − α(t), ε)|)f(t, π(y, α, β), α′)

+ K(y(t) − α(t), ε)(|f(t, π(y, α, β), α′)| + ε)

< f(t, π(y, α, β), α′) = f(t, α, α′) ≤ α′′(t)

which is a contradiction and thus α ≤ y on [0, 1]. Similarly, y ≤ β on [0, 1]. Since

|y′′| ≤ |kε| ≤ h(|y′|) + ε it follows from Lemma 1 that |y′| < L.

REMARK 2. Under the assumptions of Lemma 3 it follows that any solution to (9)

is also a solution to (1).

LEMMA 4. If G is strongly compatible with α and β then G(C,D, l,m) 6= (0, 0) if

(C,D) ∈ ∂∆, where C = α(0) and l > α′(0), or C = β(0) and l < β ′(0), or D = α(1)

and m < α′(1), or D = β(1) and m > β ′(1).

PROOF. Consider the case (C,D) ∈ ∂∆ with C = β(0), l < β ′(0) and α(1) ≤ D ≤

β(1). It is easy to construct a strongly inwardly pointing vector field Ψ = (ψ0, ψ1) with

ψ0(β(0), D) = l and ψ1(β(0), D) = m. Thus G(C,D, l,m) = G(β(0), D) 6= (0, 0).

The other cases follow in a similar fashion.

To simplify our existence proof we shall need the following result from [33].

THEOREM 1. Assume that there exist non–degenerate lower and upper solutions

α ≤ β for (1), and that f satisfies a Bernstein–Nagumo condition with respect to

α and β with Nagumo function h. Assume that G ∈ C(∆̄β
α × IR2; IR2) is strongly

compatible with the pair α, β. Then problem (1) and (2) has a solution y satisfying

α ≤ y ≤ β.

PROOF. We sketch the main details of the proof as we will require them in the proof

of our main result. Let ε, L, and kε be as chosen in Lemma 3. Assume G is strongly

compatible with α and β, let Ψ be any strongly inwardly pointing vector field on ∆β
α

and consider (9). By Lemma 3 any solution to the modified problem, (9), is also a

solution to (1). Let αm = min[0,1] α(x) and βM = max[0,1] β(x). Then αm − ε and

βM + ε are strict lower and upper solutions for (9). Let Ωε be given by

Ωε = {y ∈ C1([0, 1]) : αm − ε < y < βM + ε, |y′| < L + 1 on [0, 1]},

and let Γε = Ωε × ∆β
α. Define K : C1([0, 1]) → C([0, 1]) by

K(y)(x) = kε(x, y(x), y
′(x)), 0 ≤ x ≤ 1.

Define CK : C1([0, 1]) → C([0, 1]) by

(CK)(y)(x) = −

(
∫ 1

x

x(1 − s)kε(s, y(s), y
′(s))ds+

∫ x

0

s(1 − x)kε(s, y(s), y
′(s))ds

)

,
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and let w(C,D)(x) = C(1 − x) +Dx for C, D ∈ IR and 0 ≤ x ≤ 1.

Firstly observe that (y, C,D) ∈ Γε is a solution to

Φ(y, C,D) = ((I − CK)(y) + w(C,D), G(C,D, y′(0), y′(1))) = 0,

if and only if y(0) = C, y(1) = D and y is a solution to problem (9) and (2).

Secondly observe that d(Φ,Γε, 0) = d(G,∆β
α, 0), by homotopy, where G is given

by Definition 5. Since d(G,∆β
α, 0) 6= 0 it follows that problem (9) and (2) has a

solution, y, as required. This completes the proof of Theorem 1.

REMARK 3. As well as the two observations above we also need to observe that there

are no solutions (y, C,D) ∈ Γε \ Γ̄β
α to Φ(y, C,D) = 0, where Ωβ

α = {y ∈ C1([0, 1]) :

α < y < β, |y′| < L + 1 on [0, 1]} and Γβ
α = Ωβ

α × ∆β
α.

In Assumption T below we list the conditions on lower and upper solutions for

(1) that we require for our main existence theorem. Some of these conditions have

been used in [13].

ASSUMPTION T: Assume there exists two pairs of nondegenerate lower and upper

solutions α1, β1 and α2, β2 for (1) satisfying:

(a) α1 ≤ α2 ≤ β2,

(b) α1 ≤ β1 ≤ β2,

(c) α2 6≤ β1,

(d) if y is a solution of (1), (2) with y ≥ α2 on [0, 1] then y > α2 on (0, 1),

(e) if y is a solution of (1), (2) with y ≤ β1 on [0, 1] then y < β1 on (0, 1),

(f) if y is a solution of (1), (2) with α2 ≤ y ≤ β2 and y(x0) = α2(x0), y
′(x0) = α′

2(x0)

for some x0 ∈ {0, 1}, then y = α2,

(g) if y is a solution of (1), (2) with α1 ≤ y ≤ β1 on [0, 1] and y(x0) = β1(x0), y
′(x0) =

β ′

1(x0) for some x0 ∈ {0, 1}, then y = β1.

The following remarks may be applied to our problem; see Henderson and Thomp-

son [13].

REMARK 4. Conditions (d), (f), and (g) of Assumption T will be satisfied if, for

example, either

(i). solutions of initial value problems for (1) are unique, or

(ii). α and β are strict lower and strict upper solutions, respectively.

5. THE MAIN RESULT

We now present the main result.

THEOREM 2. Let Assumption T hold, and let f satisfy a Bernstein–Nagumo con-

dition with respect to α1 and β2 with Nagumo function h. Let G ∈ C(∆̄β2

α1
× IR2; IR2)
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be strongly compatible with the pair α1, β1 and the pair α2, β2 and let G be strongly

semi–compatible with the pair α1 and β2. Assume that

(12) d(G,∆β1

α1
, 0) + d(G,∆β2

α2
, 0) 6= d(G,∆

β2

α1
, 0),

where in d(G,∆
βj
αi , 0),G(C,D) = G(C,D,Ψ(C,D)) for some strongly inwardly point-

ing vector field, Ψ(C,D), on ∆
βj
αi , for 1 ≤ i ≤ j ≤ 2. Then problem (1), (2) has at

least three solutions y1, y2 and y3 satisfying α1 ≤ y1 ≤ β1, α2 ≤ y2 ≤ β2, and y3 6≤ β1

and y3 6≥ α2, respectively.

PROOF. For the pair α1 and β2 of lower and upper solutions for (1) let ε > 0, L

and kε be as chosen in Lemma 3. Without loss of generality we may assume that

L > max{|α′

1(x)|, |α
′

2(x)|, |β
′

1(x)|, |β
′

2(x)| : x ∈ [0, 1]}. Thus solutions, y, of problem

(9) such that (y(0), y(1)) ∈ ∆̄β2

α1
satisfy α1 ≤ y ≤ β2 and |y′| < L on [0, 1], so that

solutions of problem (9) and (2) are the required solutions of problem (1) and (2).

Let

Ωε = {y ∈ C1([0, 1]) : αε < y < βε, |y
′| < L+ 1 on [0, 1]}

Γε = Ωε × ∆β2

α1
,

Ω
βj
αi = {y ∈ C1([0, 1]) : αi < y < βj, |y

′| < L + 1 on [0, 1]}, and

Γ
βj
αi = Ω

βj
αi × ∆

βj
αi for i, j = 1, 2, i ≤ j,

where αε = min{α(x) − ε : x ∈ [0, 1]} and βε = max{β(x) + ε : x ∈ [0, 1]}. From

Theorem 1 and the associated observations (y, C,D) ∈ Γε is a solution of

(13) Φ(y, C,D) = ((I − CK)(y) + w(C,D), G(C,D, y′(0), y′(1))) = 0,

if and only if (y(0), y(1)) = (C,D) ∈ ∆̄β2

α1
, α1 ≤ y ≤ β2, and y is a solution to problem

(9) and (2).

Let

(14) Γα2
= {(y, C,D) ∈ Γε : y > α2 on (0, 1)}

(15) Γβ1 = {(y, C,D) ∈ Γε : y < β1 on (0, 1)},

and

(16) Γ = Γε \ {Γ̄α2
∪ Γ̄β1}.

By Lemma 3, if (y, C,D) ∈ Γ̄α2
is a solution of (13) then (y, C,D) ∈ Γ̄β2

α2
, while

if (y, C,D) ∈ Γ̄β1 is a solution of (13) then (y, C,D) ∈ Γ̄β1

α1
. By strong compatibility

of the boundary conditions with α2 and β2 there are no solutions (y, C,D) ∈ Γ̄α2

with y(0) = α2(0) and y′(0) > α′

2(0) or with y(1) = α2(1) and y′(1) < α′

2(1). By

Assumption T part (f) there are no solutions with y(0) = α2(0) and y′(0) = α′

2(0)

or with y(1) = α2(1) and y′(1) = α′

2(1). Moreover, by Assumption T part (d) there

are no solutions (y, C,D) ∈ Γ̄α2
with y ≥ α2 on [0, 1] and y(x0) = α2(x0) for some
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x0 ∈ (0, 1). Moreover any solution (y, C,D) ∈ Γ̄β2

α2
satisfies |y′| < L. Thus there are

no solutions in ∂Γα2
. Similarly there are no solutions (y, C,D) ∈ ∂Γβ1 .

Applying Theorem 1 to the pairs α1, β1 and α2, β2 we see that there are solutions

(y1, C1, D1) and (y2, C2, D2) of (13) in Γβ1 and in Γα2
, respectively. Assume that there

is no solution (y, C,D) ∈ Γ. Thus d(Φ,Γ, 0) = 0. It follows that

d(G,∆β2

α1
, 0) = d(Φ,Γε, 0) = d(Φ,Γβ1, 0) + d(Φ,Γα2

, 0) + d(Φ,Γ, 0)

= d(G,∆β1

α1
, 0) + d(G,∆β2

α2
, 0)

where Γε is given in (16) and we set G(C,D) = G(C,D,Ψ(C,D)) in d(G,∆
βj
αi , 0)

for a strongly inwardly pointing vector field Ψ on ∆
βj
αi for 1 ≤ i ≤ j ≤ 2. From

this contradiction we conclude that there is a third solution (y3, C3, D3) ∈ Γβ2

α1
. Since

(y3, C3, D3) /∈ Γ̄α2
and (y3, C3, D3) /∈ Γ̄β1 it follows that y3 is the required third

solution to problem (1) and (2).

6. SOME WELL–KNOWN BOUNDARY CONDITIONS

Note that Theorems 1 and 2 are based on performing a ‘test’ on the given bound-

ary conditions with respect to the pairs of upper and lower solutions chosen. In

the well–known cases, compatibility, the degree dependent relationship between the

boundary conditions and upper and lower solutions is equivalent to the standard

assumptions.

Consider (1) subject to any of the following boundary conditions:

(i) G = (y(0)− A, y(1) −B) = (0, 0);

(ii) G = (y′(0) − A, y′(1) −B) = (0, 0);

(iii) G = (y(0) − y(1), y′(0) − y′(1)) = (0, 0).

Then the usual assumptions regarding upper and lower solutions are respectively:

(i∗) α(0) ≤ A ≤ β(0), α(1) ≤ B ≤ β(1);

(ii∗) α′(0) ≤ A ≤ β ′(0), α′(1) ≤ B ≤ β ′(1);

(iii∗) α(0) ≤ β(0), α(1) ≤ β(1), α′(0) ≤ β ′(0), α′(1) ≤ β ′(1).

LEMMA 5. Let α ≤ β be nondegenerate lower and upper solutions for (1). Then the

boundary conditions (i) - (iii) are compatible if and only if the respective inequalities

(i*) – (iii*) hold. Moreover, if strict inequalities hold in (i*) – (iii*) then the boundary

conditions (i) – (iii) are strongly compatible.

PROOF. The proof for compatibility in case (iii) may be found in [33]. Suppose (i∗)

holds with strict inequalities. We shall prove strong compatibility for G given by

(i). Now G (C,D) = (C − A,D −B) , and α and β are nondegenerate. This implies

G = (G0,G1) satisfies

G0(α(0), D) < 0, G1(C, α(1)) < 0,
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G0(β(0), D) > 0, G1(C, β(1)) > 0,

and hence d(G,∆β
α, (0, 0)) = 1 6= 0. Thus G is strongly compatible with α and β.

The other cases follow by arguments similar to those above.

LEMMA 6. Condition (12) will be satisfied for the boundary conditionsG = (y(0), y(1)) =

(0, 0) if strict inequalities hold in (i∗) for the pairs α1, β1 and α2, β2 when A = B = 0.

PROOF. Assume that strict inequalities hold in (i∗) for the pairs α1, β1 and α2, β2

when A = B = 0. From the previous lemma we see that

d(G,∆β1

α1
, 0) = 1 = d(G,∆β2

α2
, 0) = d(G,∆β2

α1
, 0).

Thus (12) holds.

REMARK 5. Theorem 2 applies not only to the above case but to a wide variety of

boundary conditions including nonlinear variations. Thus our results are extensions

of those in [13].

EXAMPLE. Consider the problem

(17) y′′ = −(y′)2 + (y − 1)2(y − 12), 0 ≤ x ≤ 1,

(18) G = (y′(0) − y(0), y′(π) + y(π)) = (0, 0).

Solutions to initial value problems for (17) are unique. We may choose α1 = −1,

β1 = 1, α2 = 2 sin x and β2 = 12 as our two pairs of lower and upper solutions.

It is not hard to verify that the boundary conditions are strongly compatible with

the lower and upper solutions chosen with the degree calculations following routinely.

Note also that f satisfies the conditions of Lemma 1. Thus all the conditions of

Theorem 2 are satisfied and the problem has at least three solutions y1, y2, and y3

satisfying α1 ≤ y1 ≤ β1, α2 ≤ y2 ≤ β2, and y3 6≤ β1 and y3 6≥ α2, respectively.

7. AN APPLICATION TO CHEMICAL REACTOR THEORY

Cohen [9] considered certain chemical reactions in tubular reactors which can be

mathematically described by the boundary value problem

(19) y′′ = (y′ − g(y))/c, 0 ≤ x ≤ 1,

(20) y′(0) − ly(0) = 0 = y′(1),

where y is the temperature in the reactor,

(21) g(s) = d(q − s)e−k/(1+s), 0 ≤ s ≤ q,

is the rates of chemical production of the species in the reactor and c, l, d and q are

known positive constants.

We consider (19) and (20) where g satisfies the following assumption.

ASSUMPTION g.
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1. g is twice continuously differentiable;

2. g(s) > 0, for s < q, g(s) < 0, for s > q, and

3.

∫ q

ds/g(s) = ∞.

We note that g given by (21) satisfies Assumption g.

For problem (19) and (20) subject to Assumption g, Cohen established the fol-

lowing:

1. any solution y satisfies 0 < y < q and y′ ≥ 0 on [0, 1];

2. there is a minimal solution ym and a maximal solution yM ;

3. ym = yM if

(22)
d

ds

(

g(s)

s

)

< 0 for 0 < s < q

and hence the solution is unique.

In the case g is given by (21) and ls − g(s) = 0 has two (three) solutions in

(0, q), Cohen used a ‘formal’ singular perturbation analysis of problem (19) and (20)

to conclude that there are at least two (three) solutions for c > 0 sufficiently small.

Based on this, on other observations, and on numerical evidence Cohen asserts that,

for g given by (21), it appears to be necessary and sufficient that

(23)
d

ds
[g(s)/s] > 0, for some s, 0 < s < q,

for multiple solutions of problem (19) and (20) to exist.

If ym 6= yM it follows from the uniqueness of initial value problems that ym < yM

on [0, 1]. In this case we have the following result.

LEMMA 7. Let g be twice continuously differentiable and satisfy d/ds[g(s)/s] ≤ 0

for 0 < s ≤ q. If there exist minimal and maximal solutions ym < yM of problem (19)

and (20) then λym + (1 − λ)yM is a solution for each λ with 0 ≤ λ ≤ 1 and hence

problem (19) and (20) has infinity many solutions.

PROOF. Now ym(0) ≤ ym ≤ yM ≤ yM(1) on [0, 1]. Also

0 =
[

e−x/c(y′Mym − y′myM)
]1

0
=

∫ 1

0

e−x/cymyM(g(ym)/ym − g(yM)/yM)dx ≥ 0,

since g(ym)/ym − g(yM)/yM ≥ 0. Thus g(ym)/ym − g(yM)/yM = 0 on [0, 1] and

g(s)/s = k for ym(0) ≤ s ≤ yM(1). Thus ym and yM satisfy (19) and the result

follows.

In view of this result to complete our analysis of the role played by the sign of

d/ds[g(s)/s] in the existence of multiple solutions of problem (19) and (20) we need

only consider the case g satisfies (23). Let

(24) L = {l ∈ IR : ∃ a, b, 0 < b < a < q, such that g(b)/b < l < g(a)/a}.
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LEMMA 8. L 6= ∅ if and only if (23) holds.

We have the following result.

THEOREM 3. Let g satisfy Assumption g and let L 6= ∅ be given by (24). For l in

L and c > 0 sufficiently small, there are at least three solutions of problem (19) and

(20).

PROOF. Let G = (g0, g1) where g0 = y′(0) − ly(0) and g1 = y′(1). It suffices to

construct lower solutions α1 and α2 and upper solutions β1 and β2 satisfying the

assumptions of Theorem 2. Let α1(x) = −1 − lx/2 and β2(x) = q + qlx/2. Clearly

α1 is a lower solution and β2 is an upper solution for (19) on [0, 1].

Since l ∈ L there exists a and b with 0 < b < a < q such that g(b)/b < l < g(a)/a.

Choose ε > 0 such that

(25) g(b) + ε < lb and la < g(a) − ε.

Let α2(0) = a > b = β1(0), α′

2(x) = g(α2) − γx − ε, β ′

2(x) = g(β2) + ε, where γ ≥ 0

is chosen below and ε > 0 satisfies further restrictions given below.

Since
∫ q
ds/g(s) = ∞ we may choose ε > 0 sufficiently small that

(26)

∫ q

b

ds/(g(s) + ε) > 1.

Now β ′

1 = g(β1) + ε ≥ 0 and by (26) β1 satisfies β1 < q on [0, 1]. For γ = 0 we have

α′

2 ≥ 0 and α2 ≤ m < q on [0, 1]. Since α2(x, γ) and α′

2(x, γ) depend continuously on

γ while 0 ≤ α2 ≤ q it follows that we may choose γ > 0 such that a ≤ α2 ≤ m and

−ε < α′

2(1) < 0.

Now

(β ′

1 − g(β1))/c = ε/c > β ′′

1 , 0 ≤ x ≤ 1,

and

(α′

2 − g(α2))/c = −ε/c− γx/c ≤ α′′

2, 0 ≤ x ≤ 1,

for 0 < c < δ for some δ > 0. Thus α2 is a strict lower solution and β1 is a strict

upper solution for (19) on [0, 1].

Now α1 < α2, β1 < β2 on [0, 1] and α2(0) > β1(0) so β1 6≥ α2 on [0, 1]. Since any

solution y satisfies 0 ≤ y ≤ q it suffices to show that there are at least three solutions

between α1 and β2.

Now α′

1(0) < 0 < β ′

1(1) and α′

2(1) < 0 < β ′

2(1) while:

if y(0) = α1(0) = −1 then y′(0) = −l < −l/2 = α′

1(0);

if y(0) = α2(0) = a then y′(0) = la < g(a) − ε = α′

2(0);

if y(0) = β1(0) = b then y′(0) = lb > g(b) + ε = β ′

1(0);

if y(0) = β2(0) = q then y′(0) = lq > lq/2 = β ′

2(0).

Thus G = (g0, g1) satisfies d(G,4, 0) = 1 for 4 = 4β2

α1
, 4β1

α1
and 4β2

α2
. Hence by

Theorem 2 there are three solutions as required.
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8. CONCLUDING REMARKS

REMARK 6. There are other conditions which guarantee a priori bounds on y ′.

For example, the Bernstein–Nagumo condition can be replaced with (see [4], [16]

and [28]): Let there exist α, β ∈ C2([0, 1]) such that α ≤ β and let there exist

ϕ ≤ ψ ∈ C1([0, 1] × IR) such that

f(x, y, ϕ(x, y)) >
∂ϕ

∂x
(x, y(x)) +

∂ϕ

∂y
(x, y(x))ϕ(x, y(x));

f(x, y, ψ(x, y)) <
∂ψ

∂x
(x, y(x)) +

∂ψ

∂y
(x, y(x))ψ(x, y(x))

on ω̄ = {(x, y) ∈ [0, 1] × IR : α(x) ≤ y ≤ β(x), x ∈ [0, 1]}. Then for any solution

y ∈ C2([0, 1]) of (1) such that α(x) ≤ y ≤ β(x) on [0, 1] and

(27) ϕ(0, y(0)) ≤ y′(0) ≤ ψ(0, y(0))

we have ϕ(x, y) ≤ y′ ≤ ψ(x, y) on [0, 1]. If we assume that f satisfies a Bernstein–

Nagumo condition with respect to α and β and we strengthen (4) to
∫

∞ sds

h(s)
= ∞,

then we can construct φ and ψ satisfying (27). On the other hand φ and ψ satisfying

(27) exist when f(x, y, p) grows sufficiently fast with respect to p that (4) is not

satisfied and, in this direction the result is more general than Theorem 2. On the

other hand Theorem 2 does not require the additional assumption (27); this condition

must follow from the boundary conditions.

REMARK 7. We may broaden our existence results to the case when f is vector–

valued and weakly coupled, i.e.,

f(x, y, y′) = (f1(x, y, y
′

1), . . . , fn(x, y, y
′

n)).

Start by suitably extending the notion of upper and lower solutions and Nagumo

conditions for weakly coupled f , as originally defined in [15]. Compatibility for weakly

coupled systems follows in a similar fashion to the definitions in Section 3, with the

inequalities between vectors holding component–wise. For full details see [34].

REMARK 8. Existence theorems for multiple solutions to weakly coupled systems of

equations follow under similar conditions to those in Theorem 2, and the associated

sharpened remarks from this section. For more detailed research on weakly coupled

systems we refer the reader to [10], [15], [30] and [34].

REMARK 9. For simplicity we have restricted our attention to two–point boundary

conditions only. There is suitable scope for generalization of our results to the three–

(or more) point case, once the appropriate definition of compatibility is extended, as

in [35].
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REMARK 10. It should be noted that our theorems only provide lower bounds for

the number of solutions.
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