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1. INTRODUCTION

Let a, b, c and T be positive numbers, b < a, ¢ < a and J = [0, T]. Let a; € C*(J),
1 =1, 2, satisfy the following conditions:
(j) ai(t) < tand af(t) > A, >0 fort e J,
(jj) there exist 7; € (0,7) such that a;(7;) = 0.
Set 7 = min{a;(0), az(0)} (< 0). Let ¢ € C%r,0]), ¢(0) = a, 0 < p(t) < a for
t € [r,0) and @(ay(t)) > ¢ for t € [0,7]. Consider the singular boundary value
problem (BVP)

1) 2(t) = pa(t) (Fa(t, 2(8), 2l () + folt, 2(8), 2(0a(1))))

(2) z(t) = @(t) for t € [r,0], =(T) =0,

where > 0 is a constant, ¢(t) > 0 for t € (0,7), fi(t,z,y) > 0 for (t,x,y) €
J x (0,b) U (b,a) x (0,a) and fo(t,z,y) > 0 for (t,z,y) € J x (0,a) x [0,¢) U (¢, a).
The function f; (resp. f») may be singular at the points x = 0, x = b and = = a
(resp. z = 0 and x = a) of the phase variable z and at the points y = 0 and y = a
(resp. y = ¢ and y = a) of the phase variable y.
Set
E={x:2e€C%r, T)NC*(J), x is decreasing on J}.
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We say that x is a solution of BVP (1), (2) in the set £ if v € €N C?(J;), where J;
denotes the interval (0,7") with the exception of at most two point if f; is singular at
the point x = b of the phase variable x and f5 is singular at the point y = ¢ of the
phase variable y, = fulfills the boundary conditions (2) and (1) is satisfied on J;.

If (1) is independent of the delays « and as, we obtain a singular BVP of the type

(3) 2" (t) = pq(t) fu(t, (1)),

(4) z(0)=a, z(T)=0

where f, > 0 may be singular at x = 0, x = b and x = a of the phase variable x.
This problem has been considered for instance in [3], [6] and [22] but here f, may be
singular only at x = 0.

Many existence results have been established for boundary value problems with
second—order functional differential equations with delay which have no singularities
in the phase variables; see, e.g., [2-5,8,11,13,14,18-21] and their references. Boundary
value problems for second order functional differential equations with singularities in
the phase variable having positive solutions have been considered in [1], [7] and [16].

For example in [1] is discussed BVP

2(t) +q(t) f(t,x(t—r)) =0, te(0,1)\{r},

x(t) = u(t) for t € [-r,0], =x(1)=0
where 0 < 7 < 1 is a constant, ;(0) = 0, g > 0 on [—7,0) and f > 0 on (0,1) x (0, 00)
may by singular at £ = 0 of the phase variable z. Here the singularity of f at x =0
‘appears’ in positive solutions only at the fixed point t = 0 and ¢t = 1 where solutions
vanishing. In our paper the singularities of f; and fy ‘appear’ in positive solutions
of BVP (1), (2) not only at the fixed point ¢ = 0 and ¢ = T, but positive solutions
‘pass through’ the singularities of f; and fs in inner points of (0,7) (if f; is singular
at = b and f5 is singular at y = ¢).

The aim of this paper is to give conditions for the existence of a solution of BVP
(1), (2) in the set £. Our results are proved by the regularity and sequential tech-
niques. First, we construct 2—parameter family of auxiliary regular BVPs (8),x, (9),
depending on parameters (A, n) € [0,1] x IN and obtain a priori bounds for their so-
lutions (Lemma 1). Then applying the topological transversality theorem (see, e.g.,
9], [10]), we prove the existence of positive solutions of the auxiliary regular BVPs
(Lemma 2). The main result for the original BVP (1), (2) (Theorem 1) follows from
Arzela—Ascoli’s theorem and a modification of Vitali’s convergence theorem (see, e.g.,
[12], [17]) given in Lemma 3. Finally, Corollary 1 generalized results obtained in [3],
[6] and [22].

Throughout the paper we will use the following assumptions:

(Hy) q € C°((0,T)),q>0o0n (0,7) and Q = sup{q(t) : t € J} < o0;
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(Hs) f1:J x Dy x(0,a) — [0,00) is continuous with Dy = (0,b) U (b, a), fi(t,z,y) <
g1(x)+hi(y), (t,z,y) € Jx D1 x(0,a), where g; > 0 is continuous on Dy, hy > 0
is continuous on (0,a) and [;'(g1(s) + hi(s)) ds < oo, [;" hi(p(aa(t)))dt < oo;
(H3) fa2:J x(0,a) x Dy — [0, 00) is continuous with Dy = [0,¢) U (¢,a), fa(t,z,y) <
g2(x) + ha(y), (t,z,y) € J x (0,a) x Dy, where go > 0 is continuous on (0, a),
ha > 0 is continuous on Dy and [ (g2(s) + ha(s)) ds < 0o, [ ha(p(aa(t))) dt <
00;
(Hy) hy and hy are nondecreasing on (a — £q, a) for an g9 > 0;
(Hs) lim,—ovgi(b+v) =0, lim,_g vhe(c+ v) = 0.

2. NOTATION AND LEMMAS

Let assumptions (H;)—(Hs) be satisfied. Let n, € IN,

and N, = {n : n € N, n > n,}. By Urysohn’s lemma, for each n € IN,, there
exists p, € C°J x R) such that 0 < p,(t,x) < 1fort € J x R, p,(t,z) = 0 for
(t,z) € Jx(—00,1/(2n)] and p,(t,z) = 1 for (t,z) € Jx[1/n,00). Let p, € C°([r,0]),
€ € CO(R), fin, fon € COUTXR?), g1, € C°((0,a)), hay € C°([0,a)) and Iy, Iy, € R
be defined for n € IN, by the formulas

a—(1/n) ift) >a—(1/n)
@n(t) = )
o(t) if p(t) <a—(1/n),

a—(1/n) forx>a—(1/n)
En(z) =< x for 1/(2n) <x <a—(1/n)
1/(2n) for x < 1/(2n),

( fi(t,a— (1/n),&.(y)) for (t,x,y) € J x [a— (1/n),00) x R

filt,z, & (y)) for (t,z,y) € J x (b+ (1/n),a— (1/n)) x R
(/2)(fu(t b+ (1/n),&0(m) (& = b+ (1/n)
funlt,2,) = it = (1/n),&u(y)) (@ =b=(1/n)))

for (t,z,y) € J x [b—(1/n),b+ (1/n)] x R

pult, ) filt, 2, €n(y))  for (62,y) € J x [1/(2n),b—(1/n)) x R

x — (1/2n) for (t,z,y) € J x (—00,1/(2n)) x R,

\
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([ folt &ulx),a = (1/n)) for (t,0,y) € J x R x [a—(1/n), o0)
fa(t, €0 (), y) for (t,2,y) € J x R x (c+ (1/n),a — (1/n))
(n/2) (fQ(t, &n(@), et (1/n))(y—c+ (1/n))

ot (@), e= (1/m)(y—c—(1/n)))
for (t,z,y) € J x R x [c — (1/n),c+ (1/n)]

f2n(t7 Z, y) =

L pn(t>x)pn(t>y)f2(tvgn(x)>y) for (t,l‘,y) €J xR x (—OO,C - (1/71)),
( gi(x) forx € (0,b— (1/n))U(b+ (1/n),a)

91:() =\ (1/2) (920 + (1/m)w = b+ (1fm) + (b= (1/m)(b+ (1/m) — )
\ for o € [b— (1/n),b+ (1/n)],

( ha(y) fory € (0,c—(1/n))U(c+ (1/n),a)

(/2) (afe + (1)) (y = e+ (1/m) + hale — (m) e+ (1/m) — )
L for y€c—(1/n),c+ (1/n)],

(oot o).
(o) om(er1))

By (Hg), (Hg) and (H5), llmn_>oo lln = llmn_>oo lQn = U,

(5) fln(tv x,y) < gln(x) + hl(y)7 f2n(t>$v y) < 92(1') + h2n(y)

for (t,z,y) € J x [1/(2n),a — (1/n)] x [1/(2n),a — (1/n)]. In addition,

/gln(s)dSS/ gl(s)ds+nl1nmin{%,v—u},

h2n(y)

’ [ ptorto < [t mimin {20}
and
) Joomtoras < [ s tuumin {2 mis)}.

hon(s) ds < | ha(s) ds + nlay, min 4 2, m(S)
S S n

forn € N,, 0 < u < v < a and any measurable S C [0, a], where m(S) stands for the
Lebesgue measure of S.

Consider the family of the auxiliary regular BVPs
(8)na () = Auq(t) (fm(t, z(t), z(n (1)) + fan(t, (1), 37(042(15))),

(9)n z(t) = p(t) forter,0], z(T)=—
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depending on the parameters A € [0, 1] and n € IN,.

We say that = € CO([r, T]) N C*(J) N C%((0,T)) is a solution of BVP (8),x, (9), if
x fulfills the boundary conditions (9),, and (8),, is satisfied for ¢ € (0,7").

Set

(10) — ( | mptarmat+ [ sl dt) ,

0

By =2uQ (/Oa(gl(s) + ga(s))ds + Ail ' hy(s)ds

1 @ lon,
11 — h d 2 i, + —: IN.
(11) +A2 i o(8)ds + sup{1 +A2 n e })
and
a2
(12) K:A1+\/A§+Bl+<f).

Lemma 1. Let assumptions (Hy)—(Hs) be satisfied, (\,n) € [0,1] x IN,. Let x be a
solution of BVP (8)ux, (9)n. Then
1 1
1 — < <a——
(13) <a(t)<a- 1,
(14) 0< —2'(t) <K
fort € J, where K is defined by (12).

Proof. If Ay = 0 then
on(t) for t € [r,0)

x(t) =
" 3;n2jimt+a—% for t € J
and x satisfies (13) and (14). Let Ay > 0. Since z” > 0 on (0,7"), 2’ is nondecreasing
on J and z(0) = a— (1/n) > 0, z(T) = 1/(2n) < z(0) imply z’(0) < 0. Hence
x(t) <a—(1/n) for t € J. If min{z(t) : t € J} = z(tg) < 1/(2n) then ¢, € (0,7),
2'(tp) = 0 and

2(t0) = Auq(to) (fun(to, 2(t), w((t0))) + fan o, (ko). 2(02(t0))))
= (o) () ~ 3-) <0,

which is impossible. Hence z(t) > 1/(2n) for t € J. In addition, 2’ < 0 on J

since from z/(v) > 0 for some v € (0,7) we have 2’ > 0 on [v,T] which implies

x(T) > 1/(2n), a contradiction. We have proved that « satisfies inequalities (13) and
2 <0on J.

We are going to show that —z/(t) < K for t € J. Since 2”7 > 0 on (0,7") and
¥ <0 on J, we have 2/(0) < 2/(t) < 2/(T) for t € J and from x(0) = a — (1/n),
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x(T) = 1/(2n) it follows that 2/(T") > (1/T)(3/(2n) —a) > —a/T. By (5), (13) and
(H3)>

2(0) = Ag(®) (it 2(t), 20 (1)) + fon(t, 2(0), 2(0s(1))) )

< 1Q(ou0( (1)) + ha (e (1)) + ga((1)) + han(a(a(1))
for t € (0, 7). Whence

(15) 20"(0)2'(t) > 20Q (920 (2()) + (201 (1)) + 2(2(0)) + han(w(02(0))) ) (1)

for t € (0,T). By condition (j), 1/ai(t) < 1/A;, t € J, i = 1,2 and from (j), (jj) and
(Hy) we obtain 2'(«;(t)) < 2/(t), t € [1,T], and h;(p,(a;i(t))) < hi(p(a;(t))), t €
[0,7;] for i =1, 2 and n € N,. Consequently (cf. (6)),

/oT Gin( (1))’ () dt = / . gin(s)ds = / o gl

(0) a—(1/n)

> —/ gin(s) ds > —/ g1(8) ds — 2l1p,
0 0

T

| )@= [ maeons o [ b

> 7'(0) /0 hl(son(al(t)))dwr/ 1(z(a (t)

T1

& z(a1(T))
zx’(O)/O hy(p(a ()))altJrAi1 hi(s)ds

> 2/(0) /jm(( <>>>dt—Ai1 ha(s) ds,

et = [ gasyds > — [ gals) ds
0 (0) 0
and

/0 B ((aa(t))) 2 (8) dt = / " hon(a(an(t)' () dt + / o ()2 (8) dit

> 20) [ hatn(anti a4 [ Pt

T2 x(az(T))
> 2/(0) / ha(p(a <>>>dt+Ai2 Fion(s) ds

Z:L"(O)/Omhg( (o ()))dt—é(/ ha(s) ds + 20, ).

Integrating (15) from 0 to 7" and using the above inequalities, we see that

(/(7))* = (2(0))* = 2412°(0) — By



POSITIVE SOLUTIONS OF SINGULAR BOUNDARY VALUE PROBLEMS 761

where A; and B are defined by (10) and (11) respectively. Then

—2'(0) < Ay + \/Af + B+ (2/(T))? < A + \/A% + By + (3>2 =K
since (2/(T))* < (a/T)*. O

Lemma 2. Let assumptions (Hy)—-(Hs) be satisfied and n € IN,. Then there exists a
solution x of BVP (8)n1, (9), satisfying inequalities (13) and (14) fort € J, where K
is defined by (12).
Proof. Set

U={z:xeCr,T)), x(t) = p,(t) for t € [r,0]}
and

K={z:zel, 0<z(t)<aforteJ}.

Then U is a convex subset of the Banach space C°([r, T]) equipped with the sup—norm

and K is open in U. Let IC and OK denote, respectively, the closure and the boundary
of K in U. Define the operator

A:[0,1] x K — C°([r, T))

by
AN 2)(t) = pu(t) forte|r0),
AL 2)(#) = a — % 3 ;ni?a
=28 [ = 905 (s, (5) e (9) + ol 0(5) n{a(s)) ) s

v [ 0= 905) (Fn(s0(6), (00 (5)) + fan(5:2(6).a(0a()) ) ds

for t € [0,T]. Obviously, A is a compact operator. Suppose that A(Ag,zo9) = 2o
for some (Ao, z9) € [0,1] x K. Then z; is a solution of BVP (8),.,, (9),, and so
1/(2n) < zo(t) < a—(1/n) for t € J by Lemma 1. Hence z¢ ¢ 0K, a contradiction.
Therefore A(X, z) # x for (A, z) € [0,1] x K. Since for x € K we have

on(t) for t € [r,0)
A0, z)(t) = 1 3-2na, .
a — ﬁ T ort e J,

A(0,-) is a constant operator and A(0,-) € K. By the topological transversality
theorem, there exists a fixed point x of the operator A(1,-). Clearly, x is a solution
of BVP (8),1, (9), and, by Lemma 1, (13) and (14) hold. O
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Lemma 3. Let {w,(t)} C Li([e, B]) be a sequence of nonnegative functions on [a, (]
converging in measure on |, 5] to w(t). Let {p,(t)} C Li([ev, B]) and w,(t) < p,(t)
fora.e. t € [, 5] and each n € IN. Suppose that for every e > 0, there is a § > 0 such
that for each at most countable set pairwise disjoint intervals (u;,v;) C [, (], 1 € 1
with Y, (vi —u;) < § we have Y., f: pn(s)ds < e forn € IN. Then w € Lyi([«, 5])
and
B B
(16) lim wy(t) dt :/ w(t) dt.

n—oo
«

Proof. To prove the assertion of the lemma we use Vitali’s convergence theorem.
Fix ¢ > 0 and let 6 > 0 be from the assumption. Let M C [a, ] be a measurable
set, m(M) < 0/2. Then there exists an open set M; C [a, 8], M N (a, ) C My
such that m(M;) < §. As M; is open bounded, M, is a union of at most countable

set of intervals (o, 3;), @ € I, without common elements, M; = (J,¢; (as, ;). Then
D el ffz pn(t) dt < e and

/M w,(t) dt < /Mpn(t) dt < /Mlpn(t) dt = Z/:ipn(t) dt < e

i€l

for n € IN. We have proved that for any ¢ > 0 there exists ¢ > 0 such that 0 <
Sy wn(t)dt < e for each n € N and any measurable M C [a, ], m(M) < §/2.
Hence {w,(t)} has uniformly absolutely continuous integrals on [« 3] and, by Vitali’s
convergence theorem, w € Ly([«, f]) and (16) holds. O

3. EXISTENCE RESULTS AND AN EXAMPLE

Theorem 1. Let assumptions (Hy)—(Hs) be satisfied. Set
2

(17) W = X+ BT

where

(18) 4=Q ( | metarnar+ [ ol dt)

and

(19)  B=20 (/Oa(gl(s) + go(s)) ds + Ail Oah1(5> ds + Aiz Oahg(s) ds) |

If 0 < p < pp then BVP (1), (2) has a solution in the set £.

Proof. Fix p € [0, pr]. By Lemma 2, for each n € IN,, there exists a solution z, of
BVP (8),1, (9), such that z,(t) = ¢, (t) for t € [r,0] and

(20) 1/2n < zp(t) <a—(1/n), 0< -2/ (t)<K

for t € J, where K > 0 is defined by (12). Since |p,(t) —¢(t)| < 1/n for t € [r,0] and

n € N,, there is no loss of generality in assuming {z,,(t)}, .y_ is uniformly convergent
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on [r,T], and let lim, ., ,(t) = z(t). Then x € C°([r,T]), z(t) = ¢(t) for t € [r, 0],
x(0) = a, z(T) = 0 and z is nondecreasing on J. Hence there exists v € (0,7] such
that @ > x(t) > 0 for t € [0,7) and x(t) = 0 for ¢t € [y,T]. We now show that x is
decreasing on [0,v]. If not, there exist 0 < t; < to < 7 such that z(t) = z(¢;) for
t € [t1,t2]. From 2, > 0 on (0,7) and the equalities

Tn(t2) = (ty) = 2, (0n) (t2 — 1),

Tn(t2) = 1/(2n) = wn(ta) — 2n(T) = 2, (70) (b2 = T),

where t; < 0, <ty < 7, < T, we obtain

2nx,(ty) — 1
/ < / S (S Y
Then
2nx,(ta) — 1
xn(tz) — xn(tl) < ﬁ(tz — tl), n € IN,
and
. . 2nx,(ta) — 1 x(t
)=o) < J, SR 0 = ) <0

contrary to lim,, .. (z,(t2) — x,(t1)) = x(t2) — xz(t;) = 0. Hence
1 (200, 2010 + fonlt,200), 2 c00)))
(21) = it x(t), 2(ax (1)) + falt, 2(1), 2(0a(1)))

for a.e. t € [0,7].
Fix t, € (0,7). We are going to show that there exist ® < 0 and n; € IN, such that

(22) z(t) <P forte|0,t], n>n.

Assume, on the contrary, that there exists a subsequence {k,} of IN, such that

limy, o 7}, (t.) = 0. From
By (1) = 1/(2h) = 0, (1) = 20, (T) =, () (t — T) < ol (1)t = T),
where 6,, € (t.,T), it follows that

lim (24, (t,) — 1/(2k,)) < (t. — T) lim ), (t,) =0,

n—o0 n—o0

contrary to lim,, (g, (tx) — 1/(2k,)) = x(t.) > 0. In order to prove that

(23) fit,a(t), (e (1)) + falt, x(t), w(az(t))) € Li([0,2.])

and
t*

lim ( Fin(5, 2n(5), (0 (5))) + fgn(s,xn(s),xn(ag(s)))) ds

n—oo 0

(24) N
= | (Atsuats)aton(s)) + fals (). alan(s)) ) ds
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we use Lemma 3. Let € > 0. Then there exists no € IN, ny > ny, such that

€|<I>| EA2|(I)|
0 sy

lln <

for n > ny and there exists dg > 0 such that (cf. (Hy) and (H3))

e|d e\ |D
/(91(8)+92(5))d8<—‘ ‘, / hi(s)ds < 1 |,
(25) = Ao|®| P 7 ||
EL9 €
h d —_— h t))dt < —
[ patoras < 2R [ ptonto) e < T
and
e|P|
26 / h ao(t))) dt < ——.
(26) — 2(p(az(t))) K

for any measurable subsets D; of [0,a] (7 = 0,1,2) and measurable D C J such that
m(Dy) < do, m(D;) < domax{a;(t) : t € J} (j =1,2) and m(D) < dp/K. We recall

that 71 and 75 are numbers from condition (jj). Set

1

)
0= —min{éo, |®

Tmax{nly, :ny <n < ng}’

K

€A2|(I)|
Tmax{nly, : n1 <n < nyymax{ah(t):te J} [

Let {(u;, v;) }ier, be at most countable sequence of pairwise disjoint intervals (u;, v;) C
[0,2.] such that » . (v; —u;) <6 and set M =3, (u;,v;). Let i € [y and n > n;.
Then (cf. (22) and (Hy))

91 [ (01000 + s 361 + g2n (1)) + a1

<

/@(ma%u»+hmmwﬂﬂn+maﬁan+h%@4%u»»¢ﬁyﬂ

< / (g1n(5) + ga(s)) ds + H (s, v3) + Halus, v)
xn(vi)

where
K hl(go(oq(t))) dt if (5 S 1
%’1 1 a )
Hy (s ) < K/fmwm®»ﬁ+x- hi(s)ds if us <7 < v
u; L Jan(oa(vi))
1 on (o (ui))
— hi(s)ds if ug >
[ A1 o)
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and
4 Vi

ho(p(aa(t))) dt ifv, <71y

K

Hy(ui, v;) < K/ ha(p(ax(t))) dt + hon(s)ds if u; < 72 <
2 Jxn(az(vi))

1 zn (a2 (ui))

hgn(S) ds if U; Z T2.

L B2 Ja(as )
Since |z, (v;) — x,(u;)| < K(v; — u;), and
|y (vi)) — an(ay(ui))] < Kmax{aj(t) : t € J}H(v; — uq),

we have

D fan(vi) = zn(u)] < K> (v — i) = Km(M),

il i€l

and

> zaley(v) = waloy(u)] < Kmax{aj(t):t € J}Y (v

el i€l

= Kmax{aj(t) : t € J}m(M).

Consequently (cf. (6) and (7)),

] / » (g1n2n(®)) + R (2@ (1)) + galn(t)) + han(walas (1)) dt

Tn(ui)
< Z (/w (g1n(8) + g2(9)) d3+H1(ui>Ui)+H2(uiavi)>

i€ly n (i)

< [ @)+ mo) s+ tymin{ 2 f 48 [ motontt)

Mi1n[0,m1]

1

+ — / hi(s)ds + K ha(p(az(t)))dt
Al S, MiN[0,72]

t ( /S Fa(s)ds + o i {%,m(«gz)}) ,

where m(Sy) < Km(M) < K§ < §y and
m(S;) < Kmax{a)(t) : t € J}m(M) < dpmax{aj(t):t € J}, j=1,2.

Then (see (25) and (26))

) 2 ®

/ (91(s) + ga(s)) ds < ﬂ, nllnmin{_’m(so)} < el |’
SO 7 n 7

K hi(p(aq(t))) dt < ﬂ’ i/ ha(s) ds < 6‘(1)"
Min[0,7m1] 7 Al S 7
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o 1 )
K[ et a< B [ s < 22
Mi1N[0,72] 7 AQ S 7

and
1 2 | P
A—2nlgn mln{n (82)} < ?
Therefore
/M (1o 0)) + (a0 (1)) + ga(a(0)) + hau(a(0a(0)) ) dt <. 1> s

By Lemma 3 with wy,(£)=/f1,(t, 2n(t), 2n(1 (1)) + fon(t, 2n(t), 2n(2(t))), pa(t) =
Gin(@n(t)) + I (zn (1 (t))) + g2(@n(t)) + hon(n(az(t))) for n > ny and [e, 5] = [0, 4.,
(23) and (24) are true. In addition, since t, € (0,), it follows that

lim ( Fin(5, 2(5), 2n(a1(s))) + fgn(s,xn(s),xn(ozg(s)))> ds

n—~o0 0

— /Ot <f1(8,$(5)7$<051(5))) + f2(5>$(3)’x(a2(8)))> ds

for t € [0,7). The sequence {z/(0)} is bounded, and so we can assume that this
sequence is convergent, say lim, . 2/,(0) = C. Then taking the limit as n — oo in

the equalities

2, (t) = 2,(0) + 2, (0)t

[ [ 000) (a0 s 00) + o) (0] o s,
teJ,

we get

(27) (t) = a+ Ct4p / / (o), 20 () + folw,2(v), 2(as(v)))) dvds

for t € [0,7). Hence z € C'([0, ))

We are going to prove that v =T. Assume v < T. From z,(v) — z,((T' +7)/2) =
xl(cn)(y —T)/2, where ¢, € (7, (T +7v)/2), and lim, o ,,(7) = limy, 0o 2, (T +
v)/2) = 0 we see that lim, . 2/ (c,) = 0. Then integrating the inequalities (for
n>mny)

(28)
(1)), (1) = 2 Q (g1 (1)) + (001 (1)) + gl (1) + B 02(0))) ) 1)

from 0 to ¢, and applying the same procedure as in the proof of Lemma 1 (now with

x, and ¢, instead of x and T, respectively), we have

(e (e))? — (@ (0)) = pr (zAx;m) B2, - %) ,

where A is given by (18) and B by (19). Letting n — oo yields
(29) —C? > ur(2AC — B)
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since hm (I1n, + (Ion/A2)) = 0. We recall that C' = lim,, . 2/,(0) < 0. From (29) we

deduce that
—C < prA+\/p2A% + purB.

On the other hand z], is nondecreasing and
a— (1/n) = xn(cn) = 2a(0) = wn(cn) = =27, (1In)Cn,
where 7, € (0,¢,). Hence
2,(0) < @, (1) =

and then from lim, . 2,(¢,) = 0 and 1/¢,, > 2/(T + 7) it follows that

n(z,(c,) —a)+1

2a a

< .
T+~ T
Consequently, a/T < —C' < purA+/p2A? + prB and then pur > a?/[(2aA+ BT)T],
contrary to the definition (17) of pp. Hence v =T.

C< -

Since {2} (T)}n>n, is bounded, we can assume that the sequence {x] (T")}n>n, is
convergent, say lim, . 2, (1) = D (< 0). Repeated integration of (28) now from 0
to T gives

(1) = (0 = o (24040) = B =2, = 52

and letting n — oo we obtain (0 >) D? — C? > ur(2AC — B). Then

2AC — B)a?
O 2 GaAT BT
and
2 2
(30) 2y 204 B oy,

T RaA+ BT~ (2aA+ BT

Now from the inequalities z,(t) < a—(1/n)+[(3—2na)/(2nT)]t fort € J and n > n,
which follows from z,,(a) = a — (1/n), 2,(T) = 1/(2n) and x/, > 0 on (0,T), we have

(31) z(t) <a-— %t for t € J.

Suppose D = 0. Since 2/,(0) < (3 — 2na)/(2nT") for n > ny, we see that C' =
lim, o 2,(0) < —a/T. On the other hand (30) implies C > —a/T. Therefore
C = —a/T. Now (27) and (31) give x(t) = a — (at/T) for t € J and

/ / f1 v, z(v), z(a1(v))) +f2(v,x(v),x(oz2(v)))) dvds =0

for t € J and p € [0, ur]. We see that in this case z(t) = a — (at/T') is a solution
of BVP (1), (2) in the set £&. Let D < 0. Then there exists ng > n; such that
x, (T) < D/2 for n > nz. To prove that the sequence

{fin(t (1), 2n(01(1))) + fon(t, 2n(t), 20 (@2(1))) nzng C La(J)
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has uniformly continuous integrals on J we can use the same procedure as above, now
with D/2 instead of ®. Then fi(t,z(t), z(a1(t))) + fa(t, 2(t), z(aa(t))) € Li(J), by
Lemma 3, and (27) shows that z € C'(J). We know that = is decreasing on J, and
so there exists a unique tg € (0,7") such that z(ty) = b and, if x(ay(T)) < ¢, then
there exists a unique t; € (0,7) such that z(as(t;)) = ¢. From (27) we see that x
satisfies (1) for ¢ € (0,7") with the exception at most two points ¢y and ¢,. Hence x
is a solution of BVP (1), (2) in the set £. O

From Theorem 1 it follows immediately the following result for the solvability of
BVP (3), (4) in the set &.

Corollary 1. Suppose that assumptions (Hy) and

(Hg) f« : J x Dy — [0,00) is continuous with Dy = (0,b) U (b,a), f.(t,x) < g.(x),
(t,x) € J x Dy, where g, > 0 is continuous on Dy, []'g.(s)ds < oo and
lim, ovg«(b+v) =0

are satisfied. If 0 < pn < a®/[2QT [ g.(s)ds] then BVP (3), (4) has a solution in the

set €.

Remark 1. Assumption (Hs) can be replaced by the following slightly weaker as-
sumption: There exist sequences {c,}, {c:}, {d,}, {d};} of positive numbers, lim,, ., ¢, =
lim,, . ¢ = lim,, . d,, = lim,,_. d; = 0 such that

lim (c,g1(b — ¢n) + dpgi1(b+dy,)) =0, lm (ciho(c—c) +drha(c+d))) =0.

n—oo n—oo

Remark 2. It follows from our considerations that the assertion of Theorem 1 is true
also in the cases that f; and f; have a finite number of singularities on (0, a) in the
phase variables = and y, respectively, supposing that singularities are of the type as

x = b and y = ¢ in assumptions (Hs), (H3) and (Hs).

Example 1. Consider the BVP

" _ sin -1 AT K L
710 = a4 |sinf (T =479 <|a “20F T G0 (a— a0
(32)
+ M + al )
@—at-T)  Ja—da(T-DF )’
(33) z(t) =a (1 + %) fort € [-T/2,0], «(T)=0,

where K, L, M, N are nonnegative constants, K + L+ M+ N > 0, a, 9, € € (—00, 1)
and 3, v € (0,1). Assumptions (j), (jj) and (Hy)-(Hj) are satisfied with a4 (t) =
t—(T/4), as(t) = (4t/3) — (T/2), Ay =1, Ay =4/3, 71 = T/4, 7 = 3T/8, p(t) =
a(l+(t/T)), b=a/2, c=a/4, Q =2, gi(x) = K/|a—2z|*+ L/[2°(a — )], hi(y) =
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M/(a —y)°, go(x) = 0 and hy(y) = N/|a — 4y|°. Consequently, by Theorem 1, BVP
(32),(33) has a solution in the set £ if 0 < pu < pr, where ur is defined by (17) with

M LANET )
451 =0)a® " 16(1 — e)as

a=or(

and

Kl—a
B:4( L La"PB(1-B,1—7) +

Ma'=®  3Na'=¢(1+ 3'79)
1—a ’

=5 " i6(1—2)

where B(+, ) denotes the beta function.
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