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ABSTRACT. In this paper we present a brief review of some recent results on weak compactness in

the space of operator valued measures. These results are then applied to optimal structural feedback

control for deterministic and partially observed stochastic systems on infinite dimensional spaces.

Existence of optimal structural feedback controls for standard as well as nonstandard control prob-

lems are presented. The objects being controlled are the measure valued functions (and functionals

thereof) induced by the stochastic systems.
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1. INTRODUCTION

In physical sciences and engineering, involving control theory and optimization,

one has the freedom to choose from a given class of controls the best one that mini-

mizes or maximizes certain functionals representing the measure of performance. The

controls may be measurable functions taking values from a Banach space (regular con-

trols) or may be vector or operator valued measures [5,6,7,9,10,11,14,19]. For control

theory in finite and infinite dimensional Banach spaces based on regular controls the

reader is referred to the recent book of Fattorini [10] where the presentation is en-

cyclopedic. Vector measures can be used as controls and Operator valued measures

as structural feedback controls. In the study of existence theory, compactness is a

very useful tool, particularly in the area of optimization, optimal control, system

identification, Kalman Filtering, Structural control etc. [5,6,7,8,9,10,11].

Necessary and sufficient conditions for weak compactness in the space of vector

measures has been a subject of great interest over half a century. One of the seminal

results in this topic is the well known Bartle-Dunford-Schwartz theorem [1, Theorem

5, p. 105], for countably additive bounded vector measures with values in Banach

spaces satisfying, along with their duals, the Radon-Nikodym property. This result

was extended to finitely additive vector measures by Brooks [2] and Brooks and

Dinculeanu [1, Corollary 6, 106].
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Recently the author extended some of these results to a certain class of operator

valued measures [12, 13]. In this paper we present these results briefly before consid-

ering control problems involving operator valued measures as controls. The rest of the

paper is organized as follows. In section 2, we present the basic properties of operator

valued measures. In section 3, we present certain results on compactness. Section 4

is the main part of the paper where we consider the control problems (feedback).

2. OPERATOR VALUED MEASURES

Let D be a compact Hausdorff space and Σ an algebra of subsets of D, {X, Y } a

pair of B-spaces and L(Y, X) is the space of bounded linear operators from Y to X.

The function

B : Σ −→ L(Y, X)

is generally a finitely additive (f.a.) set function with values in L(Y, X). This class,

denoted by Mba(Σ,L(Y, X)), is called the space of operator valued measures. Clearly,

this is a B-space with respect to the topology induced by the supremum of the operator

norm on Σ.

In case of operator valued measures there are several notions of countable addi-

tivity related to the topology used. Here we are interested in countable additivity in

the strong operator topology. This is defined as follows:

Definition 2.1 (countable additivity). An element B ∈ Mba(Σ,L(Y, X)) is said

to be countably additive in the strong operator topology (ca − τso) if for any family

of pair wise disjoint sets {σi} ∈ Σ, σi ⊂ D, ∪σi ∈ Σ, and for every y ∈ Y ,

lim
n→∞

|B(
⋃

σi)y −
n

∑

i=1

B(σi)y|X = 0.

Definition 2.2 (strong variation). The variation of B on J in the strong operator

topology is given by:

|B|s(J) = sup

{

|
n

∑

i=1

B(σi)yi|X , yi ∈ B1(Y ),

{σi, 1 ≤ i ≤ n, } ∈ ΠΣ(J), n ∈ N

}

,

where ΠΣ(J) denotes the class of all Σ-measurable disjoint partitions of J .

Note that if Y = R, B reduces to an X valued vector measure and the above

expression gives the standard semivariation of vector measures. Similarly, if X = R,

B is a Y ∗ valued vector measure and the variation reduces to standard variation.

There are other notions of variations such as uniform and weak which we do not

use here.



OPERATOR VALUED MEASURES AS CONTROLS 189

3. WEAK COMPACTNESS

Now we present some recent results on the characterization of conditionally

weakly compact sets in the space of operator valued measures. The first result pre-

sented here involves Hilbert spaces and nuclear operator valued measures.

Theorem 3.1. Let {X, Y } be a pair of separable Hilbert spaces with complete ortho-

normal basis {xi, yi}. A set Γ ⊂ Mba(Σ,L1(Y, X)) is conditionally weakly compact

if, and only if, the following conditions hold:

(c1): Γ is bounded,

(c2): for each σ ∈ Σ,
∑∞

i=1 |(M(σ)yi, xi)Y | is convergent uniformly with respect to

M ∈ Γ,

(c3): for each i ∈ N , the set of scalar valued measures {µM(·) ≡ (M(·)yi, xi), M ∈ Γ}

is a conditionally weakly compact subset of Mba(Σ).

Proof. [Ahmed 12, Theorem 3.2, PMD, (2010)].

This result was recently extended to more general spaces of operator valued

measures [13]. Here we consider {X, Y } to be a pair of Banach spaces and replace the

space of nuclear operators by L(Y, X), the space of bounded linear operators. Let

Mcasbsv(Σ,L(Y, X)) ⊂ Mba(Σ,L(Y, X))

denote the space of operator valued measures countably additive in the strong op-

erator topology having bounded semi variations (variation in the strong operator

topology). To proceed further, we introduce the subject of integration of vector val-

ued functions with respect to operator valued measures. The most general theory of

integration was introduced by Dobrakov [3,4]. This generalizes the theory of Lebesgue

integral, Bochner integral, Bartle bilinear integral and Dinculeanu integral etc. For a

detailed survey on this topic See [18].

Dobrakov Integral: For any f ∈ B∞(D, Y ) and T ∈ Mcasbsv(Σ,L(Y, X)) the inte-

gral,

IT (f) ≡

∫

D

T (ds)f(s) ∈ X,

is well defined in the sense of Dobrakov [3, 4]. As usual the integral is first defined

for simple functions S(D, Y ) and then extended to B∞(D, Y ) by density argument.

The most important point is that the limit is taken in the sense of unconditional

convergence of the sum arising from the simple functions. This limit is the Dobrakov

integral. It is based on the notion of unconditional convergence of infinite series in

B-spaces and Orlicz-Pettis Theorem [1]. This is unlike the Lebesgue and Bochner

integrals which are based on absolute convergence. This is where the main difference

is.
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It is interesting to note that for any T ∈ Mcasbsv(Σ,L(Y, X)) and σ ∈ Σ the set

function given by

T̂ (σ) ≡ sup

{

|

∫

σ

T (ds)f(s)|X, f ∈ S(D, Y ), ‖ f ‖∞≤ 1

}

is a countably subadditive submeasure. In fact this also coincides with the variation

in the strong operator topology of T on J and T̂ (D) = |T |s.

A general result on Weak Compactness: Now we are prepared to present a

general result characterizing weakly compact sets in Mcasbsv(Σ,L(Y, X)). Let Γ ⊂

Mcasbsv(Σ,L(Y, X)) and f ∈ B∞(D, Y ). Define the set

Γ(f) ≡
{

µ ∈ Mba(Σ, X) : µ(σ) =

∫

σ

T (ds)f(s), σ ∈ Σ, T ∈ Γ
}

.

It is easy to verify that Γ(f) ⊂ Mcabv(Σ, X), the space of countably additive X valued

vector measures having bounded variation.

Theorem 3.2. Suppose D is a compact Hausdorff F -space, and {X, Y } is a pair of

B-spaces with X being reflexive. Then a set Γ ⊂ Mcasbsv(Σ,L(Y, X)) is conditionally

weakly compact if, and only if, the following conditions hold:

(i): Γ is bounded in the sense that sup{T̂ (D) ≡ |T |s, T ∈ Γ} < ∞.

(ii): For each f ∈ B∞(D, Y ), the set {|µ|(·), µ ∈ Γ(f)} is uniformly c.a.

Proof. For proof see [Ahmed 13, Theorem 1].

4. APPLICATIONS TO OPTIMAL FEEDBACK CONTROL

The primary objective of this paper is to apply the weak compactness results

to optimal control problems in infinite dimension. We present two applications to

structural control problems in infinite dimension. The first example deals with deter-

ministic systems on general Banach spaces. The second example deals with stochastic

systems on Hilbert spaces.

4.1. Deterministic System. Consider the structural control system on a real Ba-

nach space X

dx = Axdt + B(dt)y + f(x)dt, x(0) = ξ(4.1)

y = Lx + η (output)(4.2)

over the time interval t ∈ [0, T ]. The state space X is a reflexive B-space and the

output space Y is any real Banach space. The operator L ∈ L(X, Y ) represents the

sensor and η ∈ B∞(I, Y ) is a deterministic perturbation. The objective functional is

given by

J(B) ≡

∫ T

0

ℓ(t, x(t))dt + |B|s,(4.3)
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where |B|s denotes the semivariation (variation in the strong operator topology) of

B over the set I. The admissible set of structural controls is given by a set Γ ⊂

Mcasbsv(ΣI ,L(Y, X)). The objective is to find a control that minimizes this functional.

Let G0(M, ω) denote the class of infinitesimal generators {A} of C0-semigroups

of linear operators on X with stability parameters (M, ω) for M ≥ 1 and ω ∈ R.

Theorem 4.1. Suppose A ∈ G0(M, ω) generating the semigroup S(t), t ≥ 0, compact

for t > 0, Γ a weakly compact subset of Mcasbsv(ΣI ,L(Y, X)), f locally Lipschitz with

at most linear growth, L ∈ L(X, Y ), η ∈ B∞(I, Y ). There exists ν ∈ M+
cabv(ΣI)

such that |B|s(σ) ≤ ν(σ) for σ ∈ ΣI uniformly w.r.t B ∈ Γ. The cost integrand ℓ is

measurable in t and lower semicontinuous in x on X and there exists α ∈ L+
1 (I) and

β ≥ 0 satisfying

|ℓ(t, x)| ≤ α(t) + β|x|pX, for any p ∈ (0,∞).

Then, there exists a Bo ∈ Γ at which J attains its minimum.

Proof. For detailed proof see [13, Theorem 1] see also [5, 19]. �

Remark 4.1. (i): Assumption on compactness of the s.g S(t) can be relaxed by

some additional (stronger) assumptions on Γ. (ii): It was shown in [5, Lemma 2.3;

see also Remark 3.4, p. 105], that for each element of Mcasbsv(Σ,L(Y, X)) there exists

a nonnegative countably additive measure dominating its semivariation.

4.2. Stochastic System. Here we consider some standard and nonstandard optimal

control problems for a partially observed stochastic system given by

dx = Axdt + B(dt)y + f(x)dt + g(x)dW, x(0) = ξ(4.4)

dy = Lxdt + dv, y(0) = 0, (output)(4.5)

Naturally, now both the state space X and the output space Y are assumed to be

separable Hilbert spaces. Let (Ω,F ,Ft≥0, P ) be a complete filtered probability space

with Ft, t ≥ 0, being an increasing family of complete sub sigma algebras of the sigma

algebra F . Let E be another separable Hilbert space, and the process W ≡ {W (t), t ≥

0} a Q-Wiener process on E adapted to Ft and that E{(W (t), e)2} = t(Qe, e) for

e ∈ E. The process v in the output equation is an Y -valued Ft adapted Wiener process

with covariance operator Q0, that is, for every y ∈ Y , E{(v(t), y)2} = t(Q0y, y). For

convenience of notation we let Σ denote ΣI , the sigma algebra of subsets of I.

Let Γ ⊂ Mcasbsv(Σ,L(Y, X)) denote the admissible set of structural controls.

The basic assumptions used are:

(H1): A ∈ G0(M, ω) generating a C0-s.g S(t), t ≥ 0.

(H2): ∃ ν ∈ M+
cabv(Σ) such that for each σ ∈ Σ, |B|s(σ) ≤ ν(σ) for all B ∈ Γ.
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(H3): Both f : X −→ X and g : X −→ L(E, X) are globally Lipschitz with Lipschitz

constant K = KQ > 0, satisfying

{

|f(x) − f(z)|2X+ ‖ g(x) − g(z) ‖2
Q

}

≤ K|x − y|2X,

where ‖ g ‖2
Q≡ Tr(gQg∗).

(H4): For the output dynamics, L ∈ L(X, Y ) and v is an Y valued Wiener process,

independent of the Wiener process W , with incremental covariance Q0 ∈ L+
1 (Y ),

the class of positive nuclear operators in Y .

Let Ba
∞(I, L2(Ω, X)) denote the vector space of Ft-adapted X valued random

processes {x(t), t ≥ 0} having (norm) bounded second moments in the sense that

‖ x ‖2
Ba

∞
(I,L2(Ω,X))≡ sup{E|x(t)|2X , t ∈ I} < ∞.

Since the filtration is complete, it is easy to verify that Ba
∞(I, L2(Ω, X)) is a Banach

with respect to the norm topology ‖ · ‖Ba
∞

(I,L2(Ω,X)).

Our next objective is to prove sequential continuity of the solution map B −→

xB(t) from the space Mcasbsv(ΣI ,L(Y, X)) to the Hilbert space L2(Ω, X). This will

allow us to prove weak continuity of the induced probability measures on B(X), Borel

subsets of X, with respect to the operator valued measures B.

Theorem 4.2. Consider the system (4.4)–(4.5) and suppose the assumptions (H1)–

(H4) hold and that the semigroup S(t), t > 0, is compact. Then,

(a): for each F0 measurable initial state ξ ∈ L2(Ω, X) and control measure B ∈

Γ ⊂ Mcasbsv(ΣI ,L(Y, X)), the system (4.4) has a unique mild solution xB ∈

Ba
∞(I, L2(Ω, X)). And the corresponding output process y ≡ yB ∈ Ba

∞(I, L2(Ω, Y )).

(b): for each t ∈ I, the solution map B −→ xB(t) is sequentially continuous with

respect to the weak topology on Mcasbsv(ΣI ,L(Y, X)) and the norm topology on

L2(Ω, X).

Proof. Essentially the proof of the existence and uniqueness part is similar to that

given in [5, Theorem 3.5] see also [20]. Since the output operator L ∈ L(X, Y ) and,

by assumption (H4), v is a continuous square integrable martingale, the output yB,

given by

yB(t) =

∫ t

0

LxB(s)ds + v(t), t ∈ I,

is continuous P -a.s and an element of Ba
∞(I, L2(Ω, Y )). We present briefly an outline

of the proof of continuity. Let Bn
w

−→ Bo in Mcasbsv(Σ,L(Y, X)) and let {xn, xo} ∈
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Ba
∞(I, L2(Ω, X)) denote the corresponding mild solutions satisfying the following in-

tegral equations

xn(t) = S(t)ξ +

∫ t

0

S(t − s)Bn(ds)yn(s) +

∫ t

0

S(t − s)f(xn)ds(4.6)

+

∫ t

0

S(t − s)g(xn)dW (s), t ∈ I,

and

xo(t) = S(t)ξ +

∫ t

0

S(t − s)Bo(ds)yo(s) +

∫ t

0

S(t − s)f(xo)ds(4.7)

+

∫ t

0

S(t − s)g(xo)dW (s), t ∈ I,

respectively. Subtracting equation (4.6) from (4.7) and rearranging terms we obtain

the following expression:

xo(t) − xn(t) = en(t) +

∫ t

0

S(t − s)Bn(ds)(yo(s) − yn(s))(4.8)

+

∫ t

0

S(t − s)f(xo) − f(xn)ds +

∫ t

0

S(t − s)[g(xo) − g(xn)]dW (s),

for t ∈ I, where

en(t) ≡

∫ t

0

S(t − s)[Bo(ds) − Bn(ds)]yo(s), t ∈ I.(4.9)

After long but straightforward computation using the assumptions (H1)–(H3), it fol-

lows from equations (4.8) and (4.9) that

E|xo(t) − xn(t)|2X ≤ 4E|en(t)|
2
X + C

∫ t

0

E|xo(s) − xn(s)|2Xds,(4.10)

for t ∈ I, where

C = 4(M̃)2
{

(‖ L ‖L(X,Y ) ν(I))2T + (1 + T )K2
}

,

with M̃ ≡ sup{‖ S(t) ‖L(X), t ∈ I}. Then by Gronwall inequality, it follows from

(4.10) that

E|xo(t) − xn(t)|2X ≤ 4E|en(t)|
2
X + 4C exp(CT )

∫ t

0

E|en(s)|
2
Xds,(4.11)

for t ∈ I. We show that for each t ∈ I, en(t)
s

−→ 0 in X P -a.s. We prove this by

showing that

(en(t), z) =

∫ t

0

(

S∗(t − s)z, (Bo(ds) − Bn(ds))yo(s)
)

→ 0

P -as, uniformly with respect to z ∈ B1(X). Denote the retract of the Ball Br(Y )

by Φr(y), and define yo,r = Φr(yo). Clearly yo,r ∈ B∞(I, Y ) P-a.s and yo,r
s

−→ yo in
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Ba
∞(I, L2(Ω, Y )). Using the retract we can write

(en(t), z) =

∫ t

0

(

S∗(t − s)z, (Bo(ds) − Bn(ds))yo(s)
)

=

∫ t

0

(

S∗(t − s)z, (Bo(ds) − Bn(ds))yo,r(s)
)

+

∫ t

0

(

S∗(t − s)z, (Bo(ds) − Bn(ds))(yo(s) − yo,r(s)) ≡ I1 + I2

for t ∈ I. By our assumption S(t), and hence S∗(t), is compact and since yo,r ∈

B∞(I, Y ) P -almost surely, it follows from weak convergence of Bn to Bo that I1

converges to zero P -a.s uniformly on the unit ball B1(X). Considering I2, it follows

from (H2) that

|I2|
2 ≤ (2M̃ |z|X)2ν(I)

∫ t

0

|yo(s) − yo,r(s)|
2
Y ν(ds), t ∈ I, P − a.s.

Since yo,r(t)
s

−→ yo(t) in Y for each t ∈ I P-a.s, and they are elements of B∞(I, L2(Ω, Y )),

and ν is a nonnegative countably additive measure having bounded variation, I2 con-

verges to zero as r → ∞ uniformly with respect to z ∈ B1(X). Thus (en(t), z) → 0 P -

almost surely uniformly on the unit ball B1(X) and hence, for each t ∈ I, en(t)
s

−→ 0

in X with probability one (P − a.s). Since the semivariations of {Bn, Bo} are domi-

nated by the measure ν, it follows from the expression for en given by (4.9) that

|en(t)|2X ≤ 4(M̃)2ν(I)

∫ T

0

|yo(s)|
2
Y ν(ds), t ∈ I,

P -a.s. Recalling that yo ∈ Ba
∞(I, L2(Ω, Y )), it follows from the inequality (4.11) and

the Lebesgue bounded convergence theorem that for each t ∈ I,

E|xo(t) − xn(t)|2X −→ 0.

This proves the continuity as stated. �

For any B ∈ Γ and t ∈ I, let µB
t ≡ L(xB(t)) denote the probability law or

measure induced by the random element xB(t). That is, for any G ∈ B(X), µB
t (G) =

P{xB(t) ∈ G}. Let C0(X) denote the Banach space of bounded continuous real valued

function on X endowed with the standard sup norm topology sup{|ϕ(x)|, x ∈ X};

and let M0(X) denote the space of probability measures defined on B(X). Define for

each t ∈ I, the reachable set

R(t) ≡ {ν ∈ M0(X) : ν = µB
t for some B ∈ Γ}.(4.12)

This is the set of measures induced by the solution process of the system (4.4)–(4.5)

at time t. As a byproduct of Theorem 4.2, we have the following result.

Theorem 4.3. Consider the system (4.4)–(4.5) and suppose the assumptions of

Theorem 4.2 hold. Then, for each t ∈ I, the reachable set R(t) ⊂ M0(X) is compact

in the weak topology.
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Proof. It follows from Theorem 4.2 that whenever Bn
w

−→ Bo, we have xn(t)
s

−→

xo(t) in L2(Ω, X) for each t ∈ I. Hence, for each t ∈ I, we can extract a subsequence

{xnk
(t)} of the sequence {xn(t)} such that xnk

(t)
s

−→ xo(t) in X P -a.s. Thus, for any

ϕ ∈ C0(X), we have

ϕ(xnk
(t)) → ϕ(xo(t)) P − a.s.

Since ϕ ∈ C0(X), it follows from this and Lebesgue bounded convergence theorem

that

Eϕ(xnk
(t)) → Eϕ(xo(t)).

This is equivalent to weak convergence in the sense that
∫

X

ϕ(x)µnk

t (dx) →

∫

X

ϕ(x)µo
t (dx)

for every ϕ ∈ C0(X), where µnk

t = L(xnk
(t)) and µo

t = L(xo(t)). And it is often

written as µnk

t

w
−→ µo in M0(X). This completes the proof. �

Now we are prepared to consider some interesting control problems where the

controls are the operator valued measures considered as structural controls. Hence-

forth by control we mean an operator valued measure from an admissible class

Γ ⊂ Mcasbsv(Σ,L(Y, X)).

Problem 1 (Target Seeking): Let C be any closed subset of X and suppose we

want a control policy that maximizes the concentration of probability mass on C at

the terminal time T . In other words, this is a most desirable target that we want to

reach (or hit) at time T ∈ (0,∞) with maximum probability. Thus the objective is

to find a control B ∈ Γ such that

J1(B) ≡ µB
T (C)

is maximized. Note that this is equivalent to the problem sup{J̃1(µ) ≡ µ(C), µ ∈

R(T )}. We prove the following result.

Theorem 4.4. Suppose the assumptions of Theorem 4.3 hold. Then there exists a

control Bo ∈ Γ at which J1 attains its maximum.

Proof. By Theorem 4.3, R(T ) is weakly compact. So it suffices to prove that J̃1 as

defined above is upper semicontinuous on it. Let {µn} be any sequence (a net) from

R(T ). Since this set weakly compact there exists a subsequence (subnet), relabeled

as the original sequence, and an element µo ∈ R(T ) such µn
w

−→ µo in M0(X). Then

it follows from [15, Theorem 6.1, p. 40] that

lim µn(C) ≤ µo(C)

which is the same as lim J̃1(µn) ≤ J̃1(µo). Thus J̃1 is weakly upper semicontinu-

ous on R(T ) and therefore J1 is weakly upper semicontinuous on Γ. Since Γ ⊂

Mcasbsv(Σ,L(Y, X)) is weakly compact J1 attains its maximum on it. This completes

the proof. �
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Problem 2 (Evasion): Let D be any open subset of X and suppose we want a

control policy that minimizes the probability of hitting D at time T . In other words,

this is a danger zone and we want to avoid it at time T . Thus the objective is to find

a control B ∈ Γ such that

J2(B) ≡ µB
T (D)

is minimized. Again, this is equivalent to the problem

inf{J̃2(µ) ≡ µ(D), µ ∈ R(T )}.

Theorem 4.5. Suppose the assumptions of Theorem 4.3 hold. Then there exists a

control Bo ∈ Γ at which J2 attains its minimum.

Proof. The proof follows immediately from the previous result, by noting that

µ(D) = 1 − µ(X \ D).

Hence the functional J̃2(µ) ≡ µ(D) is weakly lower semicontinuous and so attains

its minimum on R(T ). Thus by theorem 4.3, B −→ J2(B) is weakly lower semicon-

tinuous on Γ and consequently there exists a control Bo ∈ Γ at which J2 attains its

minimum. �

Formulation of certain control problems requires the probability measure valued

functions. In particular, we are interested in the evolution of measures µB ≡ {µB
t , t ≥

0}, induced by the solutions of the stochastic systems (4.4)–(4.5) as discussed here.

In this vain we introduce the set R as follows. Let Lw
∞(I,M0(X)) denote the class

of weak star measurable M0(X) valued functions and define the reachable set of

solutions as

R ≡

{

µ ∈ Lw
∞(I,M0(X)) : µ = µB, for some B ∈ Γ

}

.(4.13)

Note that R = Πt∈IR(t). It follows from general topology, in particular Tychonoff’s

product theorem, that any product of compact topological spaces is compact in the

product topology. According to this result R is compact in the product topology

induced by the weak topology of each factor space. Here we present an elementary

but instructive proof.

Theorem 4.6. Suppose the assumptions of Theorem 4.3 hold. Then the set R is a

weak star sequentially compact subset of Lw
∞(I,M0(X)).

Proof. Let {µn} ∈ R, and ϕ ∈ L1(I, C0(X)). Then the duality pairing

µn(ϕ) ≡

∫

I×X

ϕ(t, x)µn
t (dx)dt

is well defined. By Fubinis theorem, we can write this as an iterated integral

µn(ϕ) =

∫

I

(
∫

X

ϕ(t, x)µn
t (dx)

)

dt.
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Define fn(t) ≡
∫

X
ϕ(t, x)µn

t (dx), t ∈ I. Since for almost all t ∈ I, ϕ(t, ·) ∈ C0(X),

and R(t) is weakly compact, there exists a µo
t ∈ R(t) such that along a subsequence

if necessary,

fn(t) ≡

∫

X

ϕ(t, x)µn
t (dx) →

∫

X

ϕ(t, x)µo
t (dx) ≡ fo(t)

for almost all t ∈ I. This way we can construct µo point wise for each t ∈ I. Clearly

fo, being the almost everywhere limit of a sequence measurable functions {fn}, is

measurable and so µo is weakly measurable. Further, |fn(t)| ≤ |ϕ(t, ·))|C0(X) ≡ gϕ(t).

Clearly, gϕ ∈ L+
1 (I) and therefore by Lebesgue dominated convergence theorem we

may conclude that

lim
n→∞

∫

I

fn(t) dt =

∫

I

fo(t) dt

and hence

lim
n→∞

∫

I×X

ϕ(t, x)µn
t (dx)dt =

∫

I×X

ϕ(t, x)µo
t (dx)dt.

Note that we have µo ∈ R. Thus R is weak star compact as stated. �

Remark 4.2. In the proof above, we can replace the sequential convergence by net

convergence.

Problem 3: Let us revisit the Evasion problem. Let D ⊂ X be an open set (consid-

ered as the forbidden or danger zone). The objective is to stay away from D as far as

possible for the entire period of time I = [0, T ]. We formulate this with a little more

generality. Let λ be a nonnegative countably additive measure on Σ ≡ ΣI having

bounded total variation and consider the functional

J3(B) ≡

∫

I

µB
t (D)λ(dt).

Corollary 4.7. Suppose the assumptions of Theorem 4.6 hold. Then there exists a

control B ∈ Γ at which J3 attains its minimum and so the evasion Problem-3 has a

solution.

Proof. We prove that J3 is weakly lower semicontinuous on Γ. Let Bn, Bo ∈ Γ such

that Bn
w

−→ Bo in Mcasbsv(Σ,L(Y, X)). Let µn, µo ∈ R denote the corresponding

measure valued functions. Then, for each t ∈ I, µn
t , µ

o
t ∈ R(t) with µn

t

w
−→ µo

t

possibly along a subsequence. Since D is an open set, it follows from Theorem 4.5

that

lim µn
t (D) ≥ µo

t (D).

Clearly, 0 ≤ µn
t (D), µo

t (D) ≤ 1. Since the measure λ has bounded total variation on

I, using Fatou Lemma, it is easy to verify that

J3(Bo) ≡

∫

µo
t (D)λ(dt) ≤ lim

∫

I

µn
t (D)λ(dt) ≡ lim J3(Bn).

Thus J3 is weakly lower semicontinuous and hence it attains its minimum on Γ. This

completes the proof. �
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Remark 4.3. Let {Di, 1 ≤ i ≤ m} be a family of open sets in X and {ti, 1 ≤ i ≤

m} ⊂ I and F : Rm −→ R, and consider the cylinder function

J(B) ≡ F (µB
t1
(D1), µ

B
t2
(D2), · · · , µB

tm
(Dm))

to be minimized. If F is monotone nondecreasing in its arguments and lower semicon-

tinuous and bounded away from −∞, the functional J is weakly lower semicontinuous

and bounded away from −∞ and so attains its minimum on Γ.

Remark 4.4. Let ϕi ∈ C0(X), 1 ≤ i ≤ m and {ti, 1 ≤ i ≤ m} ⊂ I and F as in

Remark 4.3, and consider the cylinder function

J(B) ≡ F (µB
t1
(ϕ1), µ

B
t2
(ϕ2), · · · , µB

tm
(ϕm)).

If F is lower semicontinuous on Rm and bounded away from −∞, J attains its

minimum on Γ. Similarly, if F is upper semicontinuous and bounded away from +∞,

then J attains its maximum on Γ.

Remark 4.5. Let C(X)(⊃ C0(X)) denote the space of continuous not necessarily

bounded real valued functions. This is an algebra. For p ≥ 0, define λp(x) ≡

(1/2)(1 + |x|pX), x ∈ X. Clearly λp ∈ C(X). Define the vector space

Cp(X) ≡
{

ϕ ∈ C(X) :‖ ϕ ‖p≡ sup{
|ϕ(x)|

λp(x)
, x ∈ X} < ∞

}

.

It is easy to see that Cp(X) is a Banach space with respect to the norm topology

‖ · ‖p. Let Ms
p(X) denote the space of signed measures on B(X) such that

‖ µ ‖p≡

∫

X

λp(x)|µ|(dx) < ∞.

It is clear that with respect to this norm topology Ms
p(X) is also a Banach space. By

use of Riesz representation theorem one can justify that the dual of Cp(X) is Ms
p(X).

Thus, in view of Theorem 4.2(a), the reachable set R is a subset of Lw
∞(I, Π2

0(X)) ⊂

Lw
∞(I,M0(X)) ⊂ Lw

∞(I,Ms
0(X)) where Π2

0(X) ⊂ M0(X) is the space of probability

measures possessing finite second moments. We can use this observation to consider

several other control problems.

Problem 4: A problem similar to the classical control problem can be stated as

follows. Suppose a desired path µd ∈ Lw
∞(I,M0(X)) and a measure ν ∈ M0(X) are

given. The objective is to find a control measure B ∈ Γ that forces the system to

follow the given path µd and reach at time T the target measure ν as close as possible.

This problem can be formulated using the Prohorov metric ̺P : M0(X)×M0(X) −→

[0,∞). The cost functional is then defined by

J(B) ≡

∫ T

0

α ̺P (µB
t , µd

t ) λ(dt) + β ̺P (µB
T , ν)(4.14)

where α, β ≥ 0 and λ ∈ M+
cabv(Σ).
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Theorem 4.8. Suppose the assumptions of theorem 4.6 hold and α, β ≥ 0 and

λ ∈ M+
cabv(Σ). Then there exists an optimal control measure in Γ at which the cost

functional (4.14) attains its minimum.

Proof. Define the functional Ψ on Lw
∞(I,M0(X)) by

Ψ(µ) ≡

∫ T

0

α ̺P (µt, µ
d
t ) λ(dt) + β ̺P (µT , ν).(4.15)

By virtue of Theorem 4.3 it is clear from the proof of Theorem 4.6, that weak lower

semicontinuity of B → J(B) on Γ ⊂ Mcasbsv(Σ,L(Y, X)) is equivalent to weak star

lower semicontinuity of Ψ on R ⊂ Lw
∞(I,M0(X)). Thus it suffices to prove the later.

Since the Prohorov metric topology is equivalent to the topology of weak (actually

weak star) convergence, it is immediate that Ψ is lower semicontinuous with respect

to the weak star topology on Lw
∞(I,M0(X)). By Theorem 4.6, R ⊂ Lw

∞(I,M0(X))

is weak star sequentially compact and therefore Ψ attains its minimum on R, and by

the equivalence, J attains its minimum on Γ proving existence of optimal control. �

In control theory time optimal control is very interesting. The objective is to

achieve certain goal in minimum time or maximize the time to disaster. We consider

this in the next problem.

Problem 5 (Time Optimal Control). Considering the system (4.4)–(4.5), suppose

the initial measure µ0 induced by the random element x(0) ≡ ξ has the support

K0 ⊂ X a closed set. Let K1 ⊂ X be another closed set containing K0 in its

interior. It is clear that the support of µB
t , t ≥ 0, starting from K0 at time t = 0,

will evolve with time (shrinking/expanding) and may at some time extend beyond

K1. In other words, some mass of the measure may leak out of K1. We call this exit

time. Our objective is to find a control that maximizes this exit time. Since t → µB
t

is only weakly measurable and not necessarily continuous, we formulate this problem

as follows:

J(B) ≡ inf{t ≥ 0 :

∫ t

0

µB
s (X \ K1) ds > 0}.(4.16)

We wish to find a control that maximizes this functional thereby maximizing the exit

time. Here we use the convention inf(∅) = +∞. We consider J to be an extended

real valued function on Γ.

Theorem 4.9. Suppose the assumptions of Theorem 4.3 hold, {K0, K1} are closed

subsets of X with K1 having nonempty interior and K0 ⊂ int(K1), and that the set

TB ≡ {t ≥ 0 :

∫ t

0

µB
s (X \ K1) ds > 0} 6= ∅

for all B ∈ Γ. Then there exists a control B ∈ Γ at which J given by the expression

(4.16) attains its maximum.
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Proof. We show that the functional B → J(B) given by (4.16) is weakly upper

semicontinuous. Let Bn
w

−→ Bo in Mcasbsv(Σ,L(Y, X)). Since K1 is a closed set, by

Theorem 4.5, we have

lim µBn

s (X \ K1) ≥ µBo

s (X \ K1).

Then by careful examination, it is easy to see that

{t ≥ 0 : lim

∫ t

0

µBn

s (X \ K1) ds > 0}

⊇ {t ≥ 0 :

∫ t

0

lim µBn

s (X \ K1) ds > 0}

⊇ {t ≥ 0 :

∫ t

0

µBo

s (X \ K1) ds > 0}.

Hence we have

inf{t ≥ 0 : lim

∫ t

0

µBn

s (X \ K1) ds > 0}(4.17)

≤ inf{t ≥ 0 :

∫ t

0

lim µBn

s (X \ K1) ds > 0}

≤ inf{t ≥ 0 :

∫ t

0

µB0

s (X \ K1) ds > 0}.

By definition of limit inferior, for every ε > 0, there exists nε ∈ N such that for all

t ≥ 0, and n ≥ nε,
∫ t

0

µBn

s (X \ K1)ds ≥ −ε + lim

∫ t

0

µBn

s (X \ K1)ds, ∀ n ≥ nε,(4.18)

and consequently, for all n ≥ nε,

J(Bn) ≡ inf{t ≥ 0 :

∫ t

0

µBn

s (X \ K1) ds > 0}

≤ inf{t ≥ 0 : −ε + lim

∫ t

0

µBn

s (X \ K1) ds > 0}.

Since this is valid for all n ≥ nε, and ε(> 0) can be chosen arbitrarily small, from

this it is easy to justify that

lim J(Bn) ≤ inf{t ≥ 0 : lim

∫ t

0

µBn

s (X \ K1) ds > 0}.(4.19)

Now using (4.17) in (4.19) we obtain lim J(Bn) ≤ J(Bo) proving upper semicontinuity

of the map B −→ J(B). Since Γ is weakly compact, J attains its maximum on Γ.

This completes the proof. �

Problem 6 (Control of Hausdorff Dimension). In applications it is often desir-

able to determine the complexity of the support of the measure, in particular, when

the probability measures are defined on infinite dimensional spaces. Usually the com-

plexity can be measured in terms of Hausdorff (or fractal) dimension. Clearly, the
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larger the dimension, the greater is the complexity. For example, in the study of

stability, often Hausdorff dimension is used to quantify the complexity of attractors

and invariant sets etc.

Here we wish to formulate an objective functional that includes a measure of

complexity of the support and then find a control that minimizes such a functional.

Let K(X) denote the hyper space of compact subsets (including the empty set) of

the separable Hilbert space X and suppose it is furnished with the metric topology

determined by the well known Hausdorff metric ρH . It is well known that (K(X), ρH)

is a Polish space. Let dH : K(X) −→ [0,∞] denote the Hausdorff dimension function

which is a nonnegative extended real valued set function. Consider the functional

h(B, C) ≡ dH(C) + (β/T )

∫ T

0

µB
t (X \ C)λ(dt)(4.20)

defined on Γ ×K(X) where β is a large positive number, λ ∈ M+
cabv(Σ), and Γ is the

class of admissible controls contained in Mcasbsv(Σ,L(Y, X)). Then we define the cost

functional as

J(B) ≡ inf{h(B, C), C ∈ K(X)}.(4.21)

We must choose B ∈ Γ that minimizes this functional.

It is known that the Hausdorff dimension function is not lower semicontinuous

with respect to the metric ρH . In fact it is a Baire class 2 function [Mattila and

Mauldin, 16] which is highly discontinuous. Thus our technique will not work for

this functional. So as in [Ahmed, 17, p. 204], we replace the Hausdorff dimension

function dH(·) by any other suitable set function η : K(X) −→ [0,∞] satisfying

certain properties similar to the Hausdorff dimension function. And in place of the

expression (4.20) we use the following functional

ℓ(B, C) ≡ η(C) + (β/T )

∫ T

0

µB
t (X \ C)λ(dt)(4.22)

and define the cost functional by

J(B) ≡ inf{ℓ(B, C), C ∈ K(X)}.(4.23)

Let N denote the class of sets comprised of singletons, finite sets and the empty set.

We introduce the following assumptions on the set function η:

(P1): η(F ) = 0, for all F ∈ N , η(C1) ≤ η(C2) for all C1, C2 ∈ K(X), C1 ⊂ C2.

(P2): η is coercive with respect to Hausdorff dimension in the sense that

limdH (C)→∞ η(C) = ∞.

Theorem 4.10. Suppose the assumptions of Theorem 4.6 hold and the set function

η satisfies the properties (P1) and (P2). Then, there exists a control measure in Γ at

which J attains its minimum.
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Proof. For the proof we follow the same procedure as in [17, Theorem 7.8.8]. First

we prove that for every B ∈ Γ, the function C −→ ℓ(B, C) is lower semicontinuous on

(K(X), ρH). Since ℓ(B, C) ≤ η(C)+(β/T )λ(I) for all C ∈ K(X) and for all B ∈ Γ, it

is clear that C −→ ℓ(B, C) is coercive. By assumption η is lower semicontinuous. So it

suffices to verify that the second term of the expression (4.22) is lower semicontinuous.

Let {Cn, Co} ∈ K(X) and suppose Cn
ρH−→ Co. Then for every ε > 0, there exists an

integer nε such that Cn ⊂ Cε
o for all n ≥ nε where Cε

o ≡ {x ∈ X : d(x, Co) ≤ ε}.

Clearly, for all n ≥ nε we have

(β/T )

∫ T

0

µB
t (X \ Cε

o)λ(dt) ≤ (β/T )

∫ T

0

µB
t (X \ Cn)λ(dt)

and hence

(β/T )

∫ T

0

µB
t (X \ Cε

o)λ(dt) ≤ lim
{

(β/T )

∫ T

0

µB
t (X \ Cn)λ(dt)

}

.

Since ε(> 0) is arbitrary, it follows from this that the second component of (4.22) is

lower semicontinuous on (K(X), ρH). Thus for each B, the functional C −→ ℓ(B, C)

is lower semicontinuous in the Hausdorff metric topology. Clearly, ℓ(B, C) ≥ 0. It

is clear from these facts that for each fixed B ∈ Γ, ℓ(B, ·) attains its minimum.

This shows that J(B) given by (4.23) is well defined. Now let {Bn} ⊂ Γ be a

minimizing sequence for J . From the above analysis there exists a corresponding

sequence {Cn} ⊂ K(X) such that J(Bn) = ℓ(Bn, Cn). Since {Bn, Cn} ⊂ Γ × K(X)

is the minimizing sequence there exists a set D ∈ K(X) such that Cn ⊂ D for all

n ∈ N . It is clear that (K(D), ρH), furnished with the Hausdorff metric topology,

is a compact Polish space. Since {Bn, Cn} ⊂ Γ × K(D), there exists a subsequence,

relabeled as the original sequence, and {Bo, Co} ∈ Γ × K(D) such that Bn
w

−→ Bo,

and Cn
ρH−→ Co. Hence, for every ε > 0 there exists nε ∈ N such that Cn ⊂ Cε

o for

all n ≥ nε where Cε
o ≡ {x ∈ X : d(x, Co) ≤ ε}. Let {µn, µo} denote the measures

corresponding to {Bn, Bo} respectively. By weak convergence of µn to µo (along a

subsequence if necessary), it is easy to see that

µo
t (X \ Cε

o) ≤ lim µn
t (X \ Cε

o) ≤ lim µn
t (X \ Cn).(4.24)

Integrating with respect to the positive measure λ and using Fatou Lemma, it follows

from the above inequality that
∫ T

0

µo
t (X \ Cε

o) λ(dt) ≤ lim

∫ T

0

µn
t (X \ Cn) λ(dt).(4.25)

By our assumption, η is lower semicontinuous on (K(X), ρH). Hence we have

η(Co) + (β/T )

∫ T

0

µo
t (X \ Cε

o) λ(dt)(4.26)

≤ lim
{

η(Cn) + (β/T )

∫ T

0

µn
t (X \ Cn) λ(dt)

}
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for every ε > 0. Since ε(> 0) is otherwise arbitray, it follows from (4.26) that

J(Bo) ≤ lim J(Bn).

Thus J is weakly lower semicontinuous and since Γ is weakly compact, it attains its

minimum on Γ. This completes the proof. �
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