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1. INTRODUCTION

Let a, b, c and T be positive numbers, b < a, c < a and J = [0, T ]. Let αi ∈ C1(J),

i = 1, 2, satisfy the following conditions:

(j) αi(t) < t and α′
i(t) ≥ ∆i > 0 for t ∈ J ,

(jj) there exist τi ∈ (0, T ) such that αi(τi) = 0.

Set r = min{α1(0), α2(0)} (< 0). Let ϕ ∈ C0([r, 0]), ϕ(0) = a, 0 < ϕ(t) < a for

t ∈ [r, 0) and ϕ(α2(t)) > c for t ∈ [0, τ2]. Consider the singular boundary value

problem (BVP)

(1) x′′(t) = µq(t)
(

f1(t, x(t), x(α1(t))) + f2(t, x(t), x(α2(t)))
)

,

(2) x(t) = ϕ(t) for t ∈ [r, 0], x(T ) = 0,

where µ ≥ 0 is a constant, q(t) > 0 for t ∈ (0, T ), f1(t, x, y) ≥ 0 for (t, x, y) ∈

J × (0, b) ∪ (b, a) × (0, a) and f2(t, x, y) ≥ 0 for (t, x, y) ∈ J × (0, a) × [0, c) ∪ (c, a).

The function f1 (resp. f2) may be singular at the points x = 0, x = b and x = a

(resp. x = 0 and x = a) of the phase variable x and at the points y = 0 and y = a

(resp. y = c and y = a) of the phase variable y.

Set

E = {x : x ∈ C0([r, T ]) ∩ C1(J), x is decreasing on J}.
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We say that x is a solution of BVP (1), (2) in the set E if x ∈ E ∩ C2(J1), where J1

denotes the interval (0, T ) with the exception of at most two point if f1 is singular at

the point x = b of the phase variable x and f2 is singular at the point y = c of the

phase variable y, x fulfills the boundary conditions (2) and (1) is satisfied on J1.

If (1) is independent of the delays α1 and α2, we obtain a singular BVP of the type

(3) x′′(t) = µq(t)f∗(t, x(t)),

(4) x(0) = a, x(T ) = 0

where f∗ ≥ 0 may be singular at x = 0, x = b and x = a of the phase variable x.

This problem has been considered for instance in [3], [6] and [22] but here f∗ may be

singular only at x = 0.

Many existence results have been established for boundary value problems with

second–order functional differential equations with delay which have no singularities

in the phase variables; see, e.g., [2–5,8,11,13,14,18–21] and their references. Boundary

value problems for second order functional differential equations with singularities in

the phase variable having positive solutions have been considered in [1], [7] and [16].

For example in [1] is discussed BVP

x′′(t) + q(t)f̃(t, x(t − r)) = 0, t ∈ (0, 1) \ {r},

x(t) = µ(t) for t ∈ [−r, 0], x(1) = 0

where 0 < r < 1 is a constant, µ(0) = 0, µ > 0 on [−r, 0) and f̃ ≥ 0 on (0, 1)× (0,∞)

may by singular at x = 0 of the phase variable x. Here the singularity of f̃ at x = 0

‘appears’ in positive solutions only at the fixed point t = 0 and t = 1 where solutions

vanishing. In our paper the singularities of f1 and f2 ‘appear’ in positive solutions

of BVP (1), (2) not only at the fixed point t = 0 and t = T , but positive solutions

‘pass through’ the singularities of f1 and f2 in inner points of (0, T ) (if f1 is singular

at x = b and f2 is singular at y = c).

The aim of this paper is to give conditions for the existence of a solution of BVP

(1), (2) in the set E . Our results are proved by the regularity and sequential tech-

niques. First, we construct 2–parameter family of auxiliary regular BVPs (8)nλ, (9)n

depending on parameters (λ, n) ∈ [0, 1] × IN and obtain a priori bounds for their so-

lutions (Lemma 1). Then applying the topological transversality theorem (see, e.g.,

[9], [10]), we prove the existence of positive solutions of the auxiliary regular BVPs

(Lemma 2). The main result for the original BVP (1), (2) (Theorem 1) follows from

Arzelà–Ascoli’s theorem and a modification of Vitali’s convergence theorem (see, e.g.,

[12], [17]) given in Lemma 3. Finally, Corollary 1 generalized results obtained in [3],

[6] and [22].

Throughout the paper we will use the following assumptions:

(H1) q ∈ C0((0, T )), q > 0 on (0, T ) and Q = sup{q(t) : t ∈ J} < ∞;
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(H2) f1 : J ×D1 × (0, a) → [0,∞) is continuous with D1 = (0, b)∪ (b, a), f1(t, x, y) ≤

g1(x)+h1(y), (t, x, y) ∈ J×D1×(0, a), where g1 ≥ 0 is continuous on D1, h1 ≥ 0

is continuous on (0, a) and
∫ a

0
(g1(s) + h1(s)) ds < ∞,

∫ τ1
0

h1(ϕ(α1(t))) dt < ∞;

(H3) f2 : J × (0, a)×D2 → [0,∞) is continuous with D2 = [0, c)∪ (c, a), f2(t, x, y) ≤

g2(x) + h2(y), (t, x, y) ∈ J × (0, a) × D2, where g2 ≥ 0 is continuous on (0, a),

h2 ≥ 0 is continuous on D2 and
∫ a

0
(g2(s) + h2(s)) ds < ∞,

∫ τ2
0

h2(ϕ(α2(t))) dt <

∞;

(H4) h1 and h2 are nondecreasing on (a − ε0, a) for an ε0 > 0;

(H5) limv→0 vg1(b + v) = 0, limv→0 vh2(c + v) = 0.

2. NOTATION AND LEMMAS

Let assumptions (H1)–(H5) be satisfied. Let n∗ ∈ IN,

n∗ > 2 max

{

1

b
,

1

c
,

1

a − b
,

1

a − c
,

1

2ε0

}

and IN∗ = {n : n ∈ IN, n ≥ n∗}. By Urysohn’s lemma, for each n ∈ IN∗, there

exists pn ∈ C0(J × IR) such that 0 ≤ pn(t, x) ≤ 1 for t ∈ J × IR, pn(t, x) = 0 for

(t, x) ∈ J×(−∞, 1/(2n)] and pn(t, x) = 1 for (t, x) ∈ J×[1/n,∞). Let ϕn ∈ C0([r, 0]),

ξn ∈ C0(IR), f1n, f̃2n ∈ C0(J×IR2), g1n ∈ C0((0, a)), h2n ∈ C0([0, a)) and l1n, l2n ∈ IR

be defined for n ∈ IN∗ by the formulas

ϕn(t) =







a − (1/n) if ϕ(t) ≥ a − (1/n)

ϕ(t) if ϕ(t) < a − (1/n),

ξn(x) =



















a − (1/n) for x ≥ a − (1/n)

x for 1/(2n) ≤ x < a − (1/n)

1/(2n) for x < 1/(2n),

f1n(t, x, y) =















































































f1(t, a − (1/n), ξn(y)) for (t, x, y) ∈ J × [a − (1/n),∞) × IR

f1(t, x, ξn(y)) for (t, x, y) ∈ J × (b + (1/n), a − (1/n)) × IR

(n/2)
(

f1(t, b + (1/n), ξn(y))(x − b + (1/n))

−f1(t, b − (1/n), ξn(y))(x−b−(1/n))
)

for (t, x, y) ∈ J × [b − (1/n), b + (1/n)] × IR

pn(t, x)f1(t, x, ξn(y)) for (t, x, y) ∈ J × [1/(2n), b − (1/n)) × IR

x − (1/2n) for (t, x, y) ∈ J × (−∞, 1/(2n)) × IR,
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f2n(t, x, y) =































































f2(t, ξn(x), a − (1/n)) for (t, x, y) ∈ J × IR × [a − (1/n),∞)

f2(t, ξn(x), y) for (t, x, y) ∈ J × IR × (c + (1/n), a − (1/n))

(n/2)
(

f2(t, ξn(x), c+ (1/n))(y−c + (1/n))

−f2(t, ξn(x), c−(1/n))(y−c−(1/n))
)

for (t, x, y) ∈ J × IR × [c − (1/n), c + (1/n)]

pn(t, x)pn(t, y)f2(t, ξn(x), y) for (t, x, y) ∈ J × IR × (−∞, c − (1/n)),

g1n(x) =















g1(x) for x ∈ (0, b − (1/n)) ∪ (b + (1/n), a)

(n/2)
(

g1(b + (1/n))(x − b + (1/n)) + g1(b − (1/n))(b + (1/n) − x)
)

for x ∈ [b − (1/n), b + (1/n)],

h2n(y) =















h2(y) for y ∈ (0, c − (1/n)) ∪ (c + (1/n), a)

(n/2)
(

h2(c + (1/n))(y − c + (1/n)) + h2(c − (1/n))(c + (1/n) − y)
)

for y ∈ [c − (1/n), c + (1/n)],

l1n =
1

n

(

g1

(

b −
1

n

)

+ g1

(

b +
1

n

))

,

l2n =
1

n

(

h2

(

c −
1

n

)

+ h2

(

c +
1

n

))

.

By (H2), (H3) and (H5), limn→∞ l1n = limn→∞ l2n = 0,

(5) f1n(t, x, y) ≤ g1n(x) + h1(y), f2n(t, x, y) ≤ g2(x) + h2n(y)

for (t, x, y) ∈ J × [1/(2n), a − (1/n)] × [1/(2n), a − (1/n)]. In addition,

(6)

∫ v

u

g1n(s) ds ≤

∫ v

u

g1(s) ds + nl1n min

{

2

n
, v − u

}

,
∫ v

u

h2n(s) ds ≤

∫ v

u

h2(s) ds + nl2n min

{

2

n
, v − u

}

and

(7)

∫

S

g1n(s) ds ≤

∫

S

g1(s) ds + nl1n min

{

2

n
, m(S)

}

,
∫

S

h2n(s) ds ≤

∫

S

h2(s) ds + nl2n min

{

2

n
, m(S)

}

for n ∈ IN∗, 0 ≤ u ≤ v ≤ a and any measurable S ⊂ [0, a], where m(S) stands for the

Lebesgue measure of S.

Consider the family of the auxiliary regular BVPs

(8)nλ x′′(t) = λµq(t)
(

f1n(t, x(t), x(α1(t))) + f2n(t, x(t), x(α2(t))
)

,

(9)n x(t) = ϕn(t) for t ∈ [r, 0], x(T ) =
1

2n
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depending on the parameters λ ∈ [0, 1] and n ∈ IN∗.

We say that x ∈ C0([r, T ]) ∩ C1(J) ∩ C2((0, T )) is a solution of BVP (8)nλ, (9)n if

x fulfills the boundary conditions (9)n and (8)nλ is satisfied for t ∈ (0, T ).

Set

(10) A1 = µQ

(
∫ τ1

0

h1(ϕ(α1(t))) dt +

∫ τ2

0

h2(ϕ(α2(t))) dt

)

,

B1 = 2µQ

(

∫ a

0

(g1(s) + g2(s))ds +
1

∆1

∫ a

0

h1(s)ds

+
1

∆2

∫ a

0

h2(s)ds + 2 sup

{

l1n +
l2n

∆2
: n ∈ IN∗

}

)

(11)

and

(12) K = A1 +

√

A2
1 + B1 +

( a

T

)2

.

Lemma 1. Let assumptions (H1)–(H5) be satisfied, (λ, n) ∈ [0, 1] × IN∗. Let x be a

solution of BVP (8)nλ, (9)n. Then

(13)
1

2n
≤ x(t) ≤ a −

1

n
,

(14) 0 ≤ −x′(t) ≤ K

for t ∈ J , where K is defined by (12).

Proof. If λµ = 0 then

x(t) =











ϕn(t) for t ∈ [r, 0)

3 − 2na

2nT
t + a −

1

n
for t ∈ J

and x satisfies (13) and (14). Let λµ > 0. Since x′′ ≥ 0 on (0, T ), x′ is nondecreasing

on J and x(0) = a − (1/n) > 0, x(T ) = 1/(2n) < x(0) imply x′(0) < 0. Hence

x(t) ≤ a − (1/n) for t ∈ J . If min{x(t) : t ∈ J} = x(t0) < 1/(2n) then t0 ∈ (0, T ),

x′(t0) = 0 and

x′′(t0) = λµq(t0)
(

f1n(t0, x(t0), x(α1(t0))) + f2n(t0, x(t0), x(α2(t0)))
)

= λµq(t0)

(

x(t0) −
1

2n

)

< 0,

which is impossible. Hence x(t) ≥ 1/(2n) for t ∈ J . In addition, x′ ≤ 0 on J

since from x′(ν) > 0 for some ν ∈ (0, T ) we have x′ > 0 on [ν, T ] which implies

x(T ) > 1/(2n), a contradiction. We have proved that x satisfies inequalities (13) and

x′ ≤ 0 on J .

We are going to show that −x′(t) ≤ K for t ∈ J . Since x′′ ≥ 0 on (0, T ) and

x′ ≤ 0 on J , we have x′(0) ≤ x′(t) ≤ x′(T ) for t ∈ J and from x(0) = a − (1/n),
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x(T ) = 1/(2n) it follows that x′(T ) ≥ (1/T )(3/(2n) − a) > −a/T . By (5), (13) and

(H3),

x′′(t) = λµq(t)
(

f1n(t, x(t), x(α1(t))) + f2n(t, x(t), x(α2(t)))
)

≤ µQ
(

g1n(x(t)) + h1(x(α1(t))) + g2(x(t)) + h2n(x(α2(t)))
)

for t ∈ (0, T ). Whence

(15) 2x′′(t)x′(t) ≥ 2µQ
(

g1n(x(t)) + h1(x(α1(t))) + g2(x(t)) + h2n(x(α2(t)))
)

x′(t)

for t ∈ (0, T ). By condition (j), 1/α′
i(t) ≤ 1/∆i, t ∈ J, i = 1, 2 and from (j), (jj) and

(H4) we obtain x′(αi(t)) ≤ x′(t), t ∈ [τi, T ], and hi(ϕn(αi(t))) ≤ hi(ϕ(αi(t))), t ∈

[0, τi] for i = 1, 2 and n ∈ IN∗. Consequently (cf. (6)),
∫ T

0

g1n(x(t))x′(t) dt =

∫ x(T )

x(0)

g1n(s) ds =

∫ 1/(2n)

a−(1/n)

g1n(s) ds

≥ −

∫ a

0

g1n(s) ds ≥ −

∫ a

0

g1(s) ds − 2l1n,

∫ T

0

h1(x(α1(t)))x
′(t) dt =

∫ τ1

0

h1(x(α1(t)))x
′(t) dt +

∫ T

τ1

h1(x(α1(t)))x
′(t) dt

≥ x′(0)

∫ τ1

0

h1(ϕn(α1(t))) dt +

∫ T

τ1

h1(x(α1(t)))(x(α1(t)))
′

α′
1(t)

dt

≥ x′(0)

∫ τ1

0

h1(ϕ(α1(t))) dt +
1

∆1

∫ x(α1(T ))

x(0)

h1(s) ds

≥ x′(0)

∫ τ1

0

h1(ϕ(α1(t))) dt −
1

∆1

∫ a

0

h1(s) ds,

∫ T

0

g2(x(t))x′(t) dt =

∫ x(T )

x(0)

g2(s) ds ≥ −

∫ a

0

g2(s) ds

and
∫ T

0

h2n(x(α2(t)))x
′(t) dt =

∫ τ2

0

h2n(x(α2(t)))x
′(t) dt +

∫ T

τ2

h2n(x(α2(t)))x
′(t) dt

≥ x′(0)

∫ τ2

0

h2(ϕn(α2(t))) dt +

∫ T

τ2

h2n(x(α2(t)))(x(α2(t)))
′

α′
2(t)

dt

≥ x′(0)

∫ τ2

0

h2(ϕ(α2(t))) dt +
1

∆2

∫ x(α2(T ))

x(0)

h2n(s) ds

≥ x′(0)

∫ τ2

0

h2(ϕ(α2(t))) dt −
1

∆2

(

∫ a

0

h2(s) ds + 2l2n

)

.

Integrating (15) from 0 to T and using the above inequalities, we see that

(x′(T ))2 − (x′(0))2 ≥ 2A1x
′(0) − B1
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where A1 and B1 are defined by (10) and (11) respectively. Then

−x′(0) ≤ A1 +
√

A2
1 + B1 + (x′(T ))2 ≤ A1 +

√

A2
1 + B1 +

( a

T

)2

= K

since (x′(T ))2 ≤ (a/T )2. �

Lemma 2. Let assumptions (H1)–(H5) be satisfied and n ∈ IN∗. Then there exists a

solution x of BVP (8)n1, (9)n satisfying inequalities (13) and (14) for t ∈ J , where K

is defined by (12).

Proof. Set

U = {x : x ∈ C0([r, T ]), x(t) = ϕn(t) for t ∈ [r, 0]}

and

K = {x : x ∈ U , 0 < x(t) < a for t ∈ J}.

Then U is a convex subset of the Banach space C0([r, T ]) equipped with the sup–norm

and K is open in U . Let K and ∂K denote, respectively, the closure and the boundary

of K in U . Define the operator

Λ : [0, 1] ×K → C0([r, T ])

by

Λ(λ, x)(t) = ϕn(t) for t ∈ [r, 0),

Λ(λ, x)(t) = a −
1

n
+

3 − 2na

2nT
t

−
λµt

T

∫ T

0

(T − s)q(s)
(

f1n(s, x(s), x(α1(s))) + f2n(s, x(s), x(α2(s)))
)

ds

+ λµ

∫ t

0

(t − s)q(s)
(

f1n(s, x(s), x(α1(s))) + f2n(s, x(s), x(α2(s)))
)

ds

for t ∈ [0, T ]. Obviously, Λ is a compact operator. Suppose that Λ(λ0, x0) = x0

for some (λ0, x0) ∈ [0, 1] × ∂K. Then x0 is a solution of BVP (8)nλ0
, (9)n, and so

1/(2n) ≤ x0(t) ≤ a − (1/n) for t ∈ J by Lemma 1. Hence x0 6∈ ∂K, a contradiction.

Therefore Λ(λ, x) 6= x for (λ, x) ∈ [0, 1] × ∂K. Since for x ∈ K we have

Λ(0, x)(t) =







ϕn(t) for t ∈ [r, 0)

a −
1

n
+

3 − 2na

2nT
t for t ∈ J,

Λ(0, ·) is a constant operator and Λ(0, ·) ∈ K. By the topological transversality

theorem, there exists a fixed point x of the operator Λ(1, ·). Clearly, x is a solution

of BVP (8)n1, (9)n and, by Lemma 1, (13) and (14) hold. �
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Lemma 3. Let {wn(t)} ⊂ L1([α, β]) be a sequence of nonnegative functions on [α, β]

converging in measure on [α, β] to w(t). Let {pn(t)} ⊂ L1([α, β]) and wn(t) ≤ pn(t)

for a.e. t ∈ [α, β] and each n ∈ IN. Suppose that for every ε > 0, there is a δ > 0 such

that for each at most countable set pairwise disjoint intervals (ui, vi) ⊂ [α, β], i ∈ I

with
∑

i∈I(vi −ui) < δ we have
∑

i∈I

∫ vi

ui

pn(s) ds < ε for n ∈ IN. Then w ∈ L1([α, β])

and

(16) lim
n→∞

∫ β

α

wn(t) dt =

∫ β

α

w(t) dt.

Proof. To prove the assertion of the lemma we use Vitali’s convergence theorem.

Fix ε > 0 and let δ > 0 be from the assumption. Let M ⊂ [α, β] be a measurable

set, m(M) < δ/2. Then there exists an open set M1 ⊂ [α, β], M ∩ (α, β) ⊂ M1

such that m(M1) < δ. As M1 is open bounded, M1 is a union of at most countable

set of intervals (αi, βi), i ∈ I∗ without common elements, M1 =
⋃

i∈I∗
(αi, βi). Then

∑

i∈I∗

∫ βi

αi

pn(t) dt < ε and

∫

M

wn(t) dt ≤

∫

M

pn(t) dt ≤

∫

M1

pn(t) dt =
∑

i∈I∗

∫ βi

αi

pn(t) dt < ε

for n ∈ IN. We have proved that for any ε > 0 there exists δ > 0 such that 0 ≤
∫

M
wn(t) dt < ε for each n ∈ IN and any measurable M ⊂ [α, β], m(M) < δ/2.

Hence {wn(t)} has uniformly absolutely continuous integrals on [α, β] and, by Vitali’s

convergence theorem, w ∈ L1([α, β]) and (16) holds. �

3. EXISTENCE RESULTS AND AN EXAMPLE

Theorem 1. Let assumptions (H1)–(H5) be satisfied. Set

(17) µT =
a2

(2aA + BT )T

where

(18) A = Q

(
∫ τ1

0

h1(ϕ(α1(t))) dt +

∫ τ2

0

h2(ϕ(α2(t))) dt

)

and

(19) B = 2Q

(
∫ a

0

(g1(s) + g2(s)) ds +
1

∆1

∫ a

0

h1(s) ds +
1

∆2

∫ a

0

h2(s) ds

)

.

If 0 ≤ µ ≤ µT then BVP (1), (2) has a solution in the set E .

Proof. Fix µ ∈ [0, µT ]. By Lemma 2, for each n ∈ IN∗, there exists a solution xn of

BVP (8)n1, (9)n such that xn(t) = ϕn(t) for t ∈ [r, 0] and

(20) 1/2n ≤ xn(t) ≤ a − (1/n), 0 ≤ −x′
n(t) ≤ K

for t ∈ J , where K > 0 is defined by (12). Since |ϕn(t)−ϕ(t)| ≤ 1/n for t ∈ [r, 0] and

n ∈ IN∗, there is no loss of generality in assuming {xn(t)}n∈IN∗

is uniformly convergent
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on [r, T ], and let limn→∞ xn(t) = x(t). Then x ∈ C0([r, T ]), x(t) = ϕ(t) for t ∈ [r, 0],

x(0) = a, x(T ) = 0 and x is nondecreasing on J . Hence there exists γ ∈ (0, T ] such

that a ≥ x(t) > 0 for t ∈ [0, γ) and x(t) = 0 for t ∈ [γ, T ]. We now show that x is

decreasing on [0, γ]. If not, there exist 0 ≤ t1 < t2 < γ such that x(t) = x(t1) for

t ∈ [t1, t2]. From x′′
n ≥ 0 on (0, T ) and the equalities

xn(t2) − xn(t1) = x′
n(%n)(t2 − t1),

xn(t2) − 1/(2n) = xn(t2) − xn(T ) = x′
n(τn)(t2 − T ),

where t1 < %n < t2 < τn < T , we obtain

x′
n(%n) ≤ x′

n(τn) =
2nxn(t2) − 1

2n(t2 − T )
.

Then

xn(t2) − xn(t1) ≤
2nxn(t2) − 1

2n(t2 − T )
(t2 − t1), n ∈ IN∗

and

lim
n→∞

(xn(t2) − xn(t1)) ≤ lim
n→∞

2nxn(t2) − 1

2n(t2 − T )
(t2 − t1) =

x(t2)

t2 − T
(t2 − t1) < 0,

contrary to limn→∞(xn(t2) − xn(t1)) = x(t2) − x(t1) = 0. Hence

lim
n→∞

(

f1n(t, xn(t), xn(α1(t))) + f2n(t, xn(t), xn(α2(t)))
)

= f1(t, x(t), x(α1(t))) + f2(t, x(t), x(α2(t)))(21)

for a.e. t ∈ [0, γ].

Fix t∗ ∈ (0, γ). We are going to show that there exist Φ < 0 and n1 ∈ IN∗ such that

(22) x′
n(t) ≤ Φ for t ∈ [0, t∗], n ≥ n1.

Assume, on the contrary, that there exists a subsequence {kn} of IN∗ such that

limn→∞ x′
kn

(t∗) = 0. From

xkn
(t∗) − 1/(2kn) = xkn

(t∗) − xkn
(T ) = x′

kn
(δn)(t∗ − T ) ≤ x′

kn
(t∗)(t∗ − T ),

where δn ∈ (t∗, T ), it follows that

lim
n→∞

(xkn
(t∗) − 1/(2kn)) ≤ (t∗ − T ) lim

n→∞
x′

kn
(t∗) = 0,

contrary to limn→∞(xkn
(t∗) − 1/(2kn)) = x(t∗) > 0. In order to prove that

(23) f1(t, x(t), x(α1(t))) + f2(t, x(t), x(α2(t))) ∈ L1([0, t∗])

and

(24)

lim
n→∞

∫ t∗

0

(

f1n(s, xn(s), xn(α1(s))) + f2n(s, xn(s), xn(α2(s)))
)

ds

=

∫ t∗

0

(

f1(s, x(s), x(α1(s))) + f2(s, x(s), x(α2(s)))
)

ds
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we use Lemma 3. Let ε > 0. Then there exists n2 ∈ IN, n2 ≥ n1, such that

l1n <
ε|Φ|

14
, l2n <

ε∆2|Φ|

14

for n ≥ n2 and there exists δ0 > 0 such that (cf. (H2) and (H3))

(25)

∫

D0

(g1(s) + g2(s)) ds <
ε|Φ|

7
,

∫

D1

h1(s) ds <
ε∆1|Φ|

7
,

∫

D2

h2(s) ds <
ε∆2|Φ|

7
,

∫

D∩[0,τ1]

h1(ϕ(α1(t))) dt <
ε|Φ|

7K

and

(26)

∫

D∩[0,τ2]

h2(ϕ(α2(t))) dt <
ε|Φ|

7K
.

for any measurable subsets Dj of [0, a] (j = 0, 1, 2) and measurable D ⊂ J such that

m(D0) < δ0, m(Dj) < δ0 max{α′
j(t) : t ∈ J} (j = 1, 2) and m(D) < δ0/K. We recall

that τ1 and τ2 are numbers from condition (jj). Set

δ =
1

K
min

{

δ0,
ε|Φ|

7 max{nl1n : n1 ≤ n ≤ n2}
,

ε∆2|Φ|

7 max{nl2n : n1 ≤ n ≤ n2}max{α′
2(t) : t ∈ J}

}

.

Let {(ui, vi)}i∈I1 be at most countable sequence of pairwise disjoint intervals (ui, vi) ⊂

[0, t∗] such that
∑

i∈I1
(vi − ui) < δ and set M =

∑

i∈I1
(ui, vi). Let i ∈ I1 and n ≥ n1.

Then (cf. (22) and (H4))

|Φ|

∫ vi

ui

(

g1n(xn(t)) + h1(xn(α1(t))) + g2n(xn(t)) + h2n(xn(α2(t)))
)

dt

≤

∣

∣

∣

∣

∫ vi

ui

(

g1n(xn(t)) + h1(xn(α1(t))) + g2n(xn(t)) + h2n(xn(α2(t)))
)

x′
n(t) dt

∣

∣

∣

∣

≤

∫ xn(ui)

xn(vi)

(g1n(s) + g2(s)) ds + H1(ui, vi) + H2(ui, vi)

where

H1(ui, vi) ≤



































K

∫ vi

ui

h1(ϕ(α1(t))) dt if vi ≤ τ1

K

∫ τ1

ui

h1(ϕ(α1(t))) dt +
1

∆1

∫ a

xn(α1(vi))

h1(s) ds if ui < τ1 < vi

1

∆1

∫ xn(α1(ui))

xn(α1(vi))

h1(s) ds if ui ≥ τ1
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and

H2(ui, vi) ≤



































K

∫ vi

ui

h2(ϕ(α2(t))) dt if vi ≤ τ2

K

∫ τ2

ui

h2(ϕ(α2(t))) dt +
1

∆2

∫ a

xn(α2(vi))

h2n(s) ds if ui < τ2 < vi

1

∆2

∫ xn(α2(ui))

xn(α2(vi))

h2n(s) ds if ui ≥ τ2.

Since |xn(vi) − xn(ui)| ≤ K(vi − ui), and

|xn(αj(vi)) − xn(αj(ui))| ≤ K max{α′
j(t) : t ∈ J}(vi − ui),

we have
∑

i∈I1

|xn(vi) − xn(ui)| ≤ K
∑

i∈I1

(vi − ui) = Km(M),

and
∑

i∈I1

|xn(αj(vi)) − xn(αj(ui))| ≤ K max{α′
j(t) : t ∈ J}

∑

i∈I1

(vi − ui)

= K max{α′
j(t) : t ∈ J}m(M).

Consequently (cf. (6) and (7)),

|Φ|

∫

M

(

g1n(xn(t)) + h1(xn(α1(t))) + g2(xn(t)) + h2n(xn(α2(t)))
)

dt

≤
∑

i∈I1

(

∫ xn(ui)

xn(vi)

(g1n(s) + g2(s)) ds + H1(ui, vi) + H2(ui, vi)

)

≤

∫

S0

(g1(s) + g2(s)) ds + nl1n min

{

2

n
, m(S0)

}

+ K

∫

M1∩[0,τ1]

h1(ϕ(α1(t))) dt

+
1

∆1

∫

S1

h1(s)ds + K

∫

M1∩[0,τ2]

h2(ϕ(α2(t)))dt

+
1

∆2

(
∫

S2

h2(s)ds + nl2n min

{

2

n
, m(S2)

})

,

where m(S0) ≤ Km(M) < Kδ ≤ δ0 and

m(Sj) ≤ K max{α′
j(t) : t ∈ J}m(M) < δ0 max{α′

j(t) : t ∈ J}, j = 1, 2.

Then (see (25) and (26))
∫

S0

(g1(s) + g2(s)) ds <
ε|Φ|

7
, nl1n min

{

2

n
, m(S0)

}

<
ε|Φ|

7
,

K

∫

M1∩[0,τ1]

h1(ϕ(α1(t))) dt <
ε|Φ|

7
,

1

∆1

∫

S1

h1(s) ds <
ε|Φ|

7
,
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K

∫

M1∩[0,τ2]

h2(ϕ(α2(t))) dt <
ε|Φ|

7
,

1

∆2

∫

S2

h2(s) ds <
ε|Φ|

7
,

and
1

∆2
nl2n min

{

2

n
, m(S2)

}

<
ε|Φ|

7
.

Therefore
∫

M

(

g1n(xn(t)) + h1(xn(α1(t))) + g2(xn(t)) + h2n(xn(α2(t)))
)

dt < ε, n ≥ n1.

By Lemma 3 with wn(t)=f1n(t, xn(t), xn(α1(t))) + f2n(t, xn(t), xn(α2(t))), pn(t) =

g1n(xn(t)) + h1(xn(α1(t))) + g2(xn(t)) + h2n(xn(α2(t))) for n ≥ n1 and [α, β] = [0, t∗],

(23) and (24) are true. In addition, since t∗ ∈ (0, γ), it follows that

lim
n→∞

∫ t

0

(

f1n(s, xn(s), xn(α1(s))) + f2n(s, xn(s), xn(α2(s)))
)

ds

=

∫ t

0

(

f1(s, x(s), x(α1(s))) + f2(s, x(s), x(α2(s)))
)

ds

for t ∈ [0, γ). The sequence {x′
n(0)} is bounded, and so we can assume that this

sequence is convergent, say limn→∞ x′
n(0) = C. Then taking the limit as n → ∞ in

the equalities

xn(t) = xn(0) + x′
n(0)t

+ µ

∫ t

0

∫ s

0

q(v)
(

f1n(v, xn(v), xn(α1(v))) + f2n(v, xn(v), xn(α2(v)))
)

dv ds,

t ∈ J,

we get

(27) x(t) = a+Ct+µ

∫ t

0

∫ s

0

q(v)
(

f1(v, x(v), x(α1(v)))+f2(v, x(v), x(α2(v)))
)

dv ds

for t ∈ [0, γ). Hence x ∈ C1([0, γ)).

We are going to prove that γ = T . Assume γ < T . From xn(γ)− xn((T + γ)/2) =

x′
n(cn)(γ − T )/2, where cn ∈ (γ, (T + γ)/2), and limn→∞ xn(γ) = limn→∞ xn((T +

γ)/2) = 0 we see that limn→∞ x′
n(cn) = 0. Then integrating the inequalities (for

n ≥ n1)

(28)

2x′′
n(t)x′

n(t) ≥ 2µT Q
(

g1n(xn(t)) + h1(xn(α1(t))) + g2(xn(t)) + h2n(xn(α2(t)))
)

x′
n(t)

from 0 to cn and applying the same procedure as in the proof of Lemma 1 (now with

xn and cn instead of x and T , respectively), we have

(x′
n(cn))2 − (x′

n(0))2 ≥ µT

(

2Ax′
n(0) − B − 2l1n −

2l2n

∆2

)

,

where A is given by (18) and B by (19). Letting n → ∞ yields

(29) −C2 ≥ µT (2AC − B)
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since lim
n→∞

(l1n + (l2n/∆2)) = 0. We recall that C = limn→∞ x′
n(0) < 0. From (29) we

deduce that

−C ≤ µT A +
√

µ2
TA2 + µT B.

On the other hand x′
n is nondecreasing and

a − (1/n) − xn(cn) = xn(0) − xn(cn) = −x′
n(ηn)cn,

where ηn ∈ (0, cn). Hence

x′
n(0) ≤ x′

n(ηn) =
n(xn(cn) − a) + 1

ncn

and then from limn→∞ xn(cn) = 0 and 1/cn > 2/(T + γ) it follows that

C < −
2a

T + γ
< −

a

T
.

Consequently, a/T < −C ≤ µT A+
√

µ2
TA2 + µT B and then µT > a2/[(2aA+BT )T ],

contrary to the definition (17) of µT . Hence γ = T .

Since {x′
n(T )}n≥n1

is bounded, we can assume that the sequence {x′
n(T )}n≥n1

is

convergent, say limn→∞ x′
n(T ) = D (≤ 0). Repeated integration of (28) now from 0

to T gives

(x′
n(T ))2 − (x′

n(0))2 ≥ µT

(

2Ax′
n(0) − B − 2l1n −

2l2n

∆2

)

,

and letting n → ∞ we obtain (0 ≥) D2 − C2 ≥ µT (2AC − B). Then

D2 − C2 ≥
(2AC − B)a2

(2aA + BT )T

and

(30) C2 +
2a2A

(2aA + BT )T
C −

a2B

(2aA + BT )T
− D2 ≤ 0.

Now from the inequalities xn(t) ≤ a−(1/n)+[(3−2na)/(2nT )]t for t ∈ J and n ≥ n1

which follows from xn(a) = a− (1/n), xn(T ) = 1/(2n) and x′′
n ≥ 0 on (0, T ), we have

(31) x(t) ≤ a −
at

T
for t ∈ J.

Suppose D = 0. Since x′
n(0) ≤ (3 − 2na)/(2nT ) for n ≥ n1, we see that C =

limn→∞ x′
n(0) ≤ −a/T . On the other hand (30) implies C ≥ −a/T . Therefore

C = −a/T . Now (27) and (31) give x(t) = a − (at/T ) for t ∈ J and

µ

∫ t

0

∫ s

0

q(v)
(

f1(v, x(v), x(α1(v))) + f2(v, x(v), x(α2(v)))
)

dv ds = 0

for t ∈ J and µ ∈ [0, µT ]. We see that in this case x(t) = a − (at/T ) is a solution

of BVP (1), (2) in the set E . Let D < 0. Then there exists n3 ≥ n1 such that

x′
n(T ) ≤ D/2 for n ≥ n3. To prove that the sequence

{f1n(t, xn(t), xn(α1(t))) + f2n(t, xn(t), xn(α2(t)))}n≥n3
⊂ L1(J)
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has uniformly continuous integrals on J we can use the same procedure as above, now

with D/2 instead of Φ. Then f1(t, x(t), x(α1(t))) + f2(t, x(t), x(α2(t))) ∈ L1(J), by

Lemma 3, and (27) shows that x ∈ C1(J). We know that x is decreasing on J , and

so there exists a unique t0 ∈ (0, T ) such that x(t0) = b and, if x(α2(T )) < c, then

there exists a unique t1 ∈ (0, T ) such that x(α2(t1)) = c. From (27) we see that x

satisfies (1) for t ∈ (0, T ) with the exception at most two points t0 and t1. Hence x

is a solution of BVP (1), (2) in the set E . �

From Theorem 1 it follows immediately the following result for the solvability of

BVP (3), (4) in the set E .

Corollary 1. Suppose that assumptions (H1) and

(H6) f∗ : J × D1 → [0,∞) is continuous with D1 = (0, b) ∪ (b, a), f∗(t, x) ≤ g∗(x),

(t, x) ∈ J × D1, where g∗ ≥ 0 is continuous on D1,
∫ a

0
g∗(s) ds < ∞ and

limv→0 vg∗(b + v) = 0

are satisfied. If 0 ≤ µ ≤ a2/[2QT
∫ a

0
g∗(s) ds] then BVP (3), (4) has a solution in the

set E .

Remark 1. Assumption (H5) can be replaced by the following slightly weaker as-

sumption: There exist sequences {cn}, {c
∗
n}, {dn}, {d

∗
n} of positive numbers, limn→∞ cn =

limn→∞ c∗n = limn→∞ dn = limn→∞ d∗
n = 0 such that

lim
n→∞

(cng1(b − cn) + dng1(b + dn)) = 0, lim
n→∞

(c∗nh2(c − c∗n) + d∗
nh2(c + d∗

n)) = 0.

Remark 2. It follows from our considerations that the assertion of Theorem 1 is true

also in the cases that f1 and f2 have a finite number of singularities on (0, a) in the

phase variables x and y, respectively, supposing that singularities are of the type as

x = b and y = c in assumptions (H2), (H3) and (H5).

Example 1. Consider the BVP

(32)

x′′(t) = µ(1 + | sin(t−1(T − t)−1)|)

(

K

|a − 2x(t)|α
+

L

(x(t))β(a − x(t))γ

+
M

(a − x(t − T
4
))δ

+
N

|a − 4x(4t
3
− T

2
)|ε

)

,

(33) x(t) = a

(

1 +
t

T

)

for t ∈ [−T/2, 0] , x(T ) = 0,

where K, L, M, N are nonnegative constants, K +L+M +N > 0, α, δ, ε ∈ (−∞, 1)

and β, γ ∈ (0, 1). Assumptions (j), (jj) and (H1)–(H5) are satisfied with α1(t) =

t − (T/4), α2(t) = (4t/3) − (T/2), ∆1 = 1, ∆2 = 4/3, τ1 = T/4, τ2 = 3T/8, ϕ(t) =

a(1+ (t/T )), b = a/2, c = a/4, Q = 2, g1(x) = K/|a− 2x|α +L/[xβ(a−x)γ ], h1(y) =
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M/(a − y)δ, g2(x) = 0 and h2(y) = N/|a − 4y|ε. Consequently, by Theorem 1, BVP

(32),(33) has a solution in the set E if 0 ≤ µ ≤ µT , where µT is defined by (17) with

A = 2T

(

M

41−δ(1 − δ)aδ
+

3N(31−ε − 1)

16(1 − ε)aε

)

,

and

B = 4

(

Ka1−α

1 − α
+ La1−β−γB(1 − β, 1 − γ) +

Ma1−δ

1 − δ
+

3Na1−ε(1 + 31−ε)

16(1 − ε))

)

,

where B(·, ·) denotes the beta function.
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