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1. INTRODUCTION

To motivate our research, consider the even-order two-term differential equation

(1) (−1)n
(
r(t)y(n)

)(n)
= q(t)y

with positive continuous functions r, q. This equation frequently appears in the spec-

tral theory of one-term differential operator Ly := (−1)n

q(t)

(
r(t)y(n)

)(n)
, see e.g. [15]. If

y is a solution of (1), then z := ry(n) is a solution of the so-called reciprocal equation

(2) (−1)n

(
1

q(t)
z(n)

)(n)

=
1

r(t)
z.

If n = 1, i.e., we consider the second order Sturm-Liouville equations, it follows

immediately from the Rolle mean value theorem that a solution y of (1) oscillates if

and only if its quasiderivative z = ry′ (a solution of (2)) oscillates. Hence, if n = 1,

the original equation (1) is oscillatory if and only if the reciprocal equation (2) is

oscillatory.

A natural question is whether the same statement holds also for higher order

equations. This problem was solved in the affirmative way in [1] using the relationship

of even order self-adjoint differential equations to linear Hamiltonian systems. More

precisely, it was proved in [1] that the linear Hamiltonian system

(3) x′ = A(t)x + B(t)u, u′ = −C(t)x − AT (t)u
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with nonnegative definite symmetric matrices B, C, is nonoscillatory if and only if

the reciprocal system

(4) y′ = −AT (t)y + C(t)z, z′ = −B(t)y + A(t)z,

which results from (3) upon the transformation

(
x

u

)
=

(
0 I

−I 0

)(
y

z

)
,

is also nonoscillatory. By an easy computation one can find that equation (1) can be

written in the form (3) with the diagonal matrices (see [19])

B(t) = diag

{
0, . . . , 0,

1

r(t)

}
, C(t) = diag{q(t), 0, . . . , 0}.

and that the last entry zn of the vector z in (4) is a solution of the reciprocal equation

(2). The above mentioned equivalence of oscillatory behavior of (3) and (4) (the so-

called reciprocity principle for Hamiltonian systems) then implies the same statement

about oscillation of (1) and (2).

The discrete version of the reciprocity principle (see [6, 11]) concerns the linear

Hamiltonian difference system

(5) ∆xk = Akxk+1 + Bkuk, ∆uk = −Ckxk+1 − AT
k uk

and when applied to the even-order two-term equations, it says that the equation

(−1)n∆n (rk∆
nyk) = qkyk+n

with positive sequences r, q, is nonoscillatory if and only if the equation

(−1)n∆n

(
1

qk

∆nyk

)
=

1

rk+n

yk+n

is nonoscillatory.

The theory of dynamic equations on time scales is the unifying theory for differ-

ential, difference, quantum equations, and all other differential equations and systems

defined over nonempty closed subsets of the real line. Recently, several papers ap-

peared where higher order equations containing both delta and nabla derivatives are

investigated (see, e.g., [4, 14] and the references given therein). The idea to consider

equations with mixed derivatives enabled to deal successfully with problems like self-

adjointness, symmetry, etc., which seemed to be a hard problem for equations and

operators containing delta derivatives only.

In this paper we deal with the higher order dynamic equation

(6) (−1)nD̃∇
n

(
r(t)D∆

n y
)

= q(t)y,
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where

D∆
k y :=





y∆∇...∆∇ k even,

y∆∇...∇∆ k odd,
D̃∇

k y :=





y∆∇...∆∇ k even,

y∇∆...∆∇ k odd,

where the subscript k indicates the total number of delta and nabla derivatives, and

its reciprocal equation

(7) (−1)nD∆
n

(
1

q(t)
D̃∇

n z

)
=

1

r(t)
z,

where r, q are positive rd-continuous functions. We use the recently established fact

that these equations can be written in the form of the so-called symplectic dynamic

system whose oscillation theory is relatively well developed, see [12], to prove that

(6) is nonoscillatory if and only if (7) is nonoscillatory.

The paper is organized as follows. In the next section we recall some concepts of

the time scale theory and essentials of the oscillation theory of symplectic dynamic

systems. Section 3 contains the main result of the paper, the reciprocity principle for

(6) and (7), and the last section is devoted to remarks and comments concerning the

results of the paper.

2. AUXILIARY RESULTS

We suppose that the reader is familiar with the elements of the time scale calculus.

Nevertheless, we recall some basic concepts of this theory. The operators σ, ρ, µ, ν are

the right and left jump operators and forward and backward graininess, respectively.

A point t is called an rd-point (ld-point, rs-point, ls-point) if µ(t) = t (ρ(t) = t,

µ(t) > t, ρ(t) < t) and this point is said to be a dense point if it is both rd and

ld. We will also use the usual notation f σ := f ◦ σ, f ρ := f ◦ ρ. Delta and nabla

derivatives are defined by the formulas

f∆(t) =





lims→t

f(s)−f(t)
s−t

, if µ(t) = 0,

fσ(t)−f(t)
µ(t)

if µ(t) > 0,

f∇(t) =





lims→t
f(s)−f(t)

s−t
if ν(t) = 0,

f(t)−fρ(t)
ρ(t)

if ν(t) > 0.

If f : T → R is a ∆-differentiable function for which lims→t− f∆(s) exists finite at

ld-points, then we have

(8) f∇(t) =





lims→t− f∆(s) t is ld- and rs-point,

f∆(ρ(t)) otherwise.
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Similarly, if lims→t+ f∇(s) exists finite at rd-points, we have

(9) f∆(t) =





lims→t+ f∇(s) t is rd- and ls-point,

f∇(σ(t)) otherwise.

In particular, if f∆ and f∇ are continuous, we have f∆(t) = f∇(σ(t)), f∇(t) =

f∆(ρ(t)).

A symplectic dynamic system is the first order dynamic system

(10) z∆ = S(t)z

with z ∈ R
2n, S : T → R

2n×2n, and this matrix satisfies the identity

(11) ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0, J =

(
0 I

−I 0

)
,

I being the n × n identity matrix. The characteristic property of this system is that

its fundamental matrix Z(t) ∈ R
2n×2n is symplectic (i.e., ZT (t)JZ(t) = J ) whenever

it has this property at one point of T. Basic qualitative properties of symplectic

systems are summarized in [12], see also [10, Chap. X]. If we write the matrix S in

the form S =

(
A B

C D

)
with n × n matrices A,B, C,D, then (11) translates as

(12)

C − CT + µ(ATC − CTA) = 0,

BT − B + µ(BTD −DTB) = 0,

AT + D + µ(ATD − CTB) = 0.

Identity (11) is equivalent to the identity

(13) S(t)J + JST (t) + µ(t)S(t)JST (t) = 0,

and this identity in terms of the matrices A, . . . ,D reads

(14)

C − CT + µ(CDT −DCT ) = 0,

BT − B + µ(ABT − BAT ) = 0,

AT + D + µ(DAT − CBT ) = 0.

Now we recall some definitions of the oscillation theory of symplectic dynamic

systems. A 2n × n matrix solution
(

X

U

)
of (10) is said to be a conjoined basis if

XT (t)U(t) = UT (t)X(t) and rank
(

X(t)
U(t)

)
= n. A conjoined basis

(
X

U

)
has no focal

points in a time scale interval (a, b] if X(t) is invertible at all dense points t ∈ (a, b],

and

(15) KerXσ(t) ⊆ Ker X(t) and X(t)[Xσ(t)]†B(t) ≥ 0

hold for t ∈ [a, ρ(b)]. Here Ker, †, and ≥ denote the kernel, Moore-Penrose generalized

inverse and nonnegative definiteness of the matrix indicated. System (10) is called
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disconjugate on [a, b] if the conjoined basis given by the initial condition X(a) = 0,

U(a) = I has no focal point in (a, b]. Equivalently, disconjugacy of (10) can be

defined using the concept of the generalized zero of a vector solution as follows. A

vector solution z =
(

x

u

)
of (10) has a generalized zero in the interval (t, σ(t)] if one

of the following conditions is satisfied: (a) t is dense and x(t) = 0, (b) t is right-

scattered, x(t) 6= 0, xσ(t) ∈ ImB(t), and xT (t)B†(t)xσ(t) ≤ 0, or (c) t is right-dense,

x(t) 6= 0, and B(t) 6≥ 0. System (10) is disconjugate on [a, b] if and only if B(t) ≥ 0

at all right-dense points t ∈ (a, b], and any solution z =
(

x

u

)
of with x(a) = 0 satisfies

x(t) 6= 0 for all dense points t ∈ (a, b], and

(16) x(t) 6= 0 and xσ(t) ∈ ImB(t) imply xT (t)B†(t)xσ(t) > 0

at all right-scattered t ∈ [a, ρ(b)]. In other words, (10) is disconjugate on [a, b] if and

only if no solution z =
(

x

u

)
of (10) with x(a) = 0 has any generalized zero in (a, b]. If

the time scale under consideration is unbounded from above, system (10) is said to

be nonoscillatory if there exists T ∈ T such that (10) is disconjugate on [T,∞), in the

opposite case system is said to be oscillatory. System (10) is said to be dense-normal

on [a, b] if for any dense point s ∈ [a, b] the trivial solution z =
(

x

u

)
≡
(
0
0

)
is the only

solution for which x(t) ≡ 0 on [a, s]. We say that symplectic dynamic system (10)

has the Hamiltonian structure, if the matrix I + µA is invertible. In that case, (10)

can be written in the form of the Hamiltonian time scale system

(17) x∆ = A(t)xσ + B(t)u, u∆ = −C(t)xσ − AT (t)u,

where

(18) A = (I + µA)−1A, B = (I + µA)−1B, C = −C(I + µA)−1.

Now we define oscillatory properties of equations (6) and (7). We say that the

interval (t, σ(t)] contains the generalized zero point of multiplicity n of a solution y of

(6) if D∆
k y(t) = 0, k = 0, . . . , n− 1 if t is right dense and, if σ(t) > t, D∆

k y(σ(t)) = 0,

k = 0, . . . , n − 2, and D∆
n−1y(t)D∆

n−1y(σ(t)) ≤ 0. This definition is in agreement with

the definition given in [8], only higher order delta derivatives appearing in that paper

are replaced by mixed derivatives contained in the operators D∆
k and the position of

actual zeros is to be shifted if σ2(t) := σ ◦ σ(t) > σ(t). Concerning the definition

of the generalized zero of multiplicity n of a solution of (7), we have to distinguish

between even and odd n, since for n odd, the first derivative applied to z is the nabla

derivative, while for n even it is the delta derivative. Therefore, the definition is the

same for n even and for n odd the operators D∆
k are to be replaced by the operators

D∇
k , where

D∇
k y :=





y∇∆...∇∆ k even,

y∇∆...∆∇ k odd,
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the lower index k again indicated the number of derivatives.

We finish this preparatory section with the reciprocity principle for linear Hamil-

tonian time scale systems (17) as it is proved in [16]. In this statement, system

(17) and its below given reciprocal system (19) (both these systems are special cases

of symplectic dynamic system (10)) are said to be eventually identically normal if

there exists T ∈ T such that this system is strongly normal on [T, s] for every dense

s > T , and, when there is no dense point in (T,∞), the following condition holds:

there exists l ∈ N such that for any t1 > T , if xσk

(t1) = 0 for all k = 0, . . . , l, then

(x(t), u(t)) ≡ 0 on (t1,∞). Here σk := σ ◦ · · · ◦ σ is the k-times iterated σ operator

and σ0(t) = t. Eventual identical normality of the below given reciprocal system (19)

is defined analogously.

Proposition 1. Suppose that (17) and its reciprocal system

(19) y∆ = −AT (t)y + C(t)zσ, z∆ = −B(t)y + A(t)zσ

are eventually identically normal and the matrices B(t), C(t) are nonnegative definite

for large t. Then system (17) is nonoscillatory if and only if the reciprocal system

(19) is nonoscillatory.

3. RECIPROCITY PRINCIPLE FOR DYNAMIC EQUATIONS

Now we are ready to present the main result of the paper which reads as follows.

Throughout the rest of the paper we suppose that a time scale under consideration

is unbounded from above.

Theorem 1. Suppose that r, q are positive rd-continuous functions. Then equation

(6) is nonoscillatory if and only if reciprocal equation (7) is nonoscillatory.

Proof: The proof is based on Proposition 1. We will show details of the proof for

n even, while for n odd we will only mention technical differences in computations.

Therefore, suppose that n is even. The substitution




x1

x2

...

xn−1

xn




=




y

y∆

...

D∆
n−2y

D∆
n−1y




,




u1

u2

...

un−1

un




=




−D∆
n−1(r(t)D

∆
n y)

D∆
n−2(r(t)D

∆
n y)

...

−(r(t)D∆
n y)∆

r(t)D∆
n y




,



RECIPROCITY PRINCIPLE FOR DYNAMIC EQUATIONS 703

converts (6) into the symplectic dynamic system (10) with the matrices (see [14])

A =




0 1 0 0 · · · 0 0

0 0 1 µ · · · 0 0

0 0 0 1
. . . 0 0

...
...

...
...

. . .
. . .

. . .
...

...

1 0 0

0 1 µ

0 0 1

0 · · · 0 0 0




,

B =
1

rσ




0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · −µ 1




, C = −qσ




1 µ 0 · · · 0

0 0 0 · · · 0
...

...

0 · · · 0




,

D =




0 0 0 0 · · · 0 0

−1 0 0 0 0 0

µ −1 0 0 0 0

0 0 −1 0 0 0
...

...
. . .

. . .
. . .

. . .
...

−1 0 0 0

µ −1 0 0

0 · · · 0 0 −1 0




.

Next we show that the definition of the generalized zero of multiplicity n of a

solution y of (6) complies with the definition of the generalized zero of the associated

vector solution of (10) with the above given matrices A, . . . ,D. If t is a right dense

point then this fact is trivial according to the relationship between the function y

(and its derivatives D∆
ν y) and the vector x. If σ(t) > t, the condition xσ(t) ∈ ImB(t)

means that xσ
1 = 0, . . . , xσ

n−1 = 0, i.e., D∆
ν y(σ(t)) = 0, ν = 0, . . . , n − 2. By a direct

computation one can verify that the Moore-Penrose generalized inverse B† is

B† =
rσ

1 + µ2




0 · · · 0 0
...

. . .
...

...

0 · · · 0

0 · · · 0 −µ

0 · · · 0 1




and hence

(20) xT (t)B†(t)xσ(t) =
rσ(t)

1 + µ2(t)
D∆

n−1y(σ(t))
[
−µ(t)D∆

n−2y(t) + D∆
n−1y(t)

]
.
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Since n is even, we have D∆
n−1y(t) = (D∆

n−2y(t))∆ and from the definition of delta

derivative (taking into account that D∆
n−2y(σ(t)) = 0)

D∆
n−1y(t) =

1

µ(t)

[
D∆

n−2y(σ(t)) − D∆
n−2y(t)

]
= −

D∆
n−2y(t)

µ(t)
.

Hence, the expression in brackets in (20) equals (1 + µ2(t))D∆
n−1y(t), which means

that also in this case definitions comply. Note also that the possibility (c) in the

definition of the generalized zero of a vector solution cannot happen since r(t) > 0.

Concerning the situation for reciprocal equation (7) and the system reciprocal to (10)

(which results from (10) upon the transformation y = u, z = −x)

(21) y∆ = D(t)y − C(t)z, z∆ = −B(t)y + A(t)z,

the relationship is again trivial if σ(t) = t. In case t < σ(t), since y = (y1, . . . , yn)
T =

(u1, . . . , un)
T = (−D∆

n−1un, D∆
n−1un, . . . ,−u∆

n , un)T , the condition yσ(t) ∈ Im C(t)

reads

un(σ(t)) = u∆
n (σ(t)) = · · · = D∆

n−2un(σ(t)).

Since

C† = −
1

qσ(1 + µ2)




1 0 0 · · · 0

µ 0 0 · · · 0

0 0 0 · · · 0
...

...

0 · · · 0




,

using similar computations as above

−yT (t)C†(t)yσ(t) = qσ(t)D∆
n−1un(t)D

∆
n−1un(σ(t)).

Since un = rD∆
n y is the solution of the reciprocal equation (7), also generalized

zeros of multiplicity n of solutions of (7) comply with generalized zeros of the vector

solutions of reciprocal symplectic system (21) (in this definition, the matrix −C plays

the role of the matrix B).

To finish the proof, it is sufficient now to convert systems (10) and (21) to Hamil-

tonian systems (3) and (4) and to verify that these systems satisfy assumptions of

Proposition 1. To this end, we first compute the matrix (I +µA)−1 which appears in

formulas (18). We have

(22) (I + µA)−1 =
∞∑

i=0

µiAi =
n−1∑

i=0

µiAi
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since Ai = 0 for i ≥ n. Substituting into (22) we find that

(I + µA)−1 =




1 −µ µ2 0 0 0 . . . 0

0 1 −µ 0 0 0 . . . 0

0 0 1 −µ µ2 0 . . . 0
...

. . .
. . .

0 . . . 0 1 −µ µ2

0 . . . 0 1 −µ

0 . . . 0 1




.

Consequently,

B = (I + µA)−1B =
1

r




0 . . . 0
...

...

0 . . . 0 0 0

0 . . . 0 µ2 −µ

0 . . . 0 −µ 1




and

C = −C(I + µA)−1 = qσ diag{1, 0, . . . , 0}.

which shows that both these matrices are nonnegative definite. Finally, the assump-

tion of eventual identical normality is trivially satisfied since x(t) ≡ 0 on some interval

means, in particular, that the first entry of this vector x1(t) = y(t) ≡ 0 in some in-

terval and hence all derivatives of y (which are entries of the vectors x, u in (10)) are

identically zero.

Now, we can summarize our proof for n even. If equation (6) is nonoscillatory,

the associated symplectic dynamic system is nonoscillatory as well since oscillation

is defined via generalized zeros of multiplicity n and generalized zeros of vector solu-

tions, respectively, and these two concepts comply. The symplectic system associated

with (6) has the Hamiltonian structure and, when converting to linear Hamiltonian

system (17), assumptions of Proposition 1 are satisfied. Hence, the reciprocal system

(19), and, in turn, the reciprocal system (21) with the matrices A, . . . ,D given at

the beginning of the proof, is also nonoscillatory. Finally, since the definitions of

oscillation of this system and of (7) are the same (definitions of generalized zero of

multiplicity n and of generalized “vector zero” comply), reciprocal equation (7) is also

nonoscillatory. Since all arguments can be reversed, we have equivalence of oscillatory

nature of (6) and (7) for n even.
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Concerning the differences in the proof when n is odd, the matrix B is slightly

different

B =
1

r




0 . . . 0 0
...

...

0 . . . 0 0

0 . . . 0 µ

0 . . . 0 1




,

but also in this case the definition of generalized zero of multiplicity n for (6) and

(7) complies with the definition of the generalized zero of vector-valued solutions of

associated symplectic dynamic systems as can be verified by a direct computation

which is very similar to the computation for n even. Consequently, the statement of

the theorem holds also for n odd and the proof is complete. �

4. REMARKS AND COMMENTS

(i) As we have already mentioned in the first section, the reciprocity principle

has applications in the spectral theory of differential operators. To be more specific,

consider the differential operator

(23) `(y) := (−1)n(r(t)y(n))(n).

It is known that this operator has the spectrum discrete and bounded below in

L2[T,∞), T ∈ R (the so-called property BD), if and only if the equation

(24) `(y) = λy

is nonoscillatory for every λ > 0. Applying the nonoscillation criterion of Glazman

[15] to reciprocal equation to (24), Lewis [18] resolved Tkachenko’s conjecture (see

[15]) in the affirmative way that the operator ` has the property BD if and only if

(25) lim
t→∞

t2n−1

∫ ∞

t

r−1(s) ds = 0.

The discrete version of this statement can be found in [11]. The spectral theory of

differential operators on time scales is not developed yet (as far as we know), but we

believe that the reciprocity principle established in this paper could be of the same

importance in this spectral theory as in the continuous and discrete cases.

(ii) There are other possibilities how to “distribute” the delta and nabla deriva-

tives to get a (formally) self-adjoint differential operator. A comprehensive treatment

of this problem can be found in the paper [4]. A very special case of equations

considered there is the pair of 2n-order equations

(26) (−1)n
(
r(t)y∆∆...∆∇

)∇∇...∇∆
= q(t)y
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and

(27) (−1)n

(
1

q(t)
z∇∇...∇∆

)∆∆...∆∇

=
1

r(t)
z.

One can find immediately that (27) is related to (26) by the reciprocity transformation

z = ry∆∆...∆∇. We believe that oscillatory nature of equations (26) and (27) is also the

same (under the assumption r(t) > 0, q(t) > 0). However, the technical computations

are different from those performed in our paper, so we formulated this reciprocity

principle for (26) and (27) only as a conjecture.

(iii) A “frequently asked question” is what is the relationship between the recip-

rocal equation and the adjoint equation. The answer can be formulated as follows.

Consider the adjoint system to (10)

(28) z∆ = −ST (t)zσ.

This definition of adjointness is the same as in the continuous and discrete case, we

ask the matrix Z = (XT )−1 to be the fundamental matrix of the adjoint system if X

is a fundamental matrix of the original system. By a direct computation we find that

adjoint system is really (28) and expanding the sigma operator as zσ = z + µz∆, we

get the system

(29) z∆ = −(I + µS(t))−1ST (t)z.

Now, if we again consider the matrix S consisting of matrices A, . . . ,D, the symplec-

ticity of the matrix (I + µST ) implies that

−(I + µST )−1ST =

[
I + µD −µC

−µB I + µA

][
AT CT

BT DT

]

= −

[
AT + µDAT − µCBT CT + µDCT − µCDT

−µCAT + BT + µABT −µBCT + DT + µADT

]

=

[
D −C

−B A

]

where the last equality follows from (14). Consequently, reciprocal and adjoint sys-

tems are the same systems. Of course, the reciprocal and adjoint equations to (6) are

not the same. The adjoint equation is the equation which is satisfied by the first entry

z1 of the component z of a solution
(

y

z

)
∈ R

2n of (21), while the reciprocal equation

is the equation for the last entry yn of y.
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[14] O. Došlý, D. Marek, Even order self-adjoint linear dynamic equations with mixed derivatives,

submitted.

[15] I. M. Glazman, Direct Methods of the Qualitative Analysis of Singular Differential Operators,

Davey, Jerusalem, 1965.
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